File: test_test.py

package info (click to toggle)
python-cogent 2024.5.7a1%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 74,600 kB
  • sloc: python: 92,479; makefile: 117; sh: 16
file content (2096 lines) | stat: -rw-r--r-- 76,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
"""Unit tests for statistical tests and utility functions.
"""

from unittest import TestCase

from numpy import (
    arange,
    array,
    asarray,
    concatenate,
    fill_diagonal,
    isfinite,
    isnan,
    logical_and,
    ones,
    reshape,
    testing,
    tril,
)
from numpy.testing import assert_allclose, assert_equal

from cogent3.maths.stats.number import NumberCounter
from cogent3.maths.stats.test import (
    ALT_HIGH,
    ALT_LOW,
    ALT_TWO_SIDED,
    ANOVA_one_way,
    G_2_by_2,
    G_fit,
    G_ind,
    MonteCarloP,
    ZeroExpectedError,
    _flatten_lower_triangle,
    _get_alternate,
    _get_rank,
    _permute_observations,
    bayes_updates,
    correlation,
    correlation_matrix,
    correlation_test,
    distance_matrix_permutation_test,
    f_two_sample,
    f_value,
    fisher,
    get_ltm_cells,
    get_values_from_matrix,
    is_symmetric_and_hollow,
    kendall_correlation,
    likelihoods,
    mantel,
    mantel_test,
    mc_t_two_sample,
    multiple_comparisons,
    multiple_inverse,
    multiple_n,
    mw_boot,
    mw_test,
    pearson,
    pearson_correlation,
    permute_2d,
    posteriors,
    regress,
    regress_major,
    regress_origin,
    regress_R2,
    regress_residuals,
    reverse_tails,
    safe_sum_p_log_p,
    sign_test,
    spearman,
    std,
    stdev_from_mean,
    t_one_observation,
    t_one_sample,
    t_paired,
    t_two_sample,
    tail,
    z_test,
)


def is_prob(value):
    """helper function to establish a 0 <= value <= 1"""
    value = asarray(value)
    return logical_and(value >= 0, value <= 1.0).all()


def similar_means(observed, expected, pvalue=0.01):
    """False if observed p is lower than pvalue"""

    observed, expected = asarray(observed), asarray(expected)

    t, p = t_two_sample(observed, expected)

    # handle case where all elements were the same
    if p is None or not isfinite(p):
        if not observed.shape:
            observed = observed.reshape((1,))

        if not expected.shape:
            expected = expected.reshape((1,))

        if observed[0] == expected[0]:
            return True

    return p > pvalue


class TestsHelper(TestCase):
    """Class with utility methods useful for other tests."""

    def setUp(self):
        """Sets up variables used in the tests."""
        # How many times a p-value should be tested to fall in a given range
        # before failing the test.
        self.p_val_tests = 10

    def assertCorrectPValue(
        self, exp_min, exp_max, fn, args=None, kwargs=None, p_val_idx=0
    ):
        """Tests that the stochastic p-value falls in the specified range.

        Performs the test self.p_val_tests times and fails if the observed
        p-value does not fall into the specified range at least once. Each
        p-value is also tested that it falls in the range 0.0 to 1.0.

        This method assumes that fn is callable, and will unpack and pass args
        and kwargs to fn if they are provided. It also assumes that fn returns
        a single value (the p-value to be tested) or a tuple of results (any
        length greater than or equal to 1), with the p-value at position
        p_val_idx.

        This is primarily used for testing the Mantel and correlation_test
        functions.
        """
        found_match = False
        for i in range(self.p_val_tests):
            if args is not None and kwargs is not None:
                obs = fn(*args, **kwargs)
            elif args is not None:
                obs = fn(*args)
            elif kwargs is not None:
                obs = fn(**kwargs)
            else:
                obs = fn()

            try:
                p_val = float(obs)
            except TypeError:
                p_val = obs[p_val_idx]

            self.assertTrue(is_prob(p_val))
            if p_val >= exp_min and p_val <= exp_max:
                found_match = True
                break
        self.assertTrue(found_match)


class TestsTests(TestCase):
    """Tests miscellaneous functions."""

    def test_std(self):
        """Should produce a standard deviation of 1.0 for a std normal dist"""
        expected = 1.58113883008
        assert_allclose(std(array([1, 2, 3, 4, 5])), expected)

        expected_a = array([expected, expected, expected, expected, expected])
        a = array(
            [
                [1, 2, 3, 4, 5],
                [5, 1, 2, 3, 4],
                [4, 5, 1, 2, 3],
                [3, 4, 5, 1, 2],
                [2, 3, 4, 5, 1],
            ]
        )
        assert_allclose(std(a, axis=0), expected_a)
        assert_allclose(std(a, axis=1), expected_a)
        self.assertRaises(ValueError, std, a, 5)

    def test_std_2d(self):
        """Should produce from 2darray the same stdevs as scipy.stats.std"""
        inp = array([[1, 2, 3], [4, 5, 6]])
        exps = (  # tuple(scipy_std(inp, ax) for ax in [None, 0, 1])
            1.8708286933869707,
            array([2.12132034, 2.12132034, 2.12132034]),
            array([1.0, 1.0]),
        )
        results = tuple(std(inp, ax) for ax in [None, 0, 1])
        for obs, exp in zip(results, exps):
            testing.assert_almost_equal(obs, exp)

    def test_std_3d(self):
        """Should produce from 3darray the same std devs as scipy.stats.std"""
        inp3d = array([[[0, 2, 2], [3, 4, 5]], [[1, 9, 0], [9, 10, 1]]])  # 2,2,3
        exp3d = (  # for axis None, 0, 1, 2: calc from scipy.stats.std
            3.63901418552,
            array(
                [
                    [0.70710678, 4.94974747, 1.41421356],
                    [4.24264069, 4.24264069, 2.82842712],
                ]
            ),
            array(
                [
                    [2.12132034, 1.41421356, 2.12132034],
                    [5.65685425, 0.70710678, 0.70710678],
                ]
            ),
            array([[1.15470054, 1.0], [4.93288286, 4.93288286]]),
        )
        res = tuple(std(inp3d, ax) for ax in [None, 0, 1, 2])
        for obs, exp in zip(res, exp3d):
            testing.assert_almost_equal(obs, exp)

    def test_tail(self):
        """tail should return x/2 if test is true; 1-(x/2) otherwise"""
        assert_allclose(tail(0.25, "a" == "a"), 0.25 / 2)
        assert_allclose(tail(0.25, "a" != "a"), 1 - (0.25 / 2))

    def test_multiple_comparisons(self):
        """multiple_comparisons should match values from R"""
        assert_allclose(
            multiple_comparisons(1e-7, 10000), 1 - 0.9990005, rtol=1e-6, atol=1e-6
        )
        assert_allclose(multiple_comparisons(0.05, 10), 0.4012631)
        assert_allclose(multiple_comparisons(1e-20, 1), 1e-20)
        assert_allclose(multiple_comparisons(1e-300, 1), 1e-300)
        assert_allclose(multiple_comparisons(0.95, 3), 0.99987499999999996)
        assert_allclose(multiple_comparisons(0.75, 100), 0.999999999999679)
        assert_allclose(multiple_comparisons(0.5, 1000), 1)
        assert_allclose(multiple_comparisons(0.01, 1000), 0.99995682875259)
        assert_allclose(multiple_comparisons(0.5, 5), 0.96875)
        assert_allclose(multiple_comparisons(1e-20, 10), 1e-19)

    def test_multiple_inverse(self):
        """multiple_inverse should invert multiple_comparisons results"""
        # NOTE: multiple_inverse not very accurate close to 1
        assert_allclose(
            multiple_inverse(1 - 0.9990005, 10000), 1e-7, rtol=1e-6, atol=1e-6
        )
        assert_allclose(multiple_inverse(0.4012631, 10), 0.05, rtol=1e-6, atol=1e-6)
        assert_allclose(multiple_inverse(1e-20, 1), 1e-20)
        assert_allclose(multiple_inverse(1e-300, 1), 1e-300)
        assert_allclose(multiple_inverse(0.96875, 5), 0.5)
        assert_allclose(multiple_inverse(1e-19, 10), 1e-20)

    def test_multiple_n(self):
        """multiple_n should swap parameters in multiple_comparisons"""
        assert_allclose(multiple_n(1e-7, 1 - 0.9990005), 10000, rtol=1e-6, atol=1e-6)
        assert_allclose(multiple_n(0.05, 0.4012631), 10, rtol=1e-6, atol=1e-6)
        assert_allclose(multiple_n(1e-20, 1e-20), 1)
        assert_allclose(multiple_n(1e-300, 1e-300), 1)
        assert_allclose(multiple_n(0.95, 0.99987499999999996), 3)
        assert_allclose(multiple_n(0.5, 0.96875), 5)
        assert_allclose(multiple_n(1e-20, 1e-19), 10)

    def test_fisher(self):
        """fisher results should match p 795 Sokal and Rohlf"""
        assert_allclose(
            fisher([0.073, 0.086, 0.10, 0.080, 0.060]),
            0.0045957946540917905,
            rtol=1e-6,
            atol=1e-6,
        )

    def test_regress(self):
        """regression slope, intercept should match p 459 Sokal and Rohlf"""
        x = [0, 12, 29.5, 43, 53, 62.5, 75.5, 85, 93]
        y = [8.98, 8.14, 6.67, 6.08, 5.90, 5.83, 4.68, 4.20, 3.72]
        assert_allclose(regress(x, y), (-0.05322, 8.7038), 0.001)
        # higher precision from OpenOffice
        assert_allclose(regress(x, y), (-0.05322215, 8.70402730))

