1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
"""
Conversion between color spaces.
.. note:: This module makes extensive use of imports within functions.
That stinks.
"""
from abc import ABCMeta, abstractmethod
import math
import logging
import numpy
import networkx
from colormath import color_constants
from colormath import spectral_constants
from colormath.color_objects import ColorBase, XYZColor, sRGBColor, \
LCHabColor, LCHuvColor, LabColor, xyYColor, LuvColor, HSVColor, HSLColor, \
CMYColor, CMYKColor, BaseRGBColor, IPTColor, SpectralColor, AdobeRGBColor
from colormath.chromatic_adaptation import apply_chromatic_adaptation
from colormath.color_exceptions import InvalidIlluminantError, \
UndefinedConversionError
logger = logging.getLogger(__name__)
# noinspection PyPep8Naming
def apply_RGB_matrix(var1, var2, var3, rgb_type, convtype="xyz_to_rgb"):
"""
Applies an RGB working matrix to convert from XYZ to RGB.
The arguments are tersely named var1, var2, and var3 to allow for the
passing of XYZ _or_ RGB values. var1 is X for XYZ, and R for RGB. var2 and
var3 follow suite.
"""
convtype = convtype.lower()
# Retrieve the appropriate transformation matrix from the constants.
rgb_matrix = rgb_type.conversion_matrices[convtype]
logger.debug(" \* Applying RGB conversion matrix: %s->%s",
rgb_type.__class__.__name__, convtype)
# Stuff the RGB/XYZ values into a NumPy matrix for conversion.
var_matrix = numpy.array((
var1, var2, var3
))
# Perform the adaptation via matrix multiplication.
result_matrix = numpy.dot(rgb_matrix, var_matrix)
rgb_r, rgb_g, rgb_b = result_matrix
# Clamp these values to a valid range.
rgb_r = max(rgb_r, 0.0)
rgb_g = max(rgb_g, 0.0)
rgb_b = max(rgb_b, 0.0)
return rgb_r, rgb_g, rgb_b
# Avoid the repetition, since the conversion tables for the various RGB
# spaces are the same.
_RGB_SPACES = [sRGBColor, AdobeRGBColor]
class ConversionManager(object):
__metaclass__ = ABCMeta
def __init__(self):
self.registered_color_spaces = set()
def add_type_conversion(self, start_type, target_type, conversion_function):
"""
Register a conversion function between two color spaces.
:param start_type: Starting color space.
:param target_type: Target color space.
:param conversion_function: Conversion function.
"""
self.registered_color_spaces.add(start_type)
self.registered_color_spaces.add(target_type)
logger.debug(
'Registered conversion from %s to %s', start_type, target_type)
@abstractmethod
def get_conversion_path(self, start_type, target_type):
"""
Return a list of conversion functions that if applied iteratively on a
color of the start_type color space result in a color in the result_type
color space.
Raises an UndefinedConversionError if no valid conversion path
can be found.
:param start_type: Starting color space type.
:param target_type: Target color space type.
:return: List of conversion functions.
"""
pass
@staticmethod
def _normalise_type(color_type):
"""
Return the highest superclass that is valid for color space
conversions (e.g., AdobeRGB -> BaseRGBColor).
"""
if issubclass(color_type, BaseRGBColor):
return BaseRGBColor
else:
return color_type
class GraphConversionManager(ConversionManager):
def __init__(self):
super(GraphConversionManager, self).__init__()
self.conversion_graph = networkx.DiGraph()
def get_conversion_path(self, start_type, target_type):
start_type = self._normalise_type(start_type)
target_type = self._normalise_type(target_type)
try:
# Retrieve node sequence that leads from start_type to target_type.
return self._find_shortest_path(start_type, target_type)
except (networkx.NetworkXNoPath, networkx.NodeNotFound):
raise UndefinedConversionError(
start_type,
target_type,
)
def _find_shortest_path(self, start_type, target_type):
path = networkx.shortest_path(
self.conversion_graph, start_type, target_type)
# Look up edges between nodes and retrieve the conversion function
# for each edge.
return [
self.conversion_graph.get_edge_data(node_a, node_b)['conversion_function']
for node_a, node_b in zip(path[:-1], path[1:])
]
def add_type_conversion(self, start_type, target_type, conversion_function):
super(GraphConversionManager, self).add_type_conversion(
start_type, target_type, conversion_function)
self.conversion_graph.add_edge(
start_type, target_type, conversion_function=conversion_function)
class DummyConversionManager(ConversionManager):
def add_type_conversion(self, start_type, target_type, conversion_function):
pass
def get_conversion_path(self, start_type, target_type):
raise UndefinedConversionError(
start_type,
target_type,
)
_conversion_manager = GraphConversionManager()
def color_conversion_function(start_type, target_type):
"""
Decorator to indicate a function that performs a conversion from one color
space to another.
