File: README.md

package info (click to toggle)
python-confluent-kafka 1.7.0-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 1,900 kB
  • sloc: python: 8,335; ansic: 6,065; sh: 1,203; makefile: 178
file content (312 lines) | stat: -rw-r--r-- 10,060 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
Confluent's Python Client for Apache Kafka<sup>TM</sup>
=======================================================

**confluent-kafka-python** provides a high-level Producer, Consumer and AdminClient compatible with all
[Apache Kafka<sup>TM<sup>](http://kafka.apache.org/) brokers >= v0.8, [Confluent Cloud](https://www.confluent.io/confluent-cloud/)
and the [Confluent Platform](https://www.confluent.io/product/compare/). The client is:

- **Reliable** - It's a wrapper around [librdkafka](https://github.com/edenhill/librdkafka) (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using [the same set of system tests](https://github.com/confluentinc/confluent-kafka-python/tree/master/confluent_kafka/kafkatest) as the Java client [and more](https://github.com/confluentinc/confluent-kafka-python/tree/master/tests). It's supported by [Confluent](https://confluent.io).

- **Performant** - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

- **Future proof** - Confluent, founded by the
creators of Kafka, is building a [streaming platform](https://www.confluent.io/product/compare/)
with Apache Kafka at its core. It's high priority for us that client features keep
pace with core Apache Kafka and components of the [Confluent Platform](https://www.confluent.io/product/compare/).


See the [API documentation](http://docs.confluent.io/current/clients/confluent-kafka-python/index.html) for more info.


Usage
=====

Below are some examples of typical usage. For more examples, see the [examples](examples) directory or the [confluentinc/examples](https://github.com/confluentinc/examples/tree/master/clients/cloud/python) github repo for a [Confluent Cloud](https://www.confluent.io/confluent-cloud/) example.


**Producer**

```python
from confluent_kafka import Producer


p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message, the delivery report callback
    # will be triggered from poll() above, or flush() below, when the message has
    # been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()
```


**High-level Consumer**

```python
from confluent_kafka import Consumer


c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()
```

**AvroProducer**

```python
from confluent_kafka import avro
from confluent_kafka.avro import AvroProducer


value_schema_str = """
{
   "namespace": "my.test",
   "name": "value",
   "type": "record",
   "fields" : [
     {
       "name" : "name",
       "type" : "string"
     }
   ]
}
"""

key_schema_str = """
{
   "namespace": "my.test",
   "name": "key",
   "type": "record",
   "fields" : [
     {
       "name" : "name",
       "type" : "string"
     }
   ]
}
"""

value_schema = avro.loads(value_schema_str)
key_schema = avro.loads(key_schema_str)
value = {"name": "Value"}
key = {"name": "Key"}


def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))


avroProducer = AvroProducer({
    'bootstrap.servers': 'mybroker,mybroker2',
    'on_delivery': delivery_report,
    'schema.registry.url': 'http://schema_registry_host:port'
    }, default_key_schema=key_schema, default_value_schema=value_schema)

avroProducer.produce(topic='my_topic', value=value, key=key)
avroProducer.flush()
```

**AvroConsumer**

```python
from confluent_kafka.avro import AvroConsumer
from confluent_kafka.avro.serializer import SerializerError


c = AvroConsumer({
    'bootstrap.servers': 'mybroker,mybroker2',
    'group.id': 'groupid',
    'schema.registry.url': 'http://127.0.0.1:8081'})

c.subscribe(['my_topic'])

while True:
    try:
        msg = c.poll(10)

    except SerializerError as e:
        print("Message deserialization failed for {}: {}".format(msg, e))
        break

    if msg is None:
        continue

    if msg.error():
        print("AvroConsumer error: {}".format(msg.error()))
        continue

    print(msg.value())

c.close()
```

**AdminClient**

Create topics:

```python
from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))
```



Thread Safety
-------------

The `Producer`, `Consumer` and `AdminClient` are all thread safe.


Install
=======

**Install self-contained binary wheels**

    $ pip install confluent-kafka

**NOTE:** The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support.
          If you need SASL Kerberos/GSSAPI support you must install librdkafka and
          its dependencies using the repositories below and then build
          confluent-kafka  using the command in the "Install from
          source from PyPi" section below.

**Install AvroProducer and AvroConsumer**

    $ pip install "confluent-kafka[avro]"

**Install from source from PyPi**
*(requires librdkafka + dependencies to be installed separately)*:

    $ pip install --no-binary :all: confluent-kafka


For source install, see *Prerequisites* below.


Broker Compatibility
====================
The Python client (as well as the underlying C library librdkafka) supports
all broker versions &gt;= 0.8.
But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it
is not safe for a client to assume what protocol version is actually supported
by the broker, thus you will need to hint the Python client what protocol
version it may use. This is done through two configuration settings:

 * `broker.version.fallback=YOUR_BROKER_VERSION` (default 0.9.0.1)
 * `api.version.request=true|false` (default true)

When using a Kafka 0.10 broker or later you don't need to do anything
(`api.version.request=true` is the default).
If you use Kafka broker 0.9 or 0.8 you must set
`api.version.request=false` and set
`broker.version.fallback` to your broker version,
e.g `broker.version.fallback=0.9.0.1`.

More info here:
https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility


SSL certificates
================
If you're connecting to a Kafka cluster through SSL you will need to configure
the client with `'security.protocol': 'SSL'` (or `'SASL_SSL'` if SASL
authentication is used).

The client will use CA certificates to verify the broker's certificate.
The embedded OpenSSL library will look for CA certificates in `/usr/lib/ssl/certs/`
or `/usr/lib/ssl/cacert.pem`. CA certificates are typically provided by the
Linux distribution's `ca-certificates` package which needs to be installed
through `apt`, `yum`, et.al.

If your system stores CA certificates in another location you will need to
configure the client with `'ssl.ca.location': '/path/to/cacert.pem'`. 

Alternatively, the CA certificates can be provided by the [certifi](https://pypi.org/project/certifi/)
Python package. To use certifi, add an `import certifi` line and configure the
client's CA location with `'ssl.ca.location': certifi.where()`.


Prerequisites
=============

 * Python >= 2.7 or Python 3.x
 * [librdkafka](https://github.com/edenhill/librdkafka) >= 1.6.0 (latest release is embedded in wheels)

librdkafka is embedded in the macosx manylinux wheels, for other platforms, SASL Kerberos/GSSAPI support or
when a specific version of librdkafka is desired, following these guidelines:

  * For **Debian/Ubuntu** based systems, add this APT repo and then do `sudo apt-get install librdkafka-dev python-dev`:
http://docs.confluent.io/current/installation.html#installation-apt

 * For **RedHat** and **RPM**-based distros, add this YUM repo and then do `sudo yum install librdkafka-devel python-devel`:
http://docs.confluent.io/current/installation.html#rpm-packages-via-yum

 * On **OSX**, use **homebrew** and do `brew install librdkafka`


License
=======

[Apache License v2.0](http://www.apache.org/licenses/LICENSE-2.0)

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use
by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by
The Apache Software Foundation.

Developer Notes
===============

Instructions on building and testing confluent-kafka-python can be found [here](DEVELOPER.md).