1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
from unittest import TestCase
import numpy
from numpy.testing import assert_allclose
from cogent3.maths.stats.contingency import CategoryCounts, calc_expected
from cogent3.util.dict_array import DictArrayTemplate
class ContingencyTests(TestCase):
def test_chisq(self):
"""correctly compute chisq test"""
table = CategoryCounts([[762, 327, 468], [484, 239, 477]])
got = table.chisq_test()
self.assertEqual(round(got.chisq, 5), 30.07015)
self.assertEqual(got.df, 2)
assert_allclose(got.pvalue, 2.95358918321e-07)
def test_residuals(self):
"""correctly calculate residuals"""
table = CategoryCounts([[762, 327], [484, 239]])
assert_allclose(
table.residuals.array,
[[0.48099031, -0.71365306], [-0.59031133, 0.87585441]],
)
def test_chisq2(self):
"""constructed from 2D dict"""
data = {
"rest_of_tree": {"env1": 2, "env3": 1, "env2": 0},
"b": {"env1": 1, "env3": 1, "env2": 3},
}
table = CategoryCounts(data)
got = table.chisq_test()
assert_allclose(got.chisq, 3.02222222)
data = {
"AIDS": {"Males": 4, "Females": 2, "Both": 3},
"No_AIDS": {"Males": 3, "Females": 16, "Both": 2},
}
table = CategoryCounts(data)
got = table.chisq_test()
assert_allclose(got.chisq, 7.6568405139833722)
assert_allclose(got.pvalue, 0.0217439383468)
def test_1D_counts(self):
"""correctly operate on a 1D count array"""
table = CategoryCounts([762, 327])
got = table.chisq_test()
assert_allclose(got.chisq, 173.7603305785124)
self.assertLess(got.pvalue, 2.2e-16) # value from R
_ = got._repr_html_() # shouldn't fail
self.assertIn("1.12e-39", str(got)) # used sci formatting
def test_G_ind(self):
"""correctly produce G test of independence"""
table = CategoryCounts([[762, 327, 468], [484, 239, 477]])
got = table.G_independence(williams=True)
self.assertEqual(got.df, 2)
def test_G_ind_with_pseudocount(self):
"""G test of independence with pseudocount"""
table = CategoryCounts([[762, 327, 0], [484, 239, 0]])
got = table.G_independence(williams=True, pseudo_count=1)
assert_allclose(table.observed.array + 1, got.observed.array)
assert_allclose(got.expected.array, calc_expected(got.observed.array))
def test_G_fit_with_expecteds(self):
"""compute G-fit with provided expecteds"""
obs = [2, 10, 8, 2, 4]
exp = [5.2] * 5
keys = ["Marl", "Chalk", "Sandstone", "Clay", "Limestone"]
table = CategoryCounts(dict(zip(keys, obs)), expected=dict(zip(keys, exp)))
got = table.G_fit()
assert_allclose(got.G, 9.849234)
assert_allclose(got.pvalue, 0.04304536)
_ = got._repr_html_() # shouldn't fail
self.assertIn("0.0430", str(got)) # used normal formatting
def test_assign_expected(self):
"""assign expected property"""
obs = [2, 10, 8, 2, 4]
exp = [5.2] * 5
keys = ["Marl", "Chalk", "Sandstone", "Clay", "Limestone"]
table = CategoryCounts(dict(zip(keys, obs)))
table.expected = dict(zip(keys, exp))
got = table.G_fit()
assert_allclose(got.G, 9.849234)
table.expected = None
_ = table.G_fit()
def test_zero_observeds(self):
"""raises ValueError"""
with self.assertRaises(ValueError):
CategoryCounts(dict(a=0, b=0))
def test_shuffling(self):
"""resampling works for G-independence"""
table = CategoryCounts([[762, 327], [750, 340]])
got = table.G_independence(shuffled=50)
self.assertTrue(0 < got.pvalue < 1) # a large interval
got = table.chisq_test(shuffled=50)
self.assertTrue(0 < got.pvalue < 1) # a large interval
def test_to_dict(self):
"""returns a dict of contents"""
table = CategoryCounts([[762, 327], [750, 340]])
got = table.to_dict()
assert_allclose(got["residuals"][0][0], 0.23088925877536437)
assert_allclose(got["observed"][1][1], 340)
obs = [2, 10, 8, 2, 4]
exp = [5.2] * 5
keys = ["Marl", "Chalk", "Sandstone", "Clay", "Limestone"]