        # add test to confirm no overflow error with large numbers
        x = [32119, 33831]
        y = [2.28, 2.43]
        exp = (8.761682243e-05, -5.341209112e-01)
        assert_allclose(regress(x, y), exp, 0.001)

    def test_regress_origin(self):
        """regression slope constrained through origin should match Excel"""
        x = array([1, 2, 3, 4])
        y = array([4, 2, 6, 8])
        assert_allclose(regress_origin(x, y), (1.9333333, 0))

        # add test to confirm no overflow error with large numbers
        x = [32119, 33831]
        y = [2.28, 2.43]
        exp = (7.1428649481939822e-05, 0)
        assert_allclose(regress_origin(x, y), exp, 0.001)

    def test_regress_R2(self):
        """regress_R2 returns the R^2 value of a regression"""
        x = [1.0, 2.0, 3.0, 4.0, 5.0]
        y = [2.1, 4.2, 5.9, 8.4, 9.6]
        result = regress_R2(x, y)
        assert_allclose(result, 0.99171419347896)

    def test_regress_residuals(self):
        """regress_residuals reprts error for points in linear regression"""
        x = [1.0, 2.0, 3.0, 4.0, 5.0]
        y = [2.1, 4.2, 5.9, 8.4, 9.6]
        result = regress_residuals(x, y)
        assert_allclose(result, [-0.1, 0.08, -0.14, 0.44, -0.28])

    def test_stdev_from_mean(self):
        """stdev_from_mean returns num std devs from mean for each val in x"""
        x = [2.1, 4.2, 5.9, 8.4, 9.6]
        result = stdev_from_mean(x)
        assert_allclose(
            result,
            [
                -1.292463399014413,
                -0.60358696806764478,
                -0.045925095396451399,
                0.77416589382589174,
                1.1678095686526162,
            ],
        )

    def test_regress_major(self):
        """major axis regression should match p 589 Sokal and Rohlf"""
        # Note that the Sokal and Rohlf example flips the axes, such that the
        # equation is for explaining x in terms of y, not y in terms of x.
        # Behavior here is the reverse, for easy comparison with regress.
        y = [159, 179, 100, 45, 384, 230, 100, 320, 80, 220, 320, 210]
        x = [
            14.40,
            15.20,
            11.30,
            2.50,
            22.70,
            14.90,
            1.41,
            15.81,
            4.19,
            15.39,
            17.25,
            9.52,
        ]
        assert_allclose(regress_major(x, y), (18.93633, -32.55208), rtol=1e-6)

    def test_sign_test(self):
        """sign_test, should match values from R"""
        import numpy

        v = [
            ("two sided", 26, 50, 0.88772482734078251),
            ("less", 26, 50, 0.6641),
            ("l", 10, 50, 1.193066583837777e-05),
            ("hi", 30, 50, 0.1013193755322703),
            ("h", 0, 50, 1.0),
            ("2", 30, 50, 0.20263875106454063),
            ("h", 49, 50, 4.5297099404706387e-14),
            ("h", 50, 50, 8.8817841970012543e-16),
            ("2", numpy.int64(95), 124, 2.204644901720111e-09),
        ]
        for alt, success, trials, p in v:
            result = sign_test(success, trials, alt=alt)
            assert_allclose(result, p, rtol=1e-5)

    def test_permute_2d(self):
        """permute_2d permutes rows and cols of a matrix."""
        a = reshape(arange(9), (3, 3))
        assert_equal(permute_2d(a, [0, 1, 2]), a)
        assert_equal(permute_2d(a, [2, 1, 0]), array([[8, 7, 6], [5, 4, 3], [2, 1, 0]]))
        assert_equal(permute_2d(a, [1, 2, 0]), array([[4, 5, 3], [7, 8, 6], [1, 2, 0]]))

    def test_get_alternate(self):
        """correctly identifies the specified alternate hypothesis"""
        alt = _get_alternate("lo")
        self.assertEqual(alt, ALT_LOW)
        alt = _get_alternate("hi")
        self.assertEqual(alt, ALT_HIGH)
        alt = _get_alternate("2")
        self.assertEqual(alt, ALT_TWO_SIDED)
        with self.assertRaises(ValueError):
            _get_alternate("22")


class GTests(TestCase):
    """Tests implementation of the G tests for fit and independence."""

    def test_G_2_by_2_2tailed_equal(self):
        """G_2_by_2 should return 0 if all cell counts are equal"""
        assert_allclose(0, G_2_by_2(1, 1, 1, 1, False, False)[0], atol=1e-12)
        assert_allclose(0, G_2_by_2(100, 100, 100, 100, False, False)[0], atol=1e-12)
        assert_allclose(0, G_2_by_2(100, 100, 100, 100, True, False)[0], atol=1e-12)

    def test_G_2_by_2_bad_data(self):
        """G_2_by_2 should raise ValueError if any counts are negative"""
        self.assertRaises(ValueError, G_2_by_2, 1, -1, 1, 1)

    def test_G_2_by_2_2tailed_examples(self):
        """G_2_by_2 values should match examples in Sokal & Rohlf"""
        # example from p 731, Sokal and Rohlf (1995)
        # without correction
        assert_allclose(G_2_by_2(12, 22, 16, 50, False, False)[0], 1.33249, 0.0001)
        assert_allclose(G_2_by_2(12, 22, 16, 50, False, False)[1], 0.24836, 0.0001)
        # with correction
        assert_allclose(G_2_by_2(12, 22, 16, 50, True, False)[0], 1.30277, 0.0001)
        assert_allclose(G_2_by_2(12, 22, 16, 50, True, False)[1], 0.25371, 0.0001)

    def test_G_2_by_2_1tailed_examples(self):
        """G_2_by_2 values should match values from codon_binding program"""
        # first up...the famous arginine case
        assert_allclose(
            G_2_by_2(36, 16, 38, 106), (29.111609, 0), rtol=0.00001, atol=1e-6
        )
        # then some other miscellaneous positive and negative values
        assert_allclose(
            G_2_by_2(0, 52, 12, 132), (-7.259930, 0.996474), rtol=0.00001, atol=1e-6
        )
        assert_allclose(
            G_2_by_2(5, 47, 14, 130), (-0.000481, 0.508751), rtol=0.00001, atol=1e-6
        )
        assert_allclose(
            G_2_by_2(5, 47, 36, 108), (-6.065167, 0.993106), rtol=0.00001, atol=1e-6
        )

    def test_Gfit_unequal_lists(self):
        """Gfit should raise errors if lists unequal"""
        # lists must be equal
        self.assertRaises(ValueError, G_fit, [1, 2, 3], [1, 2])

    def test_Gfit_negative_observeds(self):
        """Gfit should raise ValueError if any observeds are negative."""
        self.assertRaises(ValueError, G_fit, [-1, 2, 3], [1, 2, 3])

    def test_Gfit_nonpositive_expecteds(self):
        """Gfit should raise ZeroExpectedError if expecteds are zero/negative"""
        self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [0, 1, 2])
        self.assertRaises(ZeroExpectedError, G_fit, [1, 2, 3], [-1, 1, 2])

    def test_Gfit_good_data(self):
        """Gfit tests for fit should match examples in Sokal and Rohlf"""
        # example from p. 699, Sokal and Rohlf (1995)
        obs = [63, 31, 28, 12, 39, 16, 40, 12]
        exp = [
            67.78125,
            22.59375,
            22.59375,
            7.53125,
            45.18750,
            15.06250,
            45.18750,
            15.06250,
        ]
        # without correction
        assert_allclose(G_fit(obs, exp, False)[0], 8.82397, 0.00002)
        assert_allclose(G_fit(obs, exp, False)[1], 0.26554, 0.00002)
        # with correction
        assert_allclose(G_fit(obs, exp)[0], 8.76938, 0.00002)
        assert_allclose(G_fit(obs, exp)[1], 0.26964, 0.00002)

        # example from p. 700, Sokal and Rohlf (1995)
        obs = [130, 46]
        exp = [132, 44]
        # without correction
        assert_allclose(G_fit(obs, exp, False)[0], 0.12002, 0.00002)
        assert_allclose(G_fit(obs, exp, False)[1], 0.72901, 0.00002)
        # with correction
        assert_allclose(G_fit(obs, exp)[0], 0.11968, 0.00002)
        assert_allclose(G_fit(obs, exp)[1], 0.72938, 0.00002)

    def test_safe_sum_p_log_p(self):
        """safe_sum_p_log_p should ignore zero elements, not raise error"""
        m = array([2, 4, 0, 8])
        self.assertEqual(safe_sum_p_log_p(m, 2), 2 * 1 + 4 * 2 + 8 * 3)

    def test_G_ind(self):
        """G test for independence should match Sokal and Rohlf p 738 values"""
        a = array([[29, 11], [273, 191], [8, 31], [64, 64]])
        assert_allclose(G_ind(a)[0], 28.59642)
        assert_allclose(G_ind(a, True)[0], 28.31244, rtol=1e-5)


class LikelihoodTests(TestCase):
    """Tests implementations of likelihood calculations."""

    def test_likelihoods_unequal_list_lengths(self):
        """likelihoods should raise ValueError if input lists unequal length"""
        self.assertRaises(ValueError, likelihoods, [1, 2], [1])

    def test_likelihoods_equal_priors(self):
        """likelihoods should equal Pr(D|H) if priors the same"""
        equal = [0.25, 0.25, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        unequal_answer = [2, 1, 0.5, 0.5]
        for obs, exp in zip(likelihoods(equal, equal), equal_answer):
            assert_allclose(obs, exp)

        for obs, exp in zip(likelihoods(unequal, equal), unequal_answer):
            assert_allclose(obs, exp)

    def test_likelihoods_equal_evidence(self):
        """likelihoods should return vector of 1's if evidence equal for all"""
        equal = [0.25, 0.25, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        equal_answer = [1, 1, 1, 1]
        not_unity = [0.7, 0.7, 0.7, 0.7]

        for obs, exp in zip(likelihoods(equal, unequal), equal_answer):
            assert_allclose(obs, exp)

