1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
from unittest import TestCase
import numpy
from numpy.testing import assert_allclose
from cogent3 import make_aligned_seqs
from cogent3.maths.stats import number
class TestNumber(TestCase):
def test_construction(self):
nums = number.CategoryCounter("AAAACCCGGGGT")
self.assertEqual(nums.to_dict(), dict(A=4, C=3, G=4, T=1))
self.assertEqual(nums.sum, 12)
nums["A"] += 1
def test_copy(self):
"""copy works"""
nums = number.CategoryCounter("AAAACCCGGGGT")
new = nums.copy()
self.assertNotEqual(id(new), id(nums))
self.assertEqual(new.to_dict(), nums.to_dict())
nums = number.NumberCounter(data=[0, 0, 2, 4, 4, 4])
new = nums.copy()
self.assertNotEqual(id(new), id(nums))
self.assertEqual(new.to_dict(), nums.to_dict())
def test_construct_from_dict(self):
"""construction from dict of counts"""
data = {"A": 20, "Q": 30, "X": 20}
got = number.CategoryCounter(data)
self.assertEqual(got["A"], 20)
self.assertEqual(got.to_dict(), data)
def test_add(self):
"""allow adding elements, or series"""
nums = number.CategoryCounter("AAAACCCGGGGT")
nums += "A"
self.assertEqual(nums["A"], 5)
def test_sub(self):
"""allow removing elements"""
nums = number.CategoryCounter("AAAACCCGGGGT")
nums -= "A"
self.assertEqual(nums["A"], 3)
def test_to_methods(self):
"""successfully convert to dict, list, array"""
nums = number.CategoryCounter("AAAACCCGGGGT")
got = nums.tolist()
self.assertEqual(got, [4, 3, 4, 1])
got = nums.tolist(keys="TCAG")
self.assertEqual(got, [1, 3, 4, 4])
got = nums.to_array(keys="TCAG")
assert_allclose(got, numpy.array([1, 3, 4, 4], dtype=int))
self.assertEqual(nums.to_dict(), dict(A=4, C=3, G=4, T=1))
def test_to_table(self):
"""produces correct Table structure"""
data = [
("Ovary-AdenoCA", "IGR"),
("Liver-HCC", "Intron"),
("Panc-AdenoCA", "Intron"),
("Panc-AdenoCA", "Intron"),
]
nums = number.CategoryCounter(data)
t = nums.to_table(column_names=None, title="blah")
self.assertEqual(t.header, ("key", "count"))
# if the key is a tuple, then the unexpanded column values are also
self.assertIsInstance(t[0, 0], tuple)
self.assertEqual(t.title, "blah")
# you can use any data type as a key, but Table column is a str
t = nums.to_table(column_names=2)
self.assertEqual(t.header, ("2", "count"))
t = nums.to_table(column_names="blah")
self.assertEqual(t.header, ("blah", "count"))
t = nums.to_table(column_names=["A", "B"])
self.assertEqual(t.header, ("A", "B", "count"))
with self.assertRaises(AssertionError):
# key does not have 3 dimensions
_ = nums.to_table(column_names=["A", "B", "C"])
with self.assertRaises(AssertionError):
# key does not have 1 dimension
_ = nums.to_table(column_names=[1])
def test_valid(self):
"""correctly identify when numbers contains numbers"""
wrong = number.NumberCounter([0, "a", 1, 1])
self.assertFalse(wrong.valid)
ints = number.NumberCounter([0, 1, 1])
self.assertTrue(ints.valid)
floats = number.NumberCounter([0.1, 1.0, 1.0])
self.assertTrue(floats.valid)
cmplx = number.NumberCounter([1j, 0.2j])
self.assertTrue(cmplx.valid)
mixed = number.NumberCounter([0.1, 1, 1.1j])
self.assertTrue(mixed.valid)
for dtype in (numpy.uint8, numpy.int32, numpy.float64):
data = numpy.arange(0, 4)
npy = number.NumberCounter(data.astype(dtype))
self.assertTrue(npy.valid)
def test_number_counter_stats(self):
"""stats from NumberCounter correct"""
data = [0, 0, 2, 4, 4, 4]
nums = number.NumberCounter(data)
self.assertEqual(nums.mean, numpy.mean(data))
self.assertEqual(nums.std, numpy.std(data, ddof=1))
self.assertEqual(nums.median, numpy.median(data))