This decorator will return the original function unmodified, however it will
be registered in the _conversion_manager so it can be used to perform color
space transformations between color spaces that do not have direct
conversion functions (e.g., Luv to CMYK).
Note: For a conversion to/from RGB supply the BaseRGBColor class.
:param start_type: Starting color space type
:param target_type: Target color space type
"""
def decorator(f):
f.start_type = start_type
f.target_type = target_type
_conversion_manager.add_type_conversion(start_type, target_type, f)
return f
return decorator
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(SpectralColor, XYZColor)
def Spectral_to_XYZ(cobj, illuminant_override=None, *args, **kwargs):
"""
Converts spectral readings to XYZ.
"""
# If the user provides an illuminant_override numpy array, use it.
if illuminant_override:
reference_illum = illuminant_override
else:
# Otherwise, look up the illuminant from known standards based
# on the value of 'illuminant' pulled from the SpectralColor object.
try:
reference_illum = spectral_constants.REF_ILLUM_TABLE[cobj.illuminant]
except KeyError:
raise InvalidIlluminantError(cobj.illuminant)
# Get the spectral distribution of the selected standard observer.
if cobj.observer == '10':
std_obs_x = spectral_constants.STDOBSERV_X10
std_obs_y = spectral_constants.STDOBSERV_Y10
std_obs_z = spectral_constants.STDOBSERV_Z10
else:
# Assume 2 degree, since it is theoretically the only other possibility.
std_obs_x = spectral_constants.STDOBSERV_X2
std_obs_y = spectral_constants.STDOBSERV_Y2
std_obs_z = spectral_constants.STDOBSERV_Z2
# This is a NumPy array containing the spectral distribution of the color.
sample = cobj.get_numpy_array()
# The denominator is constant throughout the entire calculation for X,
# Y, and Z coordinates. Calculate it once and re-use.
denom = std_obs_y * reference_illum
# This is also a common element in the calculation whereby the sample
# NumPy array is multiplied by the reference illuminant's power distribution
# (which is also a NumPy array).
sample_by_ref_illum = sample * reference_illum
# Calculate the numerator of the equation to find X.
x_numerator = sample_by_ref_illum * std_obs_x
y_numerator = sample_by_ref_illum * std_obs_y
z_numerator = sample_by_ref_illum * std_obs_z
xyz_x = x_numerator.sum() / denom.sum()
xyz_y = y_numerator.sum() / denom.sum()
xyz_z = z_numerator.sum() / denom.sum()
return XYZColor(
xyz_x, xyz_y, xyz_z, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(LabColor, LCHabColor)
def Lab_to_LCHab(cobj, *args, **kwargs):
"""
Convert from CIE Lab to LCH(ab).
"""
lch_l = cobj.lab_l
lch_c = math.sqrt(
math.pow(float(cobj.lab_a), 2) + math.pow(float(cobj.lab_b), 2))
lch_h = math.atan2(float(cobj.lab_b), float(cobj.lab_a))
if lch_h > 0:
lch_h = (lch_h / math.pi) * 180
else:
lch_h = 360 - (math.fabs(lch_h) / math.pi) * 180
return LCHabColor(
lch_l, lch_c, lch_h, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(LabColor, XYZColor)
def Lab_to_XYZ(cobj, *args, **kwargs):
"""
Convert from Lab to XYZ
"""
illum = cobj.get_illuminant_xyz()
xyz_y = (cobj.lab_l + 16.0) / 116.0
xyz_x = cobj.lab_a / 500.0 + xyz_y
xyz_z = xyz_y - cobj.lab_b / 200.0
if math.pow(xyz_y, 3) > color_constants.CIE_E:
xyz_y = math.pow(xyz_y, 3)
else:
xyz_y = (xyz_y - 16.0 / 116.0) / 7.787
if math.pow(xyz_x, 3) > color_constants.CIE_E:
xyz_x = math.pow(xyz_x, 3)
else:
xyz_x = (xyz_x - 16.0 / 116.0) / 7.787
if math.pow(xyz_z, 3) > color_constants.CIE_E:
xyz_z = math.pow(xyz_z, 3)
else:
xyz_z = (xyz_z - 16.0 / 116.0) / 7.787
xyz_x = (illum["X"] * xyz_x)
xyz_y = (illum["Y"] * xyz_y)
xyz_z = (illum["Z"] * xyz_z)
return XYZColor(
xyz_x, xyz_y, xyz_z, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(LuvColor, LCHuvColor)
def Luv_to_LCHuv(cobj, *args, **kwargs):
"""
Convert from CIE Luv to LCH(uv).
