File: test_number.py

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (374 lines) | stat: -rw-r--r-- 13,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
from unittest import TestCase

import numpy

from numpy.testing import assert_allclose

from cogent3 import make_aligned_seqs
from cogent3.maths.stats import number


class TestNumber(TestCase):
    def test_construction(self):
        nums = number.CategoryCounter("AAAACCCGGGGT")
        self.assertEqual(nums.to_dict(), dict(A=4, C=3, G=4, T=1))
        self.assertEqual(nums.sum, 12)
        nums["A"] += 1

    def test_copy(self):
        """copy works"""
        nums = number.CategoryCounter("AAAACCCGGGGT")
        new = nums.copy()
        self.assertNotEqual(id(new), id(nums))
        self.assertEqual(new.to_dict(), nums.to_dict())

        nums = number.NumberCounter(data=[0, 0, 2, 4, 4, 4])
        new = nums.copy()
        self.assertNotEqual(id(new), id(nums))
        self.assertEqual(new.to_dict(), nums.to_dict())

    def test_construct_from_dict(self):
        """construction from dict of counts"""
        data = {"A": 20, "Q": 30, "X": 20}
        got = number.CategoryCounter(data)
        self.assertEqual(got["A"], 20)
        self.assertEqual(got.to_dict(), data)

    def test_add(self):
        """allow adding elements, or series"""
        nums = number.CategoryCounter("AAAACCCGGGGT")
        nums += "A"
        self.assertEqual(nums["A"], 5)

    def test_sub(self):
        """allow removing elements"""
        nums = number.CategoryCounter("AAAACCCGGGGT")
        nums -= "A"
        self.assertEqual(nums["A"], 3)

    def test_to_methods(self):
        """successfully convert to dict, list, array"""
        nums = number.CategoryCounter("AAAACCCGGGGT")
        got = nums.tolist()
        self.assertEqual(got, [4, 3, 4, 1])
        got = nums.tolist(keys="TCAG")
        self.assertEqual(got, [1, 3, 4, 4])
        got = nums.to_array(keys="TCAG")
        assert_allclose(got, numpy.array([1, 3, 4, 4], dtype=int))
        self.assertEqual(nums.to_dict(), dict(A=4, C=3, G=4, T=1))

    def test_to_table(self):
        """produces correct Table structure"""
        data = [
            ("Ovary-AdenoCA", "IGR"),
            ("Liver-HCC", "Intron"),
            ("Panc-AdenoCA", "Intron"),
            ("Panc-AdenoCA", "Intron"),
        ]
        nums = number.CategoryCounter(data)
        t = nums.to_table(column_names=None, title="blah")
        self.assertEqual(t.header, ("key", "count"))
        # if the key is a tuple, then the unexpanded column values are also
        self.assertIsInstance(t[0, 0], tuple)
        self.assertEqual(t.title, "blah")
        # you can use any data type as a key, but Table column is a str
        t = nums.to_table(column_names=2)
        self.assertEqual(t.header, ("2", "count"))
        t = nums.to_table(column_names="blah")
        self.assertEqual(t.header, ("blah", "count"))
        t = nums.to_table(column_names=["A", "B"])
        self.assertEqual(t.header, ("A", "B", "count"))

        with self.assertRaises(AssertionError):
            # key does not have 3 dimensions
            _ = nums.to_table(column_names=["A", "B", "C"])

        with self.assertRaises(AssertionError):
            # key does not have 1 dimension
            _ = nums.to_table(column_names=[1])

    def test_valid(self):
        """correctly identify when numbers contains numbers"""
        wrong = number.NumberCounter([0, "a", 1, 1])
        self.assertFalse(wrong.valid)
        ints = number.NumberCounter([0, 1, 1])
        self.assertTrue(ints.valid)
        floats = number.NumberCounter([0.1, 1.0, 1.0])
        self.assertTrue(floats.valid)
        cmplx = number.NumberCounter([1j, 0.2j])
        self.assertTrue(cmplx.valid)
        mixed = number.NumberCounter([0.1, 1, 1.1j])
        self.assertTrue(mixed.valid)
        for dtype in (numpy.uint8, numpy.int32, numpy.float64):
            data = numpy.arange(0, 4)
            npy = number.NumberCounter(data.astype(dtype))
            self.assertTrue(npy.valid)

    def test_number_counter_stats(self):
        """stats from NumberCounter correct"""
        data = [0, 0, 2, 4, 4, 4]
        nums = number.NumberCounter(data)
        self.assertEqual(nums.mean, numpy.mean(data))
        self.assertEqual(nums.std, numpy.std(data, ddof=1))
        self.assertEqual(nums.median, numpy.median(data))
        self.assertEqual(nums.quantile(q=0.75), numpy.quantile(data, q=0.75))
        self.assertEqual(nums.mode, 4)
        self.assertEqual(len(nums), 6)

    def test_keys_values_items(self):
        """return a list of these elements"""
        data = [0, 0, 2, 4, 4, 4]
        nums = number.CategoryCounter(data)
        self.assertEqual(nums.keys(), [0, 2, 4])
        self.assertEqual(nums.values(), [2, 1, 3])
        self.assertEqual(nums.items(), [(0, 2), (2, 1), (4, 3)])

