1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
from unittest import TestCase
import numpy as np
from numpy.testing import assert_allclose
from cogent3.maths.stats.jackknife import JackknifeStats
def pmcc(data, axis=1):
"""Compute the Product-moment correlation coefficient.
Expression 15.3 from Biometry by Sokal/Rohlf
This code implementation is on the proviso that the data that is provided
is two dimensional: [[Y1], [Y2]] (trying to determine the correlation
coefficient between data sets Y1 and Y2"""
if axis == 0:
data = data.transpose()
axis = 1
other_axis = 0
mean = data.mean(axis=axis)
data_less_mean = np.array([data[0] - mean[0], data[1] - mean[1]])
sum_squares = np.sum(np.square(data_less_mean), axis=axis)
sum_products = np.sum(np.prod(data_less_mean, axis=other_axis))
pmcc = np.divide(sum_products, np.sqrt(np.prod(sum_squares)))
z_trans = np.arctanh(pmcc)
return z_trans
# test data from Box 15.2; Biometry by Sokal/Rohlf
data = np.array(
[
[159, 179, 100, 45, 384, 230, 100, 320, 80, 220, 320, 210],
[
14.40,
15.20,
11.30,
2.50,
22.70,
14.90,
1.41,
15.81,
4.19,
15.39,
17.25,
9.52,
],
]
)
# factory function generator for the statistical function of interest
def stat_maker(func, data, axis):
def calc_stat(coords):
subset_data = data.take(coords, axis)
return func(subset_data, axis)
return calc_stat
# function to compute mean of a np array
def mean(data, axis):
return data.mean(axis=axis)
class JackknifeTests(TestCase):
def test_proper_initialise(self):
"""jackknife should initialise correctly"""
# Scalar
pmcc_stat = stat_maker(pmcc, data, 1)
test_knife = JackknifeStats(data.shape[1], pmcc_stat)
self.assertEqual(test_knife.n, data.shape[1])
self.assertEqual(test_knife._jackknifed_stat, None)
# Vector
mean_stat = stat_maker(mean, data, 1)
test_knife = JackknifeStats(data.shape[1], mean_stat)
self.assertEqual(test_knife.n, data.shape[1])
self.assertEqual(test_knife._jackknifed_stat, None)
def test_jackknife_stats(self):
"""jackknife results should match Sokal & Rolf example"""
# Scalar
pmcc_stat = stat_maker(pmcc, data, 1)
test_knife = JackknifeStats(data.shape[1], pmcc_stat)
assert_allclose(test_knife.jackknifed_stat, 1.2905845)
assert_allclose(test_knife.standard_error, 0.2884490)
self.assertTrue(test_knife._jackknifed_stat != None)
# Vector
mean_stat = stat_maker(mean, data, 1)
test_knife = JackknifeStats(data.shape[1], mean_stat)
expected_jk_stat = data.mean(axis=1)
got_jk_stat = test_knife.jackknifed_stat
expected_standard_err = [30.69509346, 1.87179671]
got_standard_err = test_knife.standard_error
for index in [0, 1]:
assert_allclose(got_jk_stat[index], expected_jk_stat[index])
assert_allclose(got_standard_err[index], expected_standard_err[index])
def test_tables(self):
"""jackknife should work for calculators return scalars or vectors"""
# Scalar
pmcc_stat = stat_maker(pmcc, data, 1)
test_knife = JackknifeStats(data.shape[1], pmcc_stat)
expected_subsample_stats = [
1.4151,
1.3946,
1.4314,
1.1889,
1.1323,
1.3083,
1.3561,
1.3453,
1.2412,
1.3216,
1.2871,
1.3664,
]
expected_pseudovalues = [
0.1968,
0.4224,
0.0176,
2.6852,
3.3084,
1.3718,
0.8461,
0.9650,
2.1103,
1.2253,
1.6049,
0.7333,
]
test_knife.jackknife()
got_subsample_stats = test_knife._subset_statistics
got_pseudovalues = test_knife._pseudovalues
for index in range(data.shape[1]):
np.testing.assert_almost_equal(
got_subsample_stats[index], expected_subsample_stats[index], 4
)
np.testing.assert_approx_equal(
got_pseudovalues[index], expected_pseudovalues[index], 4
)
# Vector
mean_stat = stat_maker(mean, data, 1)
test_knife = JackknifeStats(data.shape[1], mean_stat)
test_knife.jackknife()
expected_pseudovalues = data.transpose()
expected_subsample_stats = [
[198.9091, 11.8336],
[197.0909, 11.7609],
[204.2727, 12.1155],
[209.2727, 12.9155],
[178.4545, 11.0791],
[192.4545, 11.7882],
[204.2727, 13.0145],
[184.2727, 11.7055],
[206.0909, 12.7618],
[193.3636, 11.7436],
[184.2727, 11.5745],
[194.2727, 12.2773],
]
got_subsample_stats = test_knife._subset_statistics
got_pseudovalues = test_knife._pseudovalues
for index1 in range(data.shape[1]):
for index2 in range(data.shape[0]):
np.testing.assert_almost_equal(
got_subsample_stats[index1][index2],
expected_subsample_stats[index1][index2],
4,
)
np.testing.assert_almost_equal(
got_pseudovalues[index1][index2],
expected_pseudovalues[index1][index2],
4,
)
def test_tabular_properties(self):
"""constructs tabular properties"""
pmcc_stat = stat_maker(pmcc, data, 1)
test_knife = JackknifeStats(data.shape[1], pmcc_stat)
ss = test_knife.sub_sample_stats
self.assertEqual(ss.shape, (12, 2))
ss = test_knife.sample_stat
pvs = test_knife.pseudovalues
self.assertEqual(pvs.shape, (12, 2))
ss = test_knife.summary_stats
self.assertEqual(ss.shape, (1, 3))
|