"""
lch_l = cobj.luv_l
lch_c = math.sqrt(math.pow(cobj.luv_u, 2.0) + math.pow(cobj.luv_v, 2.0))
lch_h = math.atan2(float(cobj.luv_v), float(cobj.luv_u))
if lch_h > 0:
lch_h = (lch_h / math.pi) * 180
else:
lch_h = 360 - (math.fabs(lch_h) / math.pi) * 180
return LCHuvColor(
lch_l, lch_c, lch_h, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(LuvColor, XYZColor)
def Luv_to_XYZ(cobj, *args, **kwargs):
"""
Convert from Luv to XYZ.
"""
illum = cobj.get_illuminant_xyz()
# Without Light, there is no color. Short-circuit this and avoid some
# zero division errors in the var_a_frac calculation.
if cobj.luv_l <= 0.0:
xyz_x = 0.0
xyz_y = 0.0
xyz_z = 0.0
return XYZColor(
xyz_x, xyz_y, xyz_z,
observer=cobj.observer, illuminant=cobj.illuminant)
# Various variables used throughout the conversion.
cie_k_times_e = color_constants.CIE_K * color_constants.CIE_E
u_sub_0 = (4.0 * illum["X"]) / (illum["X"] + 15.0 * illum["Y"] + 3.0 * illum["Z"])
v_sub_0 = (9.0 * illum["Y"]) / (illum["X"] + 15.0 * illum["Y"] + 3.0 * illum["Z"])
var_u = cobj.luv_u / (13.0 * cobj.luv_l) + u_sub_0
var_v = cobj.luv_v / (13.0 * cobj.luv_l) + v_sub_0
# Y-coordinate calculations.
if cobj.luv_l > cie_k_times_e:
xyz_y = math.pow((cobj.luv_l + 16.0) / 116.0, 3.0)
else:
xyz_y = cobj.luv_l / color_constants.CIE_K
# X-coordinate calculation.
xyz_x = xyz_y * 9.0 * var_u / (4.0 * var_v)
# Z-coordinate calculation.
xyz_z = xyz_y * (12.0 - 3.0 * var_u - 20.0 * var_v) / (4.0 * var_v)
return XYZColor(
xyz_x, xyz_y, xyz_z, illuminant=cobj.illuminant, observer=cobj.observer)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(LCHabColor, LabColor)
def LCHab_to_Lab(cobj, *args, **kwargs):
"""
Convert from LCH(ab) to Lab.
"""
lab_l = cobj.lch_l
lab_a = math.cos(math.radians(cobj.lch_h)) * cobj.lch_c
lab_b = math.sin(math.radians(cobj.lch_h)) * cobj.lch_c
return LabColor(
lab_l, lab_a, lab_b, illuminant=cobj.illuminant, observer=cobj.observer)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(LCHuvColor, LuvColor)
def LCHuv_to_Luv(cobj, *args, **kwargs):
"""
Convert from LCH(uv) to Luv.
"""
luv_l = cobj.lch_l
luv_u = math.cos(math.radians(cobj.lch_h)) * cobj.lch_c
luv_v = math.sin(math.radians(cobj.lch_h)) * cobj.lch_c
return LuvColor(
luv_l, luv_u, luv_v, illuminant=cobj.illuminant, observer=cobj.observer)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(xyYColor, XYZColor)
def xyY_to_XYZ(cobj, *args, **kwargs):
"""
Convert from xyY to XYZ.