        # should be the same if evidences don't sum to 1
        for obs, exp in zip(likelihoods(not_unity, unequal), equal_answer):
            assert_allclose(obs, exp)

    def test_likelihoods_unequal_evidence(self):
        """likelihoods should update based on weighted sum if evidence unequal"""
        not_unity = [1, 0.5, 0.25, 0.25]
        unequal = [0.5, 0.25, 0.125, 0.125]
        products = [1.4545455, 0.7272727, 0.3636364, 0.3636364]

        # if priors and evidence both unequal, likelihoods should change
        # (calculated using StarCalc)
        for obs, exp in zip(likelihoods(not_unity, unequal), products):
            assert_allclose(obs, exp)

    def test_posteriors_unequal_lists(self):
        """posteriors should raise ValueError if input lists unequal lengths"""
        self.assertRaises(ValueError, posteriors, [1, 2, 3], [1])

    def test_posteriors_good_data(self):
        """posteriors should return products of paired list elements"""
        first = [0, 0.25, 0.5, 1, 0.25]
        second = [0.25, 0.5, 0, 0.1, 1]
        product = [0, 0.125, 0, 0.1, 0.25]
        for obs, exp in zip(posteriors(first, second), product):
            assert_allclose(obs, exp)


class BayesUpdateTests(TestCase):
    """Tests implementation of Bayes calculations"""

    def setUp(self):
        first = [0.25, 0.25, 0.25]
        second = [0.1, 0.75, 0.3]
        third = [0.95, 1e-10, 0.2]
        fourth = [0.01, 0.9, 0.1]
        bad = [1, 2, 1, 1, 1]
        self.bad = [first, bad, second, third]
        self.test = [first, second, third, fourth]
        self.permuted = [fourth, first, third, second]
        self.deleted = [second, fourth, third]
        self.extra = [first, second, first, third, first, fourth, first]

        # BEWARE: low precision in second item, so need to adjust threshold
        # for assertFloatEqual accordingly (and use assertFloatEqualAbs).
        self.result = [0.136690646154, 0.000000009712, 0.863309344133]

    def test_bayes_updates_bad_data(self):
        """bayes_updates should raise ValueError on unequal-length lists"""
        self.assertRaises(ValueError, bayes_updates, self.bad)

    def test_bayes_updates_good_data(self):
        """bayes_updates should match hand calculations of probability updates"""
        # result for first -> fourth calculated by hand
        for obs, exp in zip(bayes_updates(self.test), self.result):
            assert_allclose(obs, exp, rtol=1e-11, atol=1e-6)

    def test_bayes_updates_permuted(self):
        """bayes_updates should not be affected by order of inputs"""
        for obs, exp in zip(bayes_updates(self.permuted), self.result):
            assert_allclose(obs, exp, rtol=1e-11, atol=1e-6)

    def test_bayes_update_nondiscriminating(self):
        """bayes_updates should be unaffected by extra nondiscriminating data"""
        # deletion of non-discriminating evidence should not affect result
        for obs, exp in zip(bayes_updates(self.deleted), self.result):
            assert_allclose(obs, exp, rtol=1e-5, atol=1e-6)
        # additional non-discriminating evidence should not affect result
        for obs, exp in zip(bayes_updates(self.extra), self.result):
            assert_allclose(obs, exp, rtol=1e-5, atol=1e-6)


class StatTests(TestsHelper):
    """Tests that the t and z tests are implemented correctly"""

    def setUp(self):
        super(StatTests, self).setUp()

        self.x = [
            7.33,
            7.49,
            7.27,
            7.93,
            7.56,
            7.81,
            7.46,
            6.94,
            7.49,
            7.44,
            7.95,
            7.47,
            7.04,
            7.10,
            7.64,
        ]

        self.y = [
            7.53,
            7.70,
            7.46,
            8.21,
            7.81,
            8.01,
            7.72,
            7.13,
            7.68,
            7.66,
            8.11,
            7.66,
            7.20,
            7.25,
            7.79,
        ]

    def test_t_paired_2tailed(self):
        """t_paired should match values from Sokal & Rohlf p 353"""
        x, y = self.x, self.y
        # check value of t and the probability for 2-tailed
        assert_allclose(t_paired(y, x)[0], 19.7203, 1e-4)
        assert_allclose(t_paired(y, x)[1], 1.301439e-11, 1e-4)

    def test_t_paired_no_variance(self):
        """t_paired should return None if lists are invariant"""
        x = [1, 1, 1]
        y = [0, 0, 0]
        self.assertEqual(t_paired(x, x), (None, None))
        self.assertEqual(t_paired(x, y), (None, None))

    def test_t_paired_1tailed(self):
        """t_paired should match pre-calculated 1-tailed values"""
        x, y = self.x, self.y
        # check probability for 1-tailed low and high
        assert_allclose(t_paired(y, x, "low")[1], 1 - (1.301439e-11 / 2), 1e-4)
        assert_allclose(t_paired(x, y, "high")[1], 1 - (1.301439e-11 / 2), 1e-4)
        assert_allclose(t_paired(y, x, "high")[1], 1.301439e-11 / 2, 1e-4)
        assert_allclose(t_paired(x, y, "low")[1], 1.301439e-11 / 2, 1e-4)

    def test_t_paired_specific_difference(self):
        """t_paired should allow a specific difference to be passed"""
        x, y = self.x, self.y
        # difference is 0.2, so test should be non-significant if 0.2 passed
        self.assertFalse(t_paired(y, x, exp_diff=0.2)[0] > 1e-10)
        # same, except that reversing list order reverses sign of difference
        self.assertFalse(t_paired(x, y, exp_diff=-0.2)[0] > 1e-10)
        # check that there's no significant difference from the true mean
        assert_allclose(t_paired(y, x, exp_diff=0.2)[1], 1, 1e-4)

    def test_t_paired_bad_data(self):
        """t_paired should raise ValueError on lists of different lengths"""
        self.assertRaises(ValueError, t_paired, self.y, [1, 2, 3])

    def test_t_two_sample(self):
        """t_two_sample should match example on p.225 of Sokal and Rohlf"""
        I = array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5])
        II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
        assert_allclose(t_two_sample(I, II), (-0.1184, 0.45385 * 2), rtol=0.01)

    def test_t_two_sample_no_variance(self):
        """t_two_sample should properly handle lists that are invariant"""
        # By default should return (None, None) to mimic R's t.test.
        x = array([1, 1.0, 1])
        y = array([0, 0, 0.0])
        self.assertEqual(t_two_sample(x, x), (None, None))
        self.assertEqual(t_two_sample(x, y), (None, None))

        # Test none_on_zero_variance=False on various tail types. We use
        # self.assertEqual instead of assert_allclose because the latter
        # sees inf and -inf as being equal.

        # Two tailed: a < b
        self.assertEqual(
            t_two_sample(y, x, none_on_zero_variance=False), (float("-inf"), 0.0)
        )

        # Two tailed: a > b
        self.assertEqual(
            t_two_sample(x, y, none_on_zero_variance=False), (float("inf"), 0.0)
        )

        # One-tailed 'high': a < b
        self.assertEqual(
            t_two_sample(y, x, tails="high", none_on_zero_variance=False),
            (float("-inf"), 1.0),
        )

        # One-tailed 'high': a > b
        self.assertEqual(
            t_two_sample(x, y, tails="high", none_on_zero_variance=False),
            (float("inf"), 0.0),
        )

        # One-tailed 'low': a < b
        self.assertEqual(
            t_two_sample(y, x, tails="low", none_on_zero_variance=False),
            (float("-inf"), 0.0),
        )

        # One-tailed 'low': a > b
        self.assertEqual(
            t_two_sample(x, y, tails="low", none_on_zero_variance=False),
            (float("inf"), 1.0),
        )

        # Should still receive (None, None) if the lists have no variance and
        # have the same single value.
        self.assertEqual(t_two_sample(x, x, none_on_zero_variance=False), (None, None))
        self.assertEqual(
            t_two_sample(x, [1, 1], none_on_zero_variance=False), (None, None)
        )

    def test_t_two_sample_invalid_input(self):
        """t_two_sample should raise an error on invalid input."""
        self.assertRaises(ValueError, t_two_sample, [1, 2, 3], [4, 5, 6], tails="foo")

    def test_t_one_sample(self):
        """t_one_sample results should match those from R"""
        x = array(list(range(-5, 5)))
        y = array(list(range(-1, 10)))
        assert_allclose(t_one_sample(x), (-0.5222, 0.6141), 1e-4)
        assert_allclose(t_one_sample(y), (4, 0.002518), rtol=1e-3)
        # do some one-tailed tests as well
        assert_allclose(t_one_sample(y, tails="low"), (4, 0.9987), rtol=1e-3)
        assert_allclose(t_one_sample(y, tails="high"), (4, 0.001259), rtol=1e-3)

    def test_t_two_sample_switch(self):
        """t_two_sample should call t_one_observation if 1 item in sample."""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = array([3.02])
        assert_allclose(t_two_sample(x, sample), (-1.5637254, 0.1929248))
        assert_allclose(t_two_sample(sample, x), (1.5637254, 0.1929248))

        # can't do the test if both samples have single item
        self.assertTrue(isnan(t_two_sample(x, x)).all())

        # Test special case if t=0.
        assert_allclose(t_two_sample([2], [1, 2, 3]), (0.0, 1.0))
        assert_allclose(t_two_sample([1, 2, 3], [2]), (0.0, 1.0))

    def test_t_one_observation(self):
        """t_one_observation should match p. 228 of Sokal and Rohlf"""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = 3.02
        # note that this differs after the 3rd decimal place from what's in the
        # book, because Sokal and Rohlf round their intermediate steps...
        assert_allclose(t_one_observation(x, sample), (-1.5637254, 0.1929248))

    def test_t_one_observation_no_variance(self):
        """t_one_observation should correctly handle an invariant list."""
        sample = array([1.0, 1.0, 1.0])

        # Can't perform test if invariant list's single value matches x,
        # regardless of none_on_zero_variance.
        self.assertEqual(t_one_observation(1, sample), (None, None))
        self.assertEqual(
            t_one_observation(1, sample, none_on_zero_variance=False), (None, None)
        )

        # Test correct handling of none_on_zero_variance.
        self.assertEqual(t_one_observation(2, sample), (None, None))
        self.assertEqual(
            t_one_observation(2, sample, none_on_zero_variance=False),
            (float("inf"), 0.0),
        )
        self.assertEqual(
            t_one_observation(2, sample, none_on_zero_variance=False, tails="low"),
            (float("inf"), 1.0),
        )

    def test_mc_t_two_sample(self):
        """Test gives correct results with valid input data."""
        # Verified against R's t.test() and Deducer::perm.t.test().