self.assertEqual(nums.quantile(q=0.75), numpy.quantile(data, q=0.75))
self.assertEqual(nums.mode, 4)
self.assertEqual(len(nums), 6)
def test_keys_values_items(self):
"""return a list of these elements"""
data = [0, 0, 2, 4, 4, 4]
nums = number.CategoryCounter(data)
self.assertEqual(nums.keys(), [0, 2, 4])
self.assertEqual(nums.values(), [2, 1, 3])
self.assertEqual(nums.items(), [(0, 2), (2, 1), (4, 3)])
freqs = nums.to_freqs()
self.assertEqual(freqs.keys(), [0, 2, 4])
assert_allclose(freqs.values(), [0.3333333333333333, 0.16666666666666666, 0.5])
self.assertEqual(len(freqs.items()), 3)
self.assertEqual(freqs.items()[-1], (4, 0.5))
def test_repr(self):
"""should precede with class name"""
data = [0, 0, 2, 4, 4, 4]
nums = number.CategoryCounter(data)
got = repr(nums)
self.assertTrue(got.startswith(nums.__class__.__name__))
freqs = nums.to_freqs()
got = repr(freqs)
self.assertTrue(got.startswith(freqs.__class__.__name__))
nums = number.NumberCounter(data)
got = repr(nums)
self.assertTrue(got.startswith(nums.__class__.__name__))
def test_category_counter_stats(self):
"""stats from CategoryCounter correct"""
data = "TCTTTAGAGAACAGTTTATTATACACTAAA"
values = [data.count(b) for b in "ACGT"]
nums = number.CategoryCounter(data)
self.assertEqual(len(nums), len(data))
self.assertEqual(nums.mean, numpy.mean(values))
self.assertEqual(nums.std, numpy.std(values, ddof=1))
self.assertEqual(nums.median, numpy.median(values))
self.assertEqual(nums.quantile(q=0.75), numpy.quantile(values, q=0.75))
self.assertEqual(nums.mode, "A")
data = [
("T", "C"),
("T", "T"),
("T", "A"),
("G", "A"),
("G", "A"),
("A", "C"),
("A", "G"),
("T", "T"),
("T", "A"),
("T", "T"),
("A", "T"),
("A", "C"),
("A", "C"),
("T", "A"),
("A", "A"),
("A", "C"),
]
values = [1, 3, 3, 2, 4, 1, 1, 1]
nums = number.CategoryCounter(data)
self.assertEqual(nums.mean, numpy.mean(values))
self.assertEqual(nums.std, numpy.std(values, ddof=1))
self.assertEqual(nums.median, numpy.median(values))
self.assertEqual(nums.quantile(q=0.75), numpy.quantile(values, q=0.75))
self.assertEqual(nums.mode, ("A", "C"))
def test_usage(self):
"""Alignment.counts_per_seq method correctly applies CategoryCounter"""
data = {
"DogFaced": "TCATTA",
"FalseVamp": "TCATTA",
"FlyingFox": "TCTTTA",
"FreeTaile": "TCATTA",
"Horse": "TCATTG",
"LeafNose": "TCTTTA",
"LittleBro": "TCATTA",
"Rhino": "TCATTG",
"RoundEare": "TCATTA",
"TombBat": "TCAGTA",
}
aln = make_aligned_seqs(data=data, moltype="dna")
got = aln.counts_per_pos(motif_length=3)
self.assertEqual(got[0, "TCA"], 8)
self.assertEqual(got[0, "TCT"], 2)
self.assertEqual(got[1, "TTA"], 7)
self.assertEqual(got[1, "GTA"], 1)
self.assertEqual(got[1, "TTG"], 2)
def test_entropy(self):
"""CategoryCounter correctly calculates entropy"""
freqs = numpy.array([4 / 12, 3 / 12, 4 / 12, 1 / 12])
expect = -(freqs * numpy.log2(freqs)).sum()
nums = number.CategoryCounter("AAAACCCGGGGT")
assert_allclose(nums.entropy, expect)
nums = number.CategoryCounter("AAAA")
assert_allclose(nums.entropy, 0)
def test_to_freqs(self):
"""CategoryCounter.to_freqs produces CategoryFreqs"""
nums = number.CategoryCounter("AAAACCCGGGGT")
freqs = nums.to_freqs()
assert_allclose(freqs.to_array(list(freqs)), nums.to_array(list(freqs)) / 12)
def test_expand(self):
"""correctly reconstitutes original series content"""
nums = number.CategoryCounter("AAAACCCGGGGT")
expanded = nums.expand()
self.assertEqual(expanded, list("AAAACCCGGGGT"))
def test_categoryfreqs_entropy(self):
"""correctly returns frequencies"""
vals = numpy.array([4 / 12, 3 / 12, 4 / 12, 1 / 12])