"""
# avoid division by zero
if cobj.xyy_y == 0.0:
xyz_x = 0.0
xyz_y = 0.0
xyz_z = 0.0
else:
xyz_x = (cobj.xyy_x * cobj.xyy_Y) / cobj.xyy_y
xyz_y = cobj.xyy_Y
xyz_z = ((1.0 - cobj.xyy_x - cobj.xyy_y) * xyz_y) / cobj.xyy_y
return XYZColor(
xyz_x, xyz_y, xyz_z, illuminant=cobj.illuminant, observer=cobj.observer)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(XYZColor, xyYColor)
def XYZ_to_xyY(cobj, *args, **kwargs):
"""
Convert from XYZ to xyY.
"""
xyz_sum = cobj.xyz_x + cobj.xyz_y + cobj.xyz_z
# avoid division by zero
if xyz_sum == 0.0:
xyy_x = 0.0
xyy_y = 0.0
else:
xyy_x = cobj.xyz_x / xyz_sum
xyy_y = cobj.xyz_y / xyz_sum
xyy_Y = cobj.xyz_y
return xyYColor(
xyy_x, xyy_y, xyy_Y, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(XYZColor, LuvColor)
def XYZ_to_Luv(cobj, *args, **kwargs):
"""
Convert from XYZ to Luv
"""
temp_x = cobj.xyz_x
temp_y = cobj.xyz_y
temp_z = cobj.xyz_z
denom = temp_x + (15.0 * temp_y) + (3.0 * temp_z)
# avoid division by zero
if denom == 0.0:
luv_u = 0.0
luv_v = 0.0
else:
luv_u = (4.0 * temp_x) / denom
luv_v = (9.0 * temp_y) / denom
illum = cobj.get_illuminant_xyz()
temp_y = temp_y / illum["Y"]
if temp_y > color_constants.CIE_E:
temp_y = math.pow(temp_y, (1.0 / 3.0))
else:
temp_y = (7.787 * temp_y) + (16.0 / 116.0)
ref_U = (4.0 * illum["X"]) / (illum["X"] + (15.0 * illum["Y"]) + (3.0 * illum["Z"]))
ref_V = (9.0 * illum["Y"]) / (illum["X"] + (15.0 * illum["Y"]) + (3.0 * illum["Z"]))
luv_l = (116.0 * temp_y) - 16.0
luv_u = 13.0 * luv_l * (luv_u - ref_U)
luv_v = 13.0 * luv_l * (luv_v - ref_V)
return LuvColor(
luv_l, luv_u, luv_v, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(XYZColor, LabColor)
def XYZ_to_Lab(cobj, *args, **kwargs):
"""
Converts XYZ to Lab.
"""
illum = cobj.get_illuminant_xyz()
temp_x = cobj.xyz_x / illum["X"]
temp_y = cobj.xyz_y / illum["Y"]
temp_z = cobj.xyz_z / illum["Z"]
if temp_x > color_constants.CIE_E:
temp_x = math.pow(temp_x, (1.0 / 3.0))
else:
temp_x = (7.787 * temp_x) + (16.0 / 116.0)
if temp_y > color_constants.CIE_E:
temp_y = math.pow(temp_y, (1.0 / 3.0))
else:
temp_y = (7.787 * temp_y) + (16.0 / 116.0)
if temp_z > color_constants.CIE_E:
temp_z = math.pow(temp_z, (1.0 / 3.0))
else:
temp_z = (7.787 * temp_z) + (16.0 / 116.0)
lab_l = (116.0 * temp_y) - 16.0
lab_a = 500.0 * (temp_x - temp_y)
lab_b = 200.0 * (temp_y - temp_z)
return LabColor(
lab_l, lab_a, lab_b, observer=cobj.observer, illuminant=cobj.illuminant)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(XYZColor, BaseRGBColor)
def XYZ_to_RGB(cobj, target_rgb, *args, **kwargs):
"""
XYZ to RGB conversion.