        # With numpy array as input.
        exp = (-0.11858541225631833, 0.90756579317867436)
        I = array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5])
        II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
        obs = mc_t_two_sample(I, II)
        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 999)
        self.assertCorrectPValue(0.8, 0.9, mc_t_two_sample, [I, II], p_val_idx=3)

        # With python list as input.
        exp = (-0.11858541225631833, 0.90756579317867436)
        I = [7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5]
        II = [8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2]
        obs = mc_t_two_sample(I, II)
        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 999)
        self.assertCorrectPValue(0.8, 0.9, mc_t_two_sample, [I, II], p_val_idx=3)

        exp = (-0.11858541225631833, 0.45378289658933718)
        obs = mc_t_two_sample(I, II, tails="low")
        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 999)
        self.assertCorrectPValue(
            0.4, 0.47, mc_t_two_sample, [I, II], {"tails": "low"}, p_val_idx=3
        )

        exp = (-0.11858541225631833, 0.54621710341066287)
        obs = mc_t_two_sample(I, II, tails="high", permutations=99)
        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 99)
        self.assertCorrectPValue(
            0.4,
            0.62,
            mc_t_two_sample,
            [I, II],
            {"tails": "high", "permutations": 99},
            p_val_idx=3,
        )

        exp = (-2.8855783649036986, 0.99315596652421401)
        obs = mc_t_two_sample(I, II, tails="high", permutations=99, exp_diff=1)
        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 99)
        self.assertCorrectPValue(
            0.55,
            0.99,
            mc_t_two_sample,
            [I, II],
            {"tails": "high", "permutations": 99, "exp_diff": 1},
            p_val_idx=3,
        )

    def test_mc_t_two_sample_unbalanced_obs(self):
        """Test gives correct results with unequal number of obs per sample."""
        # Verified against R's t.test() and Deducer::perm.t.test().
        exp = (-0.10302479888889175, 0.91979753020527177)
        I = array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2])
        II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
        obs = mc_t_two_sample(I, II)
        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 999)
        self.assertCorrectPValue(0.8, 0.9, mc_t_two_sample, [I, II], p_val_idx=3)

    def test_mc_t_two_sample_single_obs_sample(self):
        """Test works correctly with one sample having a single observation."""
        sample = array([4.02, 3.88, 3.34, 3.87, 3.18])
        x = array([3.02])
        exp = (-1.5637254, 0.1929248)
        obs = mc_t_two_sample(x, sample)
        assert_allclose(obs[:2], exp)
        assert_allclose(len(obs[2]), 999)
        self.assertTrue(is_prob(obs[3]))

        exp = (1.5637254, 0.1929248)
        obs = mc_t_two_sample(sample, x)
        assert_allclose(obs[:2], exp)
        assert_allclose(len(obs[2]), 999)
        self.assertTrue(is_prob(obs[3]))

        # Test the case where we can have no variance in the permuted lists.
        x = array([1, 1, 2])
        y = array([1])
        exp = (0.5, 0.666666666667)
        obs = mc_t_two_sample(x, y)
        assert_allclose(obs[:2], exp)
        assert_allclose(len(obs[2]), 999)
        self.assertTrue(is_prob(obs[3]))

    def test_mc_t_two_sample_no_perms(self):
        """Test gives empty permutation results if no perms are given."""
        exp = (-0.11858541225631833, 0.90756579317867436, [], None)
        I = array([7.2, 7.1, 9.1, 7.2, 7.3, 7.2, 7.5])
        II = array([8.8, 7.5, 7.7, 7.6, 7.4, 6.7, 7.2])
        obs = mc_t_two_sample(I, II, permutations=0)
        assert_allclose(obs[:2], exp[:2])
        assert_equal(obs[2:], exp[2:])

    def test_mc_t_two_sample_no_mc(self):
        """Test no MC stats if initial t-test is bad."""
        x = array([1, 1, 1])
        self.assertEqual(mc_t_two_sample(x, x), (None, None, [], None))

    def test_mc_t_two_sample_no_variance(self):
        """Test input with no variance. Should match Deducer::perm.t.test."""
        x = array([1, 1, 1])
        y = array([2, 2, 2])

        exp = (float("-inf"), 0.0)
        obs = mc_t_two_sample(x, y, permutations=1000)

        self.assertEqual(obs[:2], exp)
        self.assertEqual(len(obs[2]), 1000)
        self.assertCorrectPValue(
            0.09, 0.11, mc_t_two_sample, [x, y], {"permutations": 1000}, p_val_idx=3
        )

        exp = (float("inf"), 0.0)
        obs = mc_t_two_sample(y, x, permutations=1000)

        self.assertEqual(obs[:2], exp)
        self.assertEqual(len(obs[2]), 1000)
        self.assertCorrectPValue(
            0.09, 0.11, mc_t_two_sample, [y, x], {"permutations": 1000}, p_val_idx=3
        )

        exp = (float("-inf"), 1.0)
        obs = mc_t_two_sample(x, y, permutations=1000, tails="high")

        self.assertEqual(obs[:2], exp)
        self.assertEqual(len(obs[2]), 1000)
        self.assertCorrectPValue(
            0.9999,
            1.0,
            mc_t_two_sample,
            [x, y],
            {"permutations": 1000, "tails": "high"},
            p_val_idx=3,
        )

        exp = (float("-inf"), 0.0)
        obs = mc_t_two_sample(x, y, permutations=1000, tails="low")

        self.assertEqual(obs[:2], exp)
        self.assertEqual(len(obs[2]), 1000)
        self.assertCorrectPValue(
            0.04,
            0.051,
            mc_t_two_sample,
            [x, y],
            {"permutations": 1000, "tails": "low"},
            p_val_idx=3,
        )

    def test_mc_t_two_sample_no_permuted_variance(self):
        """Test with chance of getting no variance with some perms."""
        # Verified against R's t.test() and Deducer::perm.t.test().
        x = array([1, 1, 2])
        y = array([2, 2, 1])

        exp = (-0.70710678118654791, 0.51851851851851838)
        obs = mc_t_two_sample(x, y, permutations=10000)

        assert_allclose(obs[:2], exp)
        self.assertEqual(len(obs[2]), 10000)
        self.assertCorrectPValue(
            0.97, 1.0, mc_t_two_sample, [x, y], {"permutations": 10000}, p_val_idx=3
        )

    def test_mc_t_two_sample_invalid_input(self):
        """Test fails on various invalid input."""
        self.assertRaises(
            ValueError, mc_t_two_sample, [1, 2, 3], [4.0, 5.0, 4.0], tails="foo"
        )
        self.assertRaises(
            ValueError, mc_t_two_sample, [1, 2, 3], [4.0, 5.0, 4.0], permutations=-1
        )
        self.assertRaises(ValueError, mc_t_two_sample, [1], [4.0])
        self.assertRaises(ValueError, mc_t_two_sample, [1, 2], [])

    def test_permute_observations(self):
        """Test works correctly on small input dataset."""
        I = [10, 20.0, 1]
        II = [2, 4, 5, 7]
        obs = _permute_observations(I, II, 1)
        self.assertEqual(len(obs[0]), 1)
        self.assertEqual(len(obs[1]), 1)
        self.assertEqual(len(obs[0][0]), len(I))
        self.assertEqual(len(obs[1][0]), len(II))
        assert_allclose(sorted(concatenate((obs[0][0], obs[1][0]))), sorted(I + II))

    def test_reverse_tails(self):
        """reverse_tails should return 'high' if tails was 'low' or vice versa"""
        self.assertEqual(reverse_tails("high"), "low")
        self.assertEqual(reverse_tails("low"), "high")
        self.assertEqual(reverse_tails(None), ALT_TWO_SIDED)

    def test_tail(self):
        """tail should return prob/2 if test is true, or 1-(prob/2) if false"""
        assert_allclose(tail(0.25, True), 0.125)
        assert_allclose(tail(0.25, False), 0.875)
        assert_allclose(tail(1, True), 0.5)
        assert_allclose(tail(1, False), 0.5)
        assert_allclose(tail(0, True), 0)
        assert_allclose(tail(0, False), 1)

    def test_z_test(self):
        """z_test should give correct values"""
        sample = array([1, 2, 3, 4, 5])
        assert_allclose(z_test(sample, 3, 1), (0, 1))
        assert_allclose(z_test(sample, 3, 2, "high"), (0, 0.5))
        assert_allclose(z_test(sample, 3, 2, "low"), (0, 0.5))
        # check that population mean and variance, and tails, can be set OK.
        assert_allclose(
            z_test(sample, 0, 1), (6.7082039324993694, 1.9703444711798951e-11)
        )
        assert_allclose(
            z_test(sample, 1, 10), (0.44721359549995793, 0.65472084601857694)
        )
        assert_allclose(
            z_test(sample, 1, 10, "high"),
            (0.44721359549995793, 0.65472084601857694 / 2),
        )
        assert_allclose(
            z_test(sample, 1, 10, "low"),
            (0.44721359549995793, 1 - (0.65472084601857694 / 2)),
        )


class CorrelationTests(TestsHelper):
    """Tests of correlation coefficients and Mantel test."""