expect = -(vals * numpy.log2(vals)).sum()
freqs = number.CategoryFreqs({"A": 4, "C": 3, "G": 4, "T": 1}, total=12)
assert_allclose(freqs.entropy, expect)
def test_to_normalized(self):
"""correctly recalibrate CategoryFreqs"""
freqs = number.CategoryFreqs({"A": 4, "C": 2, "G": 4}, total=12)
self.assertEqual(freqs["A"], 4 / 12)
freqs = freqs.to_normalized()
self.assertEqual(freqs["A"], 4 / 10)
# from an empty dict
freqs = number.CategoryFreqs()
d = freqs.to_normalized()
self.assertEqual(d.to_dict(), {})
def test_numbers_update(self):
"""correctly update number counts"""
data = [0, 0, 2, 4, 4, 4]
nums = number.NumberCounter(data)
data = [2, 4, 4, 4, 6, 5]
nums2 = number.NumberCounter(data)
nums.update_from_counts(nums2)
self.assertEqual(nums[2], 2)
self.assertEqual(nums[4], 6)
self.assertEqual(nums[1], 0)
data = [0, 0, 2, 4, 4, 4]
nums = number.NumberCounter(data)
nums.update_from_series([2, 4, 4, 4, 6, 5])
self.assertEqual(nums[2], 2)
self.assertEqual(nums[4], 6)
self.assertEqual(nums[1], 0)
with self.assertRaises(TypeError):
counts = number.CategoryCounter("AAAACCCGGGGT")
nums.update_from_counts(counts)
def test_count(self):
"""correctly counts across key dimensions"""
data = [
("T", "C"),
("T", "T"),
("T", "A"),
("G", "A"),
("G", "A"),
("A", "C"),
("A", "G"),
("T", "T"),
("T", "A"),
("T", "T"),
("A", "T"),
("A", "C"),
("A", "C"),
("T", "A"),
("A", "A"),
("A", "C"),
]
nums = number.CategoryCounter(data)
i0 = nums.count(0)
self.assertEqual(i0["T"], 7)
self.assertEqual(i0["G"], 2)
self.assertEqual(i0["A"], 7)
self.assertEqual(i0["C"], 0)
# works same if keys are strings
nums = number.CategoryCounter(["".join(e) for e in data])
i0 = nums.count(0)
self.assertEqual(i0["T"], 7)
self.assertEqual(i0["G"], 2)
self.assertEqual(i0["A"], 7)
self.assertEqual(i0["C"], 0)
with self.assertRaises(IndexError):
_ = nums.count([0, 3])
i0 = nums.count([0])
self.assertEqual(i0["G"], 2)
with self.assertRaises(IndexError):
_ = nums.count([0, 3])
i1 = nums.count(1)
self.assertEqual(i1["A"], 6)
self.assertEqual(i1["C"], 5)
self.assertEqual(i1["T"], 4)
data = {
("A", "C", "G"): 10,
("A", "T", "G"): 4,
("C", "C", "G"): 3,
("G", "C", "G"): 6,
}
nums = number.CategoryCounter(data)
i02 = nums.count([0, 2])
self.assertEqual(i02[("A", "G")], 14)
self.assertEqual(i02[("C", "G")], 3)
self.assertEqual(i02[("G", "G")], 6)
def test_to_dictarray(self):
"""correctly constructs dict arrays"""
d1 = {"T": 87, "C": 81, "A": 142, "expect": [142, 81, 87]}
d2 = {
("T", "G"): 87,
("C", "C"): 81,
("A", "G"): 142,
("T", "T"): 58,
"expect": [[0, 142, 0], [81, 0, 0], [0, 87, 58]],
}
d3 = {
("T", "G", "A"): 87,
("C", "C", "C"): 81,
("A", "G", "A"): 142,
("T", "T", "C"): 58,
"expect": [
[[0, 0], [142, 0], [0, 0]],
[[0, 81], [0, 0], [0, 0]],
[[0, 0], [87, 0], [0, 58]],
],
}
for d in (d1, d2, d3):
expect = d.pop("expect")
cat_count = number.CategoryCounter(d)
darr = cat_count.to_dictarray()
assert_allclose(darr.array, expect)
def test_to_categorical(self):
"""correctly constructs categorical data"""
d1 = {"T": 87, "C": 81, "A": 142, "expect": [142, 81, 87]}
d2 = {
("T", "G"): 87,
("C", "C"): 81,
("A", "G"): 142,
("T", "T"): 58,
"expect": [[0, 142, 0], [81, 0, 0], [0, 87, 58]],
}
d3 = {
("T", "G", "A"): 87,
("C", "C", "C"): 81,
("A", "G", "A"): 142,
("T", "T", "C"): 58,
}
for d in (d1, d2):
expect = d.pop("expect")
cats = number.CategoryCounter(d)
cat_count = cats.to_categorical()
assert_allclose(cat_count.observed.array, expect, err_msg=d)
with self.assertRaises(NotImplementedError):
cats = number.CategoryCounter(d3)
cats.to_categorical()
|