"""
temp_X = cobj.xyz_x
temp_Y = cobj.xyz_y
temp_Z = cobj.xyz_z
logger.debug(" \- Target RGB space: %s", target_rgb)
target_illum = target_rgb.native_illuminant
logger.debug(" \- Target native illuminant: %s", target_illum)
logger.debug(" \- XYZ color's illuminant: %s", cobj.illuminant)
# If the XYZ values were taken with a different reference white than the
# native reference white of the target RGB space, a transformation matrix
# must be applied.
if cobj.illuminant != target_illum:
logger.debug(" \* Applying transformation from %s to %s ",
cobj.illuminant, target_illum)
# Get the adjusted XYZ values, adapted for the target illuminant.
temp_X, temp_Y, temp_Z = apply_chromatic_adaptation(
temp_X, temp_Y, temp_Z,
orig_illum=cobj.illuminant, targ_illum=target_illum)
logger.debug(" \* New values: %.3f, %.3f, %.3f",
temp_X, temp_Y, temp_Z)
# Apply an RGB working space matrix to the XYZ values (matrix mul).
rgb_r, rgb_g, rgb_b = apply_RGB_matrix(
temp_X, temp_Y, temp_Z,
rgb_type=target_rgb, convtype="xyz_to_rgb")
# v
linear_channels = dict(r=rgb_r, g=rgb_g, b=rgb_b)
# V
nonlinear_channels = {}
if target_rgb == sRGBColor:
for channel in ['r', 'g', 'b']:
v = linear_channels[channel]
if v <= 0.0031308:
nonlinear_channels[channel] = v * 12.92
else:
nonlinear_channels[channel] = 1.055 * math.pow(v, 1 / 2.4) - 0.055
else:
# If it's not sRGB...
for channel in ['r', 'g', 'b']:
v = linear_channels[channel]
nonlinear_channels[channel] = math.pow(v, 1 / target_rgb.rgb_gamma)
return target_rgb(
nonlinear_channels['r'], nonlinear_channels['g'], nonlinear_channels['b'])
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(BaseRGBColor, XYZColor)
def RGB_to_XYZ(cobj, target_illuminant=None, *args, **kwargs):
"""
RGB to XYZ conversion. Expects 0-255 RGB values.
Based off of: http://www.brucelindbloom.com/index.html?Eqn_RGB_to_XYZ.html
"""
# Will contain linearized RGB channels (removed the gamma func).
linear_channels = {}
if isinstance(cobj, sRGBColor):
for channel in ['r', 'g', 'b']:
V = getattr(cobj, 'rgb_' + channel)
if V <= 0.04045:
linear_channels[channel] = V / 12.92
else:
linear_channels[channel] = math.pow((V + 0.055) / 1.055, 2.4)
else:
# If it's not sRGB...
gamma = cobj.rgb_gamma
for channel in ['r', 'g', 'b']:
V = getattr(cobj, 'rgb_' + channel)
linear_channels[channel] = math.pow(V, gamma)
# Apply an RGB working space matrix to the XYZ values (matrix mul).
xyz_x, xyz_y, xyz_z = apply_RGB_matrix(
linear_channels['r'], linear_channels['g'], linear_channels['b'],
rgb_type=cobj, convtype="rgb_to_xyz")
if target_illuminant is None:
target_illuminant = cobj.native_illuminant
# The illuminant of the original RGB object. This will always match
# the RGB colorspace's native illuminant.
illuminant = cobj.native_illuminant
xyzcolor = XYZColor(xyz_x, xyz_y, xyz_z, illuminant=illuminant)
# This will take care of any illuminant changes for us (if source
# illuminant != target illuminant).
xyzcolor.apply_adaptation(target_illuminant)
return xyzcolor
# noinspection PyPep8Naming,PyUnusedLocal
def __RGB_to_Hue(var_R, var_G, var_B, var_min, var_max):
"""
For RGB_to_HSL and RGB_to_HSV, the Hue (H) component is calculated in
the same way.
"""
if var_max == var_min:
return 0.0
elif var_max == var_R:
return (60.0 * ((var_G - var_B) / (var_max - var_min)) + 360) % 360.0
elif var_max == var_G:
return 60.0 * ((var_B - var_R) / (var_max - var_min)) + 120
elif var_max == var_B:
return 60.0 * ((var_R - var_G) / (var_max - var_min)) + 240.0
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(BaseRGBColor, HSVColor)
def RGB_to_HSV(cobj, *args, **kwargs):
"""
Converts from RGB to HSV.
H values are in degrees and are 0 to 360.
S values are a percentage, 0.0 to 1.0.
V values are a percentage, 0.0 to 1.0.