    def setUp(self):
        """Sets up variables used in the tests."""
        super(CorrelationTests, self).setUp()

        # For testing spearman and correlation_test using method='spearman'.
        # Taken from the Spearman wikipedia article. Also used for testing
        # Pearson (verified with R).
        self.data1 = [106, 86, 100, 101, 99, 103, 97, 113, 112, 110]
        self.data2 = [7, 0, 27, 50, 28, 29, 20, 12, 6, 17]

        # For testing spearman.
        self.a = [1, 2, 4, 3, 1, 6, 7, 8, 10, 4]
        self.b = [2, 10, 20, 1, 3, 7, 5, 11, 6, 13]
        self.c = [7, 1, 20, 13, 3, 57, 5, 121, 2, 9]
        self.r = (1.7, 10, 20, 1.7, 3, 7, 5, 11, 6.5, 13)
        self.x = (1, 2, 4, 3, 1, 6, 7, 8, 10, 4, 100, 2, 3, 77)

        # Ranked copies for testing spearman.
        self.b_ranked = [2, 7, 10, 1, 3, 6, 4, 8, 5, 9]
        self.c_ranked = [5, 1, 8, 7, 3, 9, 4, 10, 2, 6]

    def test_mantel(self):
        """mantel should be significant for same matrix, not for random"""
        a = reshape(arange(25), (5, 5))
        a = tril(a) + tril(a).T
        fill_diagonal(a, 0)
        b = a.copy()
        # closely related -- should be significant
        self.assertCorrectPValue(0.0, 0.049, mantel, (a, b, 1000))

        c = reshape(ones(25), (5, 5))
        c[0, 1] = 3.0
        c[1, 0] = 3.0
        fill_diagonal(c, 0)
        # not related -- should not be significant
        self.assertCorrectPValue(0.06, 1.0, mantel, (a, c, 1000))

    def test_mantel_test_one_sided_greater(self):
        """Test one-sided mantel test (greater)."""
        # This test output was verified by R (their mantel function does a
        # one-sided greater test).
        m1 = array([[0, 1, 2], [1, 0, 3], [2, 3, 0]])
        m2 = array([[0, 2, 7], [2, 0, 6], [7, 6, 0]])
        p, stat, perms = mantel_test(m1, m1, 999, alt="greater")
        assert_allclose(stat, 1.0)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(
            0.09, 0.25, mantel_test, (m1, m1, 999), {"alt": "greater"}
        )

        p, stat, perms = mantel_test(m1, m2, 999, alt="greater")
        assert_allclose(stat, 0.755928946018)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(
            0.2, 0.5, mantel_test, (m1, m2, 999), {"alt": "greater"}
        )

    def test_mantel_test_one_sided_less(self):
        """Test one-sided mantel test (less)."""
        # This test output was verified by R (their mantel function does a
        # one-sided greater test, but I modified their output to do a one-sided
        # less test).
        m1 = array([[0, 1, 2], [1, 0, 3], [2, 3, 0]])
        m2 = array([[0, 2, 7], [2, 0, 6], [7, 6, 0]])
        m3 = array([[0, 0.5, 0.25], [0.5, 0, 0.1], [0.25, 0.1, 0]])
        p, stat, perms = mantel_test(m1, m1, 999, alt="less")
        assert_allclose(p, 1.0)
        assert_allclose(stat, 1.0)
        self.assertEqual(len(perms), 999)

        p, stat, perms = mantel_test(m1, m2, 999, alt="less")
        assert_allclose(stat, 0.755928946018)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(0.6, 1.0, mantel_test, (m1, m2, 999), {"alt": "less"})

        p, stat, perms = mantel_test(m1, m3, 999, alt="less")
        assert_allclose(stat, -0.989743318611)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(0.1, 0.25, mantel_test, (m1, m3, 999), {"alt": "less"})

    def test_mantel_test_two_sided(self):
        """Test two-sided mantel test."""
        # This test output was verified by R (their mantel function does a
        # one-sided greater test, but I modified their output to do a two-sided
        # test).
        m1 = array([[0, 1, 2], [1, 0, 3], [2, 3, 0]])
        m2 = array([[0, 2, 7], [2, 0, 6], [7, 6, 0]])
        m3 = array([[0, 0.5, 0.25], [0.5, 0, 0.1], [0.25, 0.1, 0]])
        p, stat, perms = mantel_test(m1, m1, 999, alt="two sided")
        assert_allclose(stat, 1.0)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(
            0.20, 0.45, mantel_test, (m1, m1, 999), {"alt": "two sided"}
        )

        p, stat, perms = mantel_test(m1, m2, 999, alt="two sided")
        assert_allclose(stat, 0.755928946018)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(
            0.6, 0.75, mantel_test, (m1, m2, 999), {"alt": "two sided"}
        )

        p, stat, perms = mantel_test(m1, m3, 999, alt="two sided")
        assert_allclose(stat, -0.989743318611)
        self.assertEqual(len(perms), 999)
        self.assertCorrectPValue(
            0.2, 0.45, mantel_test, (m1, m3, 999), {"alt": "two sided"}
        )

    def test_mantel_test_invalid_distance_matrix(self):
        """Test mantel test with invalid distance matrix."""
        # Single asymmetric, non-hollow distance matrix.
        self.assertRaises(
            ValueError,
            mantel_test,
            array([[1, 2], [3, 4]]),
            array([[0, 0], [0, 0]]),
            999,
        )

        # Two asymmetric distance matrices.
        self.assertRaises(
            ValueError,
            mantel_test,
            array([[0, 2], [3, 0]]),
            array([[0, 1], [0, 0]]),
            999,
        )

    def test_mantel_test_invalid_input(self):
        """Test mantel test with invalid input."""
        self.assertRaises(
            ValueError, mantel_test, array([[1]]), array([[1]]), 999, alt="foo"
        )
        self.assertRaises(
            ValueError, mantel_test, array([[1]]), array([[1, 2], [3, 4]]), 999
        )
        self.assertRaises(ValueError, mantel_test, array([[1]]), array([[1]]), 0)
        self.assertRaises(ValueError, mantel_test, array([[1]]), array([[1]]), -1)

    def test_is_symmetric_and_hollow(self):
        """Should correctly test for symmetry and hollowness of dist mats."""
        self.assertTrue(is_symmetric_and_hollow(array([[0, 1], [1, 0]])))
        self.assertTrue(is_symmetric_and_hollow(array([[0, 1], [1, 0]])))
        self.assertTrue(is_symmetric_and_hollow(array([[0.0, 0], [0.0, 0]])))
        self.assertTrue(not is_symmetric_and_hollow(array([[0.001, 1], [1, 0]])))
        self.assertTrue(not is_symmetric_and_hollow(array([[0, 1.1], [1, 0]])))
        self.assertTrue(not is_symmetric_and_hollow(array([[0.5, 1.1], [1, 0]])))

    def test_flatten_lower_triangle(self):
        """Test flattening various dms' lower triangulars."""
        self.assertEqual(_flatten_lower_triangle(array([[8]])), [])
        self.assertEqual(_flatten_lower_triangle(array([[1, 2], [3, 4]])), [3])
        self.assertEqual(
            _flatten_lower_triangle(array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])), [4, 7, 8]
        )

    def test_pearson(self):
        """Test pearson correlation method on valid data."""
        # This test output was verified by R.
        assert_allclose(pearson([1, 2], [1, 2]), 1.0)
        assert_allclose(pearson([1, 2, 3], [1, 2, 3]), 1.0)
        assert_allclose(pearson([1, 2, 3], [1, 2, 4]), 0.9819805)

    def test_pearson_invalid_input(self):
        """Test running pearson on bad input."""
        self.assertRaises(ValueError, pearson, [1.4, 2.5], [5.6, 8.8, 9.0])
        self.assertRaises(ValueError, pearson, [1.4], [5.6])

    def test_spearman(self):
        """Test the spearman function with valid input."""
        # One vector has no ties.
        exp = 0.3719581
        obs = spearman(self.a, self.b)
        assert_allclose(obs, exp)

        # Both vectors have no ties.
        exp = 0.2969697
        obs = spearman(self.b, self.c)
        assert_allclose(obs, exp)