table = CategoryCounts(dict(zip(keys, obs)), expected=dict(zip(keys, exp)))
got = table.to_dict()
assert_allclose(got["expected"]["Marl"], 5.2)
assert_allclose(got["observed"]["Sandstone"], 8)
def test_str_contingency(self):
"""exercising str(CategoryCounts)"""
table = CategoryCounts(
{
"rest_of_tree": {"env1": 2, "env3": 1, "env2": 0},
"b": {"env1": 1, "env3": 1, "env2": 3},
}
)
str(table)
obs = [2, 10, 8, 2, 4]
exp = [5.2] * 5
keys = ["Marl", "Chalk", "Sandstone", "Clay", "Limestone"]
table = CategoryCounts(dict(zip(keys, obs)), expected=dict(zip(keys, exp)))
str(table)
def test_repr_contingency(self):
"""exercising repr(CategoryCounts) with/without html=True"""
table = CategoryCounts(
{
"rest_of_tree": {"env1": 2, "env3": 1, "env2": 0},
"b": {"env1": 1, "env3": 1, "env2": 3},
}
)
str(table)
obs = [2, 10, 8, 2, 4]
exp = [5.2] * 5
keys = ["Marl", "Chalk", "Sandstone", "Clay", "Limestone"]
table = CategoryCounts(dict(zip(keys, obs)), expected=dict(zip(keys, exp)))
_ = table._get_repr_()
_ = table._get_repr_(html=True)
def test_accessing_elements(self):
"""successfully access elements"""
table = CategoryCounts(
{
"rest_of_tree": {"env1": 2, "env3": 1, "env2": 0},
"b": {"env1": 1, "env3": 1, "env2": 3},
}
)
got = table.observed["rest_of_tree"]["env1"]
self.assertEqual(got, 2)
obs = [2, 10, 8, 2, 4]
keys = ["Marl", "Chalk", "Sandstone", "Clay", "Limestone"]
table = CategoryCounts(dict(zip(keys, obs)))
got = table.expected["Clay"]
assert_allclose(got, 5.2)
def test_calc_expected(self):
"""expected returns new matrix with expected freqs"""
matrix = CategoryCounts(
dict(
rest_of_tree=dict(env1=2, env3=1, env2=0),
b=dict(env1=1, env3=1, env2=3),
)
)
assert_allclose(matrix.expected["rest_of_tree"]["env1"], 1.125)
assert_allclose(matrix.expected["b"]["env1"], 1.875)
assert_allclose(
matrix.expected.array.tolist(), [[1.875, 1.875, 1.25], [1.125, 1.125, 0.75]]
)
def test_validate_expecteds(self):
"""test provided expecteds total same as observed"""
with self.assertRaises(AssertionError):
obs = dict(a=10, b=2, c=2)
exp = [5, 5, 5]
CategoryCounts(obs, expected=exp)
def test_repr_str_html(self):
"""exercising construction of different representations"""
table = CategoryCounts(
{
"rest_of_tree": {"env1": 2, "env3": 1, "env2": 0},
"b": {"env1": 1, "env3": 1, "env2": 3},
}
)
got_g1 = table.G_fit()
got_g2 = table.G_independence()
got_chisq = table.chisq_test()
for obj in (table, got_g1, got_g2, got_chisq):
str(obj)
repr(obj)
obj._repr_html_()
def test_statistics(self):
"""returns TestResult.statistics has stats"""
table = CategoryCounts(
{
"rest_of_tree": {"env1": 2, "env3": 1, "env2": 0},
"b": {"env1": 1, "env3": 1, "env2": 3},
}
)
got = table.chisq_test()
stats = got.statistics
self.assertEqual(stats[0, "pvalue"], got.pvalue)
def test_calc_expected2(self):
"""handle case where expected is a single column vector"""
nums = numpy.array([1, 2, 3]).reshape((3, 1))
got = calc_expected(nums)
assert_allclose(got, numpy.array([2, 2, 2]).reshape((3, 1)))
def test_category_counts_from_non_int_arrays(self):
"""handles object and float numpy array, fails if float"""
a = numpy.array([[31, 36], [58, 138]], dtype=object)
darr = DictArrayTemplate(["syn", "nsyn"], ["Ts", "Tv"]).wrap(a)
got = CategoryCounts(darr)
assert_allclose(got.observed.array.tolist(), a.tolist())
for dtype in (object, float):
with self.assertRaises(TypeError):
a = numpy.array([[31.3, 36], [58, 138]], dtype=dtype)
darr = DictArrayTemplate(["syn", "nsyn"], ["Ts", "Tv"]).wrap(a)
_ = CategoryCounts(darr)
# negative values disallowed
with self.assertRaises(ValueError):
a = numpy.array([[31, -36], [58, 138]], dtype=int)
darr = DictArrayTemplate(["syn", "nsyn"], ["Ts", "Tv"]).wrap(a)
_ = CategoryCounts(darr)
|