"""
var_R = cobj.rgb_r
var_G = cobj.rgb_g
var_B = cobj.rgb_b
var_max = max(var_R, var_G, var_B)
var_min = min(var_R, var_G, var_B)
var_H = __RGB_to_Hue(var_R, var_G, var_B, var_min, var_max)
if var_max == 0:
var_S = 0
else:
var_S = 1.0 - (var_min / var_max)
var_V = var_max
hsv_h = var_H
hsv_s = var_S
hsv_v = var_V
return HSVColor(
var_H, var_S, var_V)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(BaseRGBColor, HSLColor)
def RGB_to_HSL(cobj, *args, **kwargs):
"""
Converts from RGB to HSL.
H values are in degrees and are 0 to 360.
S values are a percentage, 0.0 to 1.0.
L values are a percentage, 0.0 to 1.0.
"""
var_R = cobj.rgb_r
var_G = cobj.rgb_g
var_B = cobj.rgb_b
var_max = max(var_R, var_G, var_B)
var_min = min(var_R, var_G, var_B)
var_H = __RGB_to_Hue(var_R, var_G, var_B, var_min, var_max)
var_L = 0.5 * (var_max + var_min)
if var_max == var_min:
var_S = 0
elif var_L <= 0.5:
var_S = (var_max - var_min) / (2.0 * var_L)
else:
var_S = (var_max - var_min) / (2.0 - (2.0 * var_L))
return HSLColor(
var_H, var_S, var_L)
# noinspection PyPep8Naming,PyUnusedLocal
def __Calc_HSL_to_RGB_Components(var_q, var_p, C):
"""
This is used in HSL_to_RGB conversions on R, G, and B.
"""
if C < 0:
C += 1.0
if C > 1:
C -= 1.0
# Computing C of vector (Color R, Color G, Color B)
if C < (1.0 / 6.0):
return var_p + ((var_q - var_p) * 6.0 * C)
elif (1.0 / 6.0) <= C < 0.5:
return var_q
elif 0.5 <= C < (2.0 / 3.0):
return var_p + ((var_q - var_p) * 6.0 * ((2.0 / 3.0) - C))
else:
return var_p
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(HSVColor, BaseRGBColor)
def HSV_to_RGB(cobj, target_rgb, *args, **kwargs):
"""
HSV to RGB conversion.
H values are in degrees and are 0 to 360.
S values are a percentage, 0.0 to 1.0.
V values are a percentage, 0.0 to 1.0.
"""
H = cobj.hsv_h
S = cobj.hsv_s
V = cobj.hsv_v
h_floored = int(math.floor(H))
h_sub_i = int(h_floored / 60) % 6
var_f = (H / 60.0) - (h_floored // 60)
var_p = V * (1.0 - S)
var_q = V * (1.0 - var_f * S)
var_t = V * (1.0 - (1.0 - var_f) * S)
if h_sub_i == 0:
rgb_r = V
rgb_g = var_t
rgb_b = var_p
elif h_sub_i == 1:
rgb_r = var_q
rgb_g = V
rgb_b = var_p
elif h_sub_i == 2:
rgb_r = var_p
rgb_g = V
rgb_b = var_t
elif h_sub_i == 3:
rgb_r = var_p
rgb_g = var_q
rgb_b = V
elif h_sub_i == 4:
rgb_r = var_t
rgb_g = var_p
rgb_b = V
elif h_sub_i == 5:
rgb_r = V
rgb_g = var_p
rgb_b = var_q
else:
raise ValueError("Unable to convert HSL->RGB due to value error.")
# In the event that they define an HSV color and want to convert it to
# a particular RGB space, let them override it here.
if target_rgb is not None:
rgb_type = target_rgb
else:
rgb_type = cobj.rgb_type
return target_rgb(rgb_r, rgb_g, rgb_b)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(HSLColor, BaseRGBColor)
def HSL_to_RGB(cobj, target_rgb, *args, **kwargs):
"""
HSL to RGB conversion.
"""
H = cobj.hsl_h
S = cobj.hsl_s
L = cobj.hsl_l
if L < 0.5:
var_q = L * (1.0 + S)
else:
var_q = L + S - (L * S)
var_p = 2.0 * L - var_q
# H normalized to range [0,1]
h_sub_k = (H / 360.0)
t_sub_R = h_sub_k + (1.0 / 3.0)
t_sub_G = h_sub_k
t_sub_B = h_sub_k - (1.0 / 3.0)
rgb_r = __Calc_HSL_to_RGB_Components(var_q, var_p, t_sub_R)
rgb_g = __Calc_HSL_to_RGB_Components(var_q, var_p, t_sub_G)
rgb_b = __Calc_HSL_to_RGB_Components(var_q, var_p, t_sub_B)
# In the event that they define an HSV color and want to convert it to
# a particular RGB space, let them override it here.
if target_rgb is not None:
rgb_type = target_rgb
else:
rgb_type = cobj.rgb_type
return target_rgb(rgb_r, rgb_g, rgb_b)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(BaseRGBColor, CMYColor)
def RGB_to_CMY(cobj, *args, **kwargs):
"""
RGB to CMY conversion.