        # Both vectors have ties.
        exp = 0.388381
        obs = spearman(self.a, self.r)
        assert_allclose(obs, exp)

        exp = -0.17575757575757578
        obs = spearman(self.data1, self.data2)
        assert_allclose(obs, exp)

    def test_spearman_no_variation(self):
        """Test the spearman function with a vector having no variation."""
        exp = 0.0
        obs = spearman([1, 1, 1], [1, 2, 3])
        assert_allclose(obs, exp)

    def test_spearman_ranked(self):
        """Test the spearman function with a vector that is already ranked."""
        exp = 0.2969697
        obs = spearman(self.b_ranked, self.c_ranked)
        assert_allclose(obs, exp)

    def test_spearman_one_obs(self):
        """Test running spearman on a single observation."""
        self.assertRaises(ValueError, spearman, [1.0], [5.0])

    def test_spearman_invalid_input(self):
        """Test the spearman function with invalid input."""
        self.assertRaises(ValueError, spearman, [], [])
        self.assertRaises(ValueError, spearman, self.a, [])
        self.assertRaises(TypeError, spearman, {0: 2}, [1, 2, 3])

    def test_get_rank(self):
        """Test the _get_rank function with valid input."""
        exp = (
            [1.5, 3.5, 7.5, 5.5, 1.5, 9.0, 10.0, 11.0, 12.0, 7.5, 14.0, 3.5, 5.5, 13.0],
            4,
        )
        obs = _get_rank(self.x)
        assert_allclose(obs[0], exp[0])
        self.assertEqual(obs[1], exp[1])

        exp = ([1.5, 3.0, 5.5, 4.0, 1.5, 7.0, 8.0, 9.0, 10.0, 5.5], 2)
        obs = _get_rank(self.a)
        assert_allclose(obs[0], exp[0])
        self.assertEqual(obs[1], exp[1])

        exp = ([2, 7, 10, 1, 3, 6, 4, 8, 5, 9], 0)
        obs = _get_rank(self.b)
        assert_allclose(obs[0], exp[0])
        self.assertEqual(obs[1], exp[1])

        exp = ([1.5, 7.0, 10.0, 1.5, 3.0, 6.0, 4.0, 8.0, 5.0, 9.0], 1)
        obs = _get_rank(self.r)
        assert_allclose(obs[0], exp[0])
        self.assertEqual(obs[1], exp[1])

        exp = ([], 0)
        obs = _get_rank([])
        assert_allclose(obs[0], exp[0])
        self.assertEqual(obs[1], exp[1])

    def test_get_rank_invalid_input(self):
        """Test the _get_rank function with invalid input."""
        vec = [1, "a", 3, 2.5, 3, 1]
        self.assertRaises(TypeError, _get_rank, vec)

        vec = [1, 2, {1: 2}, 2.5, 3, 1]
        self.assertRaises(TypeError, _get_rank, vec)

        vec = [1, 2, [23, 1], 2.5, 3, 1]
        self.assertRaises(TypeError, _get_rank, vec)

        vec = [1, 2, (1,), 2.5, 3, 1]
        self.assertRaises(TypeError, _get_rank, vec)

    def test_correlation(self):
        """Correlations and significance should match R's cor.test()"""
        x = [1, 2, 3, 5]
        y = [0, 0, 0, 0]
        z = [1, 1, 1, 1]
        a = [2, 4, 6, 8]
        b = [1.5, 1.4, 1.2, 1.1]
        c = [15, 10, 5, 20]

        bad = [1, 2, 3]  # originally gave r = 1.0000000002

        assert_allclose(pearson_correlation(x, x), (1, 0))
        assert_allclose(pearson_correlation(x, y), (0, 1), rtol=1e-3)
        assert_allclose(pearson_correlation(y, z), (0, 1))
        assert_allclose(
            pearson_correlation(x, a), (0.9827076, 0.01729), rtol=1e-4, atol=1e-6
        )
        assert_allclose(pearson_correlation(x, b), (-0.9621405, 0.03786), rtol=1e-4)
        assert_allclose(pearson_correlation(x, c), (0.3779645, 0.622), 1e-3)
        self.assertEqual(pearson_correlation(bad, bad), (1, 0))
        got = pearson_correlation(self.data1, self.data2, tails="low")
        assert_allclose(got, (-0.03760147385, 0.4589314864))

    def test_correlation_test_pearson(self):
        """Test correlation_test using pearson on valid input."""
        # These results were verified with R.

        # Test with non-default confidence level and permutations.
        obs = correlation_test(
            self.data1,
            self.data2,
            method="pearson",
            confidence_level=0.90,
            permutations=990,
        )
        assert_allclose(obs[:2], (-0.03760147, 0.91786297277172868), rtol=1e-6)
        self.assertEqual(len(obs[2]), 990)
        for r in obs[2]:
            self.assertTrue(r >= -1.0 and r <= 1.0)
        self.assertCorrectPValue(
            0.9,
            0.93,
            correlation_test,
            (self.data1, self.data2),
            {"method": "pearson", "confidence_level": 0.90, "permutations": 990},
            p_val_idx=3,
        )
        assert_allclose(obs[4], (-0.5779077, 0.5256224))

        # Test with non-default tail type.
        obs = correlation_test(
            self.data1,
            self.data2,
            method="pearson",
            confidence_level=0.90,
            permutations=990,
            tails="low",
        )
        assert_allclose(obs[:2], (-0.03760147, 0.45893148638586434), rtol=1e-6)
        self.assertEqual(len(obs[2]), 990)
        for r in obs[2]:
            self.assertTrue(r >= -1.0 and r <= 1.0)
        self.assertCorrectPValue(
            0.41,
            0.46,
            correlation_test,
            (self.data1, self.data2),
            {
                "method": "pearson",
                "confidence_level": 0.90,
                "permutations": 990,
                "tails": "low",
            },
            p_val_idx=3,
        )
        assert_allclose(obs[4], (-0.5779077, 0.5256224))

    def test_correlation_test_spearman(self):
        """Test correlation_test using spearman on valid input."""
        # This example taken from Wikipedia page:
        # http://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
        obs = correlation_test(self.data1, self.data2, method="spearman", tails="high")
        assert_allclose(obs[:2], (-0.17575757575757578, 0.686405827612))
        self.assertEqual(len(obs[2]), 999)
        for rho in obs[2]:
            self.assertTrue(rho >= -1.0 and rho <= 1.0)
        self.assertCorrectPValue(
            0.67,
            0.7,
            correlation_test,
            (self.data1, self.data2),
            {"method": "spearman", "tails": "high"},
            p_val_idx=3,
        )
        assert_allclose(obs[4], (-0.7251388558041697, 0.51034422964834503))

        # The p-value is off because the example uses a one-tailed test, while
        # we use a two-tailed test. Someone confirms the answer that we get
        # here for a two-tailed test:
        # http://stats.stackexchange.com/questions/22816/calculating-p-value-
        #     for-spearmans-rank-correlation-coefficient-example-on-wikip
        obs = correlation_test(self.data1, self.data2, method="spearman", tails=None)
        assert_allclose(obs[:2], (-0.17575757575757578, 0.62718834477648433))
        self.assertEqual(len(obs[2]), 999)
        for rho in obs[2]:
            self.assertTrue(rho >= -1.0 and rho <= 1.0)
        self.assertCorrectPValue(
            0.60,
            0.64,
            correlation_test,
            (self.data1, self.data2),
            {"method": "spearman", "tails": None},
            p_val_idx=3,
        )
        assert_allclose(obs[4], (-0.7251388558041697, 0.51034422964834503))

    def test_correlation_test_invalid_input(self):
        """Test correlation_test using invalid input."""
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, method="foo"
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, tails="foo"
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, permutations=-1
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, confidence_level=-1
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, confidence_level=1.1
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, confidence_level=0
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, confidence_level=0.0
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, confidence_level=1
        )
        self.assertRaises(
            ValueError, correlation_test, self.data1, self.data2, confidence_level=1.0
        )

    def test_correlation_test_no_permutations(self):
        """Test correlation_test with no permutations."""
        # These results were verified with R.
        exp = (
            -0.2581988897471611,
            0.7418011102528389,
            [],
            None,
            (-0.97687328610475876, 0.93488023560400879),
        )
        obs = correlation_test([1, 2, 3, 4], [1, 2, 1, 1], permutations=0)
        for o, e in zip(obs, exp):
            if isinstance(e, type(None)):
                assert_equal(o, e)
            else:
                assert_allclose(o, e)

    def test_correlation_test_perfect_correlation(self):
        """Test correlation_test with perfectly-correlated input vectors."""
        # These results were verified with R.
        obs = correlation_test([1, 2, 3, 4], [1, 2, 3, 4])
        assert_allclose(obs[:2], (0.99999999999999978, 2.2204460492503131e-16))
        self.assertEqual(len(obs[2]), 999)
        for r in obs[2]:
            self.assertTrue(r >= -1.0 and r <= 1.0)
        self.assertCorrectPValue(
            0.06, 0.09, correlation_test, ([1, 2, 3, 4], [1, 2, 3, 4]), p_val_idx=3
        )
        assert_allclose(obs[4], (0.99999999999998879, 1.0))

    def test_correlation_test_small_obs(self):
        """Test correlation_test with a small number of observations."""
        # These results were verified with R.
        obs = correlation_test([1, 2, 3], [1, 2, 3])
        assert_allclose(obs[:2], (1.0, 0))
        self.assertEqual(len(obs[2]), 999)
        for r in obs[2]:
            self.assertTrue(r >= -1.0 and r <= 1.0)
        self.assertCorrectPValue(
            0.3, 0.4, correlation_test, ([1, 2, 3], [1, 2, 3]), p_val_idx=3
        )
        self.assertEqual(obs[4], (None, None))

        obs = correlation_test([1, 2, 3], [1, 2, 3], method="spearman")
        assert_allclose(obs[:2], (1.0, 0))
        self.assertEqual(len(obs[2]), 999)
        for r in obs[2]:
            self.assertTrue(r >= -1.0 and r <= 1.0)
        self.assertCorrectPValue(
            0.3,
            0.4,
            correlation_test,
            ([1, 2, 3], [1, 2, 3]),
            {"method": "spearman"},
            p_val_idx=3,
        )
        self.assertEqual(obs[4], (None, None))

    def test_correlation_matrix(self):
        """Correlations in matrix should match values from R"""
        a = [2, 4, 6, 8]
        b = [1.5, 1.4, 1.2, 1.1]
        c = [15, 10, 5, 20]
        m = correlation_matrix([a, b, c])
        assert_allclose(m[0, 0], [1.0])
        assert_allclose([m[1, 0], m[1, 1]], [correlation(b, a)[0], 1.0])
        assert_allclose(m[2], [correlation(c, a)[0], correlation(c, b)[0], 1.0])


class Ftest(TestCase):
    """Tests for the F test"""

    def test_f_value(self):
        """f_value: should calculate the correct F value if possible"""
        a = array([1, 3, 5, 7, 9, 8, 6, 4, 2])
        b = array([5, 4, 6, 3, 7, 6, 4, 5])
        self.assertEqual(f_value(a, b), (8, 7, 4.375))
        assert_allclose(f_value(b, a), (7, 8, 0.2285714), rtol=1e-6)
        too_short = array([4])
        self.assertRaises(ValueError, f_value, too_short, b)

    def test_f_two_sample(self):
        """f_two_sample should match values from R"""

        # The expected values in this test are obtained through R.
        # In R the F test is var.test(x,y) different alternative hypotheses
        # can be specified (two sided, less, or greater).
        # The vectors are random samples from a particular normal distribution
        # (mean and sd specified).