        freqs = nums.to_freqs()
        self.assertEqual(freqs.keys(), [0, 2, 4])
        assert_allclose(freqs.values(), [0.3333333333333333, 0.16666666666666666, 0.5])
        self.assertEqual(len(freqs.items()), 3)
        self.assertEqual(freqs.items()[-1], (4, 0.5))

    def test_repr(self):
        """should precede with class name"""
        data = [0, 0, 2, 4, 4, 4]
        nums = number.CategoryCounter(data)
        got = repr(nums)
        self.assertTrue(got.startswith(nums.__class__.__name__))
        freqs = nums.to_freqs()
        got = repr(freqs)
        self.assertTrue(got.startswith(freqs.__class__.__name__))
        nums = number.NumberCounter(data)
        got = repr(nums)
        self.assertTrue(got.startswith(nums.__class__.__name__))

    def test_category_counter_stats(self):
        """stats from CategoryCounter correct"""
        data = "TCTTTAGAGAACAGTTTATTATACACTAAA"
        values = [data.count(b) for b in "ACGT"]
        nums = number.CategoryCounter(data)
        self.assertEqual(len(nums), len(data))
        self.assertEqual(nums.mean, numpy.mean(values))
        self.assertEqual(nums.std, numpy.std(values, ddof=1))
        self.assertEqual(nums.median, numpy.median(values))
        self.assertEqual(nums.quantile(q=0.75), numpy.quantile(values, q=0.75))
        self.assertEqual(nums.mode, "A")
        data = [
            ("T", "C"),
            ("T", "T"),
            ("T", "A"),
            ("G", "A"),
            ("G", "A"),
            ("A", "C"),
            ("A", "G"),
            ("T", "T"),
            ("T", "A"),
            ("T", "T"),
            ("A", "T"),
            ("A", "C"),
            ("A", "C"),
            ("T", "A"),
            ("A", "A"),
            ("A", "C"),
        ]
        values = [1, 3, 3, 2, 4, 1, 1, 1]
        nums = number.CategoryCounter(data)
        self.assertEqual(nums.mean, numpy.mean(values))
        self.assertEqual(nums.std, numpy.std(values, ddof=1))
        self.assertEqual(nums.median, numpy.median(values))
        self.assertEqual(nums.quantile(q=0.75), numpy.quantile(values, q=0.75))
        self.assertEqual(nums.mode, ("A", "C"))

    def test_usage(self):
        """Alignment.counts_per_seq method correctly applies CategoryCounter"""
        data = {
            "DogFaced": "TCATTA",
            "FalseVamp": "TCATTA",
            "FlyingFox": "TCTTTA",
            "FreeTaile": "TCATTA",
            "Horse": "TCATTG",
            "LeafNose": "TCTTTA",
            "LittleBro": "TCATTA",
            "Rhino": "TCATTG",
            "RoundEare": "TCATTA",
            "TombBat": "TCAGTA",
        }
        aln = make_aligned_seqs(data=data, moltype="dna")
        got = aln.counts_per_pos(motif_length=3)
        self.assertEqual(got[0, "TCA"], 8)
        self.assertEqual(got[0, "TCT"], 2)
        self.assertEqual(got[1, "TTA"], 7)
        self.assertEqual(got[1, "GTA"], 1)
        self.assertEqual(got[1, "TTG"], 2)

    def test_entropy(self):
        """CategoryCounter correctly calculates entropy"""
        freqs = numpy.array([4 / 12, 3 / 12, 4 / 12, 1 / 12])
        expect = -(freqs * numpy.log2(freqs)).sum()
        nums = number.CategoryCounter("AAAACCCGGGGT")
        assert_allclose(nums.entropy, expect)
        nums = number.CategoryCounter("AAAA")
        assert_allclose(nums.entropy, 0)

    def test_to_freqs(self):
        """CategoryCounter.to_freqs produces CategoryFreqs"""
        nums = number.CategoryCounter("AAAACCCGGGGT")
        freqs = nums.to_freqs()
        assert_allclose(freqs.to_array(list(freqs)), nums.to_array(list(freqs)) / 12)

    def test_expand(self):
        """correctly reconstitutes original series content"""
        nums = number.CategoryCounter("AAAACCCGGGGT")
        expanded = nums.expand()
        self.assertEqual(expanded, list("AAAACCCGGGGT"))

    def test_categoryfreqs_entropy(self):
        """correctly returns frequencies"""
        vals = numpy.array([4 / 12, 3 / 12, 4 / 12, 1 / 12])
        expect = -(vals * numpy.log2(vals)).sum()
        freqs = number.CategoryFreqs({"A": 4, "C": 3, "G": 4, "T": 1}, total=12)
        assert_allclose(freqs.entropy, expect)

    def test_to_normalized(self):
        """correctly recalibrate CategoryFreqs"""
        freqs = number.CategoryFreqs({"A": 4, "C": 2, "G": 4}, total=12)
        self.assertEqual(freqs["A"], 4 / 12)
        freqs = freqs.to_normalized()
        self.assertEqual(freqs["A"], 4 / 10)