NOTE: CMYK and CMY values range from 0.0 to 1.0
"""
cmy_c = 1.0 - cobj.rgb_r
cmy_m = 1.0 - cobj.rgb_g
cmy_y = 1.0 - cobj.rgb_b
return CMYColor(cmy_c, cmy_m, cmy_y)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(CMYColor, BaseRGBColor)
def CMY_to_RGB(cobj, target_rgb, *args, **kwargs):
"""
Converts CMY to RGB via simple subtraction.
NOTE: Returned values are in the range of 0-255.
"""
rgb_r = 1.0 - cobj.cmy_c
rgb_g = 1.0 - cobj.cmy_m
rgb_b = 1.0 - cobj.cmy_y
return target_rgb(rgb_r, rgb_g, rgb_b)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(CMYColor, CMYKColor)
def CMY_to_CMYK(cobj, *args, **kwargs):
"""
Converts from CMY to CMYK.
NOTE: CMYK and CMY values range from 0.0 to 1.0
"""
var_k = 1.0
if cobj.cmy_c < var_k:
var_k = cobj.cmy_c
if cobj.cmy_m < var_k:
var_k = cobj.cmy_m
if cobj.cmy_y < var_k:
var_k = cobj.cmy_y
if var_k == 1:
cmyk_c = 0.0
cmyk_m = 0.0
cmyk_y = 0.0
else:
cmyk_c = (cobj.cmy_c - var_k) / (1.0 - var_k)
cmyk_m = (cobj.cmy_m - var_k) / (1.0 - var_k)
cmyk_y = (cobj.cmy_y - var_k) / (1.0 - var_k)
cmyk_k = var_k
return CMYKColor(cmyk_c, cmyk_m, cmyk_y, cmyk_k)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(CMYKColor, CMYColor)
def CMYK_to_CMY(cobj, *args, **kwargs):
"""
Converts CMYK to CMY.
NOTE: CMYK and CMY values range from 0.0 to 1.0
"""
cmy_c = cobj.cmyk_c * (1.0 - cobj.cmyk_k) + cobj.cmyk_k
cmy_m = cobj.cmyk_m * (1.0 - cobj.cmyk_k) + cobj.cmyk_k
cmy_y = cobj.cmyk_y * (1.0 - cobj.cmyk_k) + cobj.cmyk_k
return CMYColor(cmy_c, cmy_m, cmy_y)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(XYZColor, IPTColor)
def XYZ_to_IPT(cobj, *args, **kwargs):
"""
Converts XYZ to IPT.
NOTE: XYZ values need to be adapted to 2 degree D65
Reference:
Fairchild, M. D. (2013). Color appearance models, 3rd Ed. (pp. 271-272). John Wiley & Sons.
"""
if cobj.illuminant != 'd65' or cobj.observer != '2':
raise ValueError('XYZColor for XYZ->IPT conversion needs to be D65 adapted.')
xyz_values = numpy.array(cobj.get_value_tuple())
lms_values = numpy.dot(
IPTColor.conversion_matrices['xyz_to_lms'],
xyz_values)
lms_prime = numpy.sign(lms_values) * numpy.abs(lms_values) ** 0.43
ipt_values = numpy.dot(
IPTColor.conversion_matrices['lms_to_ipt'],
lms_prime)
return IPTColor(*ipt_values)
# noinspection PyPep8Naming,PyUnusedLocal
@color_conversion_function(IPTColor, XYZColor)
def IPT_to_XYZ(cobj, *args, **kwargs):
"""
Converts IPT to XYZ.