        # a: 50 elem, mean=0 sd=1
        a = [
            -0.70701689,
            -1.24788845,
            -1.65516470,
            0.10443876,
            -0.48526915,
            -0.71820656,
            -1.02603596,
            0.03975982,
            -2.23404324,
            -0.21509363,
            0.08438468,
            -0.01970062,
            -0.67907971,
            -0.89853667,
            1.11137131,
            0.05960496,
            -1.51172084,
            -0.79733957,
            -1.60040659,
            0.80530639,
            -0.81715836,
            -0.69233474,
            0.95750665,
            0.99576429,
            -1.61340216,
            -0.43572590,
            -1.50862327,
            0.92847551,
            -0.68382338,
            -1.12523522,
            -0.09147488,
            0.66756023,
            -0.87277588,
            -1.36539039,
            -0.11748707,
            -1.63632578,
            -0.31343078,
            -0.28176086,
            0.33854483,
            -0.51785630,
            2.25360559,
            -0.80761191,
            1.18983499,
            0.57080342,
            -1.44601700,
            -0.53906955,
            -0.01975266,
            -1.37147915,
            -0.31537616,
            0.26877544,
        ]

        # b: 50 elem, mean=0, sd=1.2
        b = [
            0.081418743,
            0.276571612,
            -1.864316504,
            0.675213612,
            -0.769202643,
            0.140372825,
            -1.426250184,
            0.058617884,
            -0.819287409,
            -0.007701916,
            -0.782722020,
            -0.285891593,
            0.661980419,
            0.383225191,
            0.622444946,
            -0.192446150,
            0.297150571,
            0.408896059,
            -0.167359383,
            -0.552381362,
            0.982168338,
            1.439730446,
            1.967616101,
            -0.579607307,
            1.095590943,
            0.240591302,
            -1.566937143,
            -0.199091349,
            -1.232983905,
            0.362378169,
            1.166061081,
            -0.604676222,
            -0.536560206,
            -0.303117595,
            1.519222792,
            -0.319146503,
            2.206220810,
            -0.566351124,
            -0.720397392,
            -0.452001377,
            0.250890097,
            0.320685395,
            -1.014632725,
            -3.010346273,
            -1.703955054,
            0.592587381,
            -1.237451255,
            0.172243366,
            -0.452641122,
            -0.982148581,
        ]

        # c: 60 elem, mean=5, sd=1
        c = [
            4.654329,
            5.242129,
            6.272640,
            5.781779,
            4.391241,
            3.800752,
            4.559463,
            4.318922,
            3.243020,
            5.121280,
            4.126385,
            5.541131,
            4.777480,
            5.646913,
            6.972584,
            3.817172,
            6.128700,
            4.731467,
            6.762068,
            5.082983,
            5.298511,
            5.491125,
            4.532369,
            4.265552,
            5.697317,
            5.509730,
            2.935704,
            4.507456,
            3.786794,
            5.548383,
            3.674487,
            5.536556,
            5.297847,
            2.439642,
            4.759836,
            5.114649,
            5.986774,
            4.517485,
            4.579208,
            4.579374,
            2.502890,
            5.190955,
            5.983194,
            6.766645,
            4.905079,
            4.214273,
            3.950364,
            6.262393,
            8.122084,
            6.330007,
            4.767943,
            5.194029,
            3.503136,
            6.039079,
            4.485647,
            6.116235,
            6.302268,
            3.596693,
            5.743316,
            6.860152,
        ]

        # d: 30 elem, mean=0, sd =0.05
        d = [
            0.104517366,
            0.023039678,
            0.005579091,
            0.052928250,
            0.020724823,
            -0.060823243,
            -0.019000890,
            -0.064133996,
            -0.016321594,
            -0.008898334,
            -0.027626992,
            -0.051946186,
            0.085269587,
            -0.031190678,
            0.065172938,
            -0.054628573,
            0.019257306,
            -0.032427056,
            -0.058767356,
            0.030927400,
            0.052247357,
            -0.042954937,
            0.031842104,
            0.094130522,
            -0.024828465,
            0.011320453,
            -0.016195062,
            0.015631245,
            -0.050335598,
            -0.031658335,
        ]

        a, b, c, d = list(map(array, [a, b, c, d]))
        self.assertEqual(list(map(len, [a, b, c, d])), [50, 50, 60, 30])

        # allowed error. This big, because results from R
        # are rounded at 4 decimals
        error = 1e-3

        assert_allclose(f_two_sample(a, a), (49, 49, 1, 1), rtol=error)
        assert_allclose(f_two_sample(a, b), (49, 49, 0.8575, 0.5925), rtol=error)
        assert_allclose(f_two_sample(b, a), (49, 49, 1.1662, 0.5925), rtol=error)
        assert_allclose(
            f_two_sample(a, b, tails="low"), (49, 49, 0.8575, 0.2963), rtol=error
        )
        assert_allclose(
            f_two_sample(a, b, tails="high"), (49, 49, 0.8575, 0.7037), rtol=error
        )
        assert_allclose(f_two_sample(a, c), (49, 59, 0.6587, 0.1345), rtol=error)
        # p value very small, so first check df's and F value
        assert_allclose(
            f_two_sample(d, a, tails="low")[0:3],
            (29, 49, 0.0028),
            rtol=error,
            atol=1e-4,
        )
        assert f_two_sample(d, a, tails="low")[3] < 2.2e-16  # p value

    def test_MonteCarloP(self):
        """MonteCarloP calcs a p-value from a val and list of random vals"""
        val = 3.0
        random_vals = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]

        # test for "high" tail (larger values than expected by chance)
        p_val = MonteCarloP(val, random_vals, "high")
        self.assertEqual(p_val, 0.7)

        # test for "low" tail (smaller values than expected by chance)
        p_val = MonteCarloP(val, random_vals, "low")
        self.assertEqual(p_val, 0.4)


class MannWhitneyTests(TestCase):
    """check accuracy of Mann-Whitney implementation"""

    x = list(
        map(
            int,
            "104 109 112 114 116 118 118 119 121 123 125 126"
            " 126 128 128 128".split(),
        )
    )
    y = list(map(int, "100 105 107 107 108 111 116 120 121 123".split()))

    def test_mw_test(self):
        """mann-whitney test results should match Sokal & Rohlf"""
        U, p = mw_test(self.x, self.y)
        assert_allclose(U, 123.5)
        self.assertTrue(0.02 <= p <= 0.05)

    def test_mw_boot(self):
        """excercising the Monte-carlo variant of mann-whitney"""
        U, p = mw_boot(self.x, self.y, 10)
        assert_allclose(U, 123.5)
        self.assertTrue(0 <= p <= 0.5)


class KendallTests(TestCase):
    """check accuracy of Kendall tests against values from R"""

    def do_test(self, x, y, alt_expecteds):
        """conducts the tests for each alternate hypothesis against expecteds"""
        for alt, exp_p, exp_tau in alt_expecteds:
            tau, p_val = kendall_correlation(x, y, alt=alt, warn=False)
            assert_allclose(tau, exp_tau, rtol=1e-3)
            assert_allclose(p_val, exp_p, rtol=1e-3)

    def test_exact_calcs(self):
        """calculations of exact probabilities should match R"""
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
        y = (2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
        expecteds = [
            ["gt", 0.05972, 0.4444444],
            ["lt", 0.9624, 0.4444444],
            ["ts", 0.1194, 0.4444444],
        ]
        self.do_test(x, y, expecteds)

    def test_with_ties(self):
        """tied values calculated from normal approx"""
        # R example with ties in x
        x = (44.4, 45.9, 41.9, 53.3, 44.4, 44.1, 50.7, 45.2, 60.1)
        y = (2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
        expecteds = [  # ["gt", 0.05793, 0.4225771],
            ["lt", 0.942, 0.4225771],
            ["ts", 0.1159, 0.4225771],
        ]
        self.do_test(x, y, expecteds)