        # from an empty dict
        freqs = number.CategoryFreqs()
        d = freqs.to_normalized()
        self.assertEqual(d.to_dict(), {})

    def test_numbers_update(self):
        """correctly update number counts"""
        data = [0, 0, 2, 4, 4, 4]
        nums = number.NumberCounter(data)
        data = [2, 4, 4, 4, 6, 5]
        nums2 = number.NumberCounter(data)
        nums.update_from_counts(nums2)
        self.assertEqual(nums[2], 2)
        self.assertEqual(nums[4], 6)
        self.assertEqual(nums[1], 0)

        data = [0, 0, 2, 4, 4, 4]
        nums = number.NumberCounter(data)
        nums.update_from_series([2, 4, 4, 4, 6, 5])
        self.assertEqual(nums[2], 2)
        self.assertEqual(nums[4], 6)
        self.assertEqual(nums[1], 0)

        with self.assertRaises(TypeError):
            counts = number.CategoryCounter("AAAACCCGGGGT")
            nums.update_from_counts(counts)

    def test_count(self):
        """correctly counts across key dimensions"""
        data = [
            ("T", "C"),
            ("T", "T"),
            ("T", "A"),
            ("G", "A"),
            ("G", "A"),
            ("A", "C"),
            ("A", "G"),
            ("T", "T"),
            ("T", "A"),
            ("T", "T"),
            ("A", "T"),
            ("A", "C"),
            ("A", "C"),
            ("T", "A"),
            ("A", "A"),
            ("A", "C"),
        ]
        nums = number.CategoryCounter(data)
        i0 = nums.count(0)
        self.assertEqual(i0["T"], 7)
        self.assertEqual(i0["G"], 2)
        self.assertEqual(i0["A"], 7)
        self.assertEqual(i0["C"], 0)
        # works same if keys are strings
        nums = number.CategoryCounter(["".join(e) for e in data])
        i0 = nums.count(0)
        self.assertEqual(i0["T"], 7)
        self.assertEqual(i0["G"], 2)
        self.assertEqual(i0["A"], 7)
        self.assertEqual(i0["C"], 0)
        with self.assertRaises(IndexError):
            _ = nums.count([0, 3])

        i0 = nums.count([0])
        self.assertEqual(i0["G"], 2)
        with self.assertRaises(IndexError):
            _ = nums.count([0, 3])
        i1 = nums.count(1)
        self.assertEqual(i1["A"], 6)
        self.assertEqual(i1["C"], 5)
        self.assertEqual(i1["T"], 4)

        data = {
            ("A", "C", "G"): 10,
            ("A", "T", "G"): 4,
            ("C", "C", "G"): 3,
            ("G", "C", "G"): 6,
        }
        nums = number.CategoryCounter(data)
        i02 = nums.count([0, 2])
        self.assertEqual(i02[("A", "G")], 14)
        self.assertEqual(i02[("C", "G")], 3)
        self.assertEqual(i02[("G", "G")], 6)

    def test_to_dictarray(self):
        """correctly constructs dict arrays"""
        d1 = {"T": 87, "C": 81, "A": 142, "expect": [142, 81, 87]}
        d2 = {
            ("T", "G"): 87,
            ("C", "C"): 81,
            ("A", "G"): 142,
            ("T", "T"): 58,
            "expect": [[0, 142, 0], [81, 0, 0], [0, 87, 58]],
        }
        d3 = {
            ("T", "G", "A"): 87,
            ("C", "C", "C"): 81,
            ("A", "G", "A"): 142,
            ("T", "T", "C"): 58,
            "expect": [
                [[0, 0], [142, 0], [0, 0]],
                [[0, 81], [0, 0], [0, 0]],
                [[0, 0], [87, 0], [0, 58]],
            ],
        }
        for d in (d1, d2, d3):
            expect = d.pop("expect")
            cat_count = number.CategoryCounter(d)
            darr = cat_count.to_dictarray()
            assert_allclose(darr.array, expect)

    def test_to_categorical(self):
        """correctly constructs categorical data"""
        d1 = {"T": 87, "C": 81, "A": 142, "expect": [142, 81, 87]}
        d2 = {
            ("T", "G"): 87,
            ("C", "C"): 81,
            ("A", "G"): 142,
            ("T", "T"): 58,
            "expect": [[0, 142, 0], [81, 0, 0], [0, 87, 58]],
        }
        d3 = {
            ("T", "G", "A"): 87,
            ("C", "C", "C"): 81,
            ("A", "G", "A"): 142,
            ("T", "T", "C"): 58,
        }
        for d in (d1, d2):
            expect = d.pop("expect")
            cats = number.CategoryCounter(d)
            cat_count = cats.to_categorical()
            assert_allclose(cat_count.observed.array, expect, err_msg=d)

        with self.assertRaises(NotImplementedError):
            cats = number.CategoryCounter(d3)
            cats.to_categorical()