"""
ipt_values = numpy.array(cobj.get_value_tuple())
lms_values = numpy.dot(
numpy.linalg.inv(IPTColor.conversion_matrices['lms_to_ipt']),
ipt_values)
lms_prime = numpy.sign(lms_values) * numpy.abs(lms_values) ** (1 / 0.43)
xyz_values = numpy.dot(
numpy.linalg.inv(IPTColor.conversion_matrices['xyz_to_lms']),
lms_prime)
return XYZColor(*xyz_values, observer='2', illuminant='d65')
# We use this as a template conversion dict for each RGB color space. They
# are all identical.
_RGB_CONVERSION_DICT_TEMPLATE = {
"HSLColor": [RGB_to_HSL],
"HSVColor": [RGB_to_HSV],
"CMYColor": [RGB_to_CMY],
"CMYKColor": [RGB_to_CMY, CMY_to_CMYK],
"XYZColor": [RGB_to_XYZ],
"xyYColor": [RGB_to_XYZ, XYZ_to_xyY],
"LabColor": [RGB_to_XYZ, XYZ_to_Lab],
"LCHabColor": [RGB_to_XYZ, XYZ_to_Lab, Lab_to_LCHab],
"LCHuvColor": [RGB_to_XYZ, XYZ_to_Luv, Luv_to_LCHuv],
"LuvColor": [RGB_to_XYZ, XYZ_to_Luv],
"IPTColor": [RGB_to_XYZ, XYZ_to_IPT],
}
def convert_color(color, target_cs, through_rgb_type=sRGBColor,
target_illuminant=None, *args, **kwargs):
"""
Converts the color to the designated color space.
:param color: A Color instance to convert.
:param target_cs: The Color class to convert to. Note that this is not
an instance, but a class.
:keyword BaseRGBColor through_rgb_type: If during your conversion between
your original and target color spaces you have to pass through RGB,
this determines which kind of RGB to use. For example, XYZ->HSL.
You probably don't need to specify this unless you have a special
usage case.
:type target_illuminant: None or str
:keyword target_illuminant: If during conversion from RGB to a reflective
color space you want to explicitly end up with a certain illuminant,
pass this here. Otherwise the RGB space's native illuminant
will be used.
:returns: An instance of the type passed in as ``target_cs``.
:raises: :py:exc:`colormath.color_exceptions.UndefinedConversionError`
if conversion between the two color spaces isn't possible.
"""
if isinstance(target_cs, str):
raise ValueError("target_cs parameter must be a Color object.")
if not issubclass(target_cs, ColorBase):
raise ValueError("target_cs parameter must be a Color object.")
conversions = _conversion_manager.get_conversion_path(color.__class__, target_cs)
logger.debug('Converting %s to %s', color, target_cs)
logger.debug(' @ Conversion path: %s', conversions)
# Start with original color in case we convert to the same color space.
new_color = color
if issubclass(target_cs, BaseRGBColor):
# If the target_cs is an RGB color space of some sort, then we
# have to set our through_rgb_type to make sure the conversion returns
# the expected RGB colorspace (instead of defaulting to sRGBColor).
through_rgb_type = target_cs
# We have to be careful to use the same RGB color space that created
# an object (if it was created by a conversion) in order to get correct
# results. For example, XYZ->HSL via Adobe RGB should default to Adobe
# RGB when taking that generated HSL object back to XYZ.
# noinspection PyProtectedMember
if through_rgb_type != sRGBColor:
# User overrides take priority over everything.
# noinspection PyProtectedMember
target_rgb = through_rgb_type
elif color._through_rgb_type:
# Otherwise, a value on the color object is the next best thing,
# when available.
# noinspection PyProtectedMember
target_rgb = color._through_rgb_type
else:
# We could collapse this into a single if statement above,
# but I think this reads better.
target_rgb = through_rgb_type
# Iterate through the list of functions for the conversion path, storing
# the results in a dictionary via update(). This way the user has access
# to all of the variables involved in the conversion.
for func in conversions:
# Execute the function in this conversion step and store the resulting
# Color object.
logger.debug(' * Conversion: %s passed to %s()',
new_color.__class__.__name__, func)
logger.debug(' |-> in %s', new_color)
if func:
# This can be None if you try to convert a color to the color
# space that is already in. IE: XYZ->XYZ.
new_color = func(
new_color,
target_rgb=target_rgb,
target_illuminant=target_illuminant,
*args, **kwargs)
logger.debug(' |-< out %s', new_color)
# If this conversion had something other than the default sRGB color space
# requested,
if through_rgb_type != sRGBColor:
new_color._through_rgb_type = through_rgb_type
return new_color
|