        # R example with ties in y
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
        y = (2.6, 3.1, 2.5, 5.0, 3.1, 4.0, 5.2, 2.8, 3.8)
        expecteds = [
            ["gt", 0.03737, 0.4789207],
            ["lt", 0.9626, 0.4789207],
            ["ts", 0.07474, 0.4789207],
        ]
        self.do_test(x, y, expecteds)
        # R example with ties in x and y
        x = (44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 44.4, 60.1)
        y = (2.6, 3.6, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
        expecteds = [
            ["gt", 0.02891, 0.5142857],
            ["lt", 0.971, 0.5142857],
            ["ts", 0.05782, 0.5142857],
        ]
        self.do_test(x, y, expecteds)

    def test_bigger_vectors(self):
        """docstring for test_bigger_vectors"""
        # q < expansion
        x = (
            0.118583104633,
            0.227860069338,
            0.143856130991,
            0.935362617582,
            0.0471303856799,
            0.659819202174,
            0.739247965907,
            0.268929000278,
            0.848250568194,
            0.307764819102,
            0.733949480141,
            0.271662210481,
            0.155903098872,
        )
        y = (
            0.749762144455,
            0.407571703468,
            0.934176427266,
            0.188638794706,
            0.184844781493,
            0.391485553856,
            0.735504815302,
            0.363655952442,
            0.18489971978,
            0.851075466765,
            0.139932273818,
            0.333675110224,
            0.570250937033,
        )
        expecteds = [
            ["gt", 0.9183, -0.2820513],
            ["lt", 0.1022, -0.2820513],
            ["ts", 0.2044, -0.2820513],
        ]
        self.do_test(x, y, expecteds)
        # q > expansion
        x = (
            0.2602556958,
            0.441506392849,
            0.930624643531,
            0.728461775775,
            0.234341774892,
            0.725677256368,
            0.354788882728,
            0.475882541956,
            0.347533553428,
            0.608578046857,
            0.144697962102,
            0.784502692164,
            0.872607603407,
        )
        y = (
            0.753056395718,
            0.454332072011,
            0.791882395707,
            0.622853579015,
            0.127030232518,
            0.232086215578,
            0.586604349918,
            0.0139051260749,
            0.579079370051,
            0.0550643809812,
            0.94798878249,
            0.318410679439,
            0.86725134615,
        )
        expecteds = [
            ["gt", 0.4762, 0.02564103],
            ["lt", 0.5711, 0.02564103],
            ["ts", 0.9524, 0.02564103],
        ]
        self.do_test(x, y, expecteds)


class TestDistMatrixPermutationTest(TestCase):
    """Tests of distance_matrix_permutation_test"""

    def setUp(self):
        """sets up variables for testing"""
        self.matrix = array(
            [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]
        )
        self.cells = [(0, 1), (1, 3)]
        self.cells2 = [(0, 2), (2, 3)]

    def test_get_ltm_cells(self):
        "get_ltm_cells converts indices to be below the diagonal"
        cells = [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
        result = get_ltm_cells(cells)
        self.assertEqual(result, [(1, 0), (2, 0), (2, 1)])
        cells = [(0, 1), (0, 2)]
        result = get_ltm_cells(cells)
        self.assertEqual(result, [(1, 0), (2, 0)])

    def test_get_values_from_matrix(self):
        """get_values_from_matrix returns the special and other values from matrix"""
        matrix = self.matrix
        cells = [(1, 0), (0, 1), (2, 0), (2, 1)]
        # test that works for a symmetric matrix
        cells_sym = get_ltm_cells(cells)
        special_vals, other_vals = get_values_from_matrix(
            matrix, cells_sym, cells2=None, is_symmetric=True
        )
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [5, 9, 10])
        self.assertEqual(other_vals, [13, 14, 15])

        # test that work for a non symmetric matrix
        special_vals, other_vals = get_values_from_matrix(
            matrix, cells, cells2=None, is_symmetric=False
        )
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [2, 5, 9, 10])
        self.assertEqual(other_vals, [1, 3, 4, 6, 7, 8, 11, 12, 13, 14, 15, 16])

        # test that works on a symmetric matrix when cells2 is defined
        cells2 = [(3, 0), (3, 2), (0, 3)]
        cells2_sym = get_ltm_cells(cells2)
        special_vals, other_vals = get_values_from_matrix(
            matrix, cells_sym, cells2=cells2_sym, is_symmetric=True
        )
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [5, 9, 10])
        self.assertEqual(other_vals, [13, 15])

        # test that works when cells2 is defined and not symmetric
        special_vals, other_vals = get_values_from_matrix(
            matrix, cells, cells2=cells2, is_symmetric=False
        )
        special_vals.sort()
        other_vals.sort()
        self.assertEqual(special_vals, [2, 5, 9, 10])
        self.assertEqual(other_vals, [4, 13, 15])

    def test_distance_matrix_permutation_test_non_symmetric(self):
        """evaluate empirical p-values for a non symmetric matrix

        To test the empirical p-values, we look at a simple 3x3 matrix
         b/c it is easy to see what t score every permutation will
         generate -- there's only 6 permutations.
         Running dist_matrix_test with n=1000, we expect that each
         permutation will show up 160 times, so we know how many
         times to expect to see more extreme t scores. We therefore
         know what the empirical p-values will be. (n=1000 was chosen
         empirically -- smaller values seem to lead to much more frequent
         random failures.)


        """

        def make_result_list(*args, **kwargs):
            return [
                distance_matrix_permutation_test(*args, **kwargs)[2] for i in range(10)
            ]

        m = arange(9).reshape((3, 3))
        n = 100
        # looks at each possible permutation n times --
        # compare first row to rest
        r = make_result_list(m, [(0, 0), (0, 1), (0, 2)], n=n, is_symmetric=False)
        self.assertTrue(similar_means(r, 0.0 / 6.0))
        r = make_result_list(
            m, [(0, 0), (0, 1), (0, 2)], n=n, is_symmetric=False, tails="high"
        )
        self.assertTrue(similar_means(r, 4.0 / 6.0))
        r = make_result_list(
            m, [(0, 0), (0, 1), (0, 2)], n=n, is_symmetric=False, tails="low"
        )
        self.assertTrue(similar_means(r, 0.0 / 6.0))

        # looks at each possible permutation n times --
        # compare last row to rest
        r = make_result_list(m, [(2, 0), (2, 1), (2, 2)], n=n, is_symmetric=False)
        self.assertTrue(similar_means(r, 0.0 / 6.0))
        r = make_result_list(
            m, [(2, 0), (2, 1), (2, 2)], n=n, is_symmetric=False, tails="high"
        )
        self.assertTrue(similar_means(r, 0.0 / 6.0))
        r = make_result_list(
            m, [(2, 0), (2, 1), (2, 2)], n=n, is_symmetric=False, tails="low"
        )
        self.assertTrue(similar_means(r, 4.0 / 6.0))

    def test_distance_matrix_permutation_test_symmetric(self):
        """evaluate empirical p-values for symmetric matrix

        See test_distance_matrix_permutation_test_non_symmetric
        doc string for a description of how this test works.

        """

        def make_result_list(*args, **kwargs):
            return [distance_matrix_permutation_test(*args)[2] for i in range(10)]

        m = array([[0, 1, 3], [1, 2, 4], [3, 4, 5]])
        # looks at each possible permutation n times --
        # compare first row to rest
        n = 100

        # looks at each possible permutation n times --
        # compare first row to rest
        r = make_result_list(m, [(0, 0), (0, 1), (0, 2)], n=n)
        self.assertTrue(similar_means(r, 2.0 / 6.0))
        r = make_result_list(m, [(0, 0), (0, 1), (0, 2)], n=n, tails="high")
        self.assertTrue(similar_means(r, 0.77281447417149496, 0))
        r = make_result_list(m, [(0, 0), (0, 1), (0, 2)], n=n, tails="low")
        self.assertTrue(similar_means(r, 2.0 / 6.0))

        # The following lines are not part of the test code, but are useful in
        # figuring out what t-scores all of the permutations will yield.
        # permutes = [[0, 1, 2], [0, 2, 1], [1, 0, 2],\
        # [1, 2, 0], [2, 0, 1], [2, 1, 0]]
        # results = []
        # for p in permutes:
        #    p_m = permute_2d(m,p)
        #    results.append(t_two_sample(\
        #     [p_m[0,1],p_m[0,2]],[p_m[2,1]],tails='high'))
        # print results

    def test_distance_matrix_permutation_test_alt_stat(self):
        def fake_stat_test(a, b, tails=None):
            return 42.0, 42.0

        m = array([[0, 1, 3], [1, 2, 4], [3, 4, 5]])
        self.assertEqual(
            distance_matrix_permutation_test(
                m, [(0, 0), (0, 1), (0, 2)], n=5, f=fake_stat_test
            ),
            (42.0, 42.0, 0.0),
        )

    def test_distance_matrix_permutation_test_return_scores(self):
        """return_scores=True functions as expected"""

        # use alt statistical test to make results simple
        def fake_stat_test(a, b, tails=None):
            return 42.0, 42.0

        m = array([[0, 1, 3], [1, 2, 4], [3, 4, 5]])
        self.assertEqual(
            distance_matrix_permutation_test(
                m, [(0, 0), (0, 1), (0, 2)], n=5, f=fake_stat_test, return_scores=True
            ),
            (42.0, 42.0, 0.0, [42.0] * 5),
        )

    def test_ANOVA_one_way(self):
        """ANOVA one way returns same values as ANOVA on a stats package"""
        g1 = NumberCounter([10.0, 11.0, 10.0, 5.0, 6.0])
        g2 = NumberCounter([1.0, 2.0, 3.0, 4.0, 1.0, 2.0])
        g3 = NumberCounter([6.0, 7.0, 5.0, 6.0, 7.0])
        i = [g1, g2, g3]
        dfn, dfd, F, between_MS, within_MS, group_means, prob = ANOVA_one_way(i)
        self.assertEqual(dfn, 2)
        self.assertEqual(dfd, 13)
        assert_allclose(F, 18.565450643776831)
        assert_allclose(between_MS, 55.458333333333343)
        assert_allclose(within_MS, 2.9871794871794868)
        assert_allclose(
            group_means, [8.4000000000000004, 2.1666666666666665, 6.2000000000000002]
        )
        assert_allclose(prob, 0.00015486238993089464)


# execute tests if called from command line