File: README.md

package info (click to toggle)
python-confluent-kafka 2.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,232 kB
  • sloc: python: 36,571; ansic: 9,717; sh: 1,519; makefile: 198
file content (328 lines) | stat: -rw-r--r-- 14,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Python Client Examples for Apache Kafka

The scripts in this directory provide various examples of using the Confluent Python client for Kafka. While these examples work with any Kafka deployment, they're optimized for [Confluent Cloud](https://www.confluent.io/confluent-cloud/) and [Confluent Platform](https://www.confluent.io/product/compare/) which provide additional features, security, and enterprise support.

**Why These Examples Use `confluent-kafka-python`:** Unlike the basic Apache Kafka Python client (`kafka-python`), this client provides production-ready performance via `librdkafka`, built-in Schema Registry integration, AsyncIO support, and enterprise features like transactions and exactly-once semantics.

## Basic Producer/Consumer Examples

- [producer.py](producer.py): Read lines from stdin and send them to a Kafka topic.
- [consumer.py](consumer.py): Read messages from a Kafka topic.

## AsyncIO Examples

- [asyncio_example.py](asyncio_example.py): Experimental comprehensive AsyncIO example demonstrating both AIOProducer and AIOConsumer with transactional operations, batched async produce, proper event loop integration, signal handling, and async callback patterns.
- [asyncio_avro_producer.py](asyncio_avro_producer.py): Minimal AsyncIO Avro producer using `AsyncSchemaRegistryClient` and `AsyncAvroSerializer` (supports Confluent Cloud using `--sr-api-key`/`--sr-api-secret`).

**Architecture:** For implementation details and component design, see the [AIOProducer Architecture Overview](../aio_producer_simple_diagram.md).

### Web Framework Integration

The AsyncIO producer works seamlessly with popular Python web frameworks:

**FastAPI/Starlette:**

```python
from fastapi import FastAPI
from confluent_kafka.experimental.aio import AIOProducer

app = FastAPI()
producer = None

@app.on_event("startup")
async def startup():
    global producer
    producer = AIOProducer({"bootstrap.servers": "localhost:9092"})

@app.post("/events")
async def create_event(data: dict):
    delivery_future = await producer.produce("events", value=str(data))
    message = await delivery_future
    return {"offset": message.offset()}
```

**aiohttp:**

```python
from aiohttp import web
from confluent_kafka.experimental.aio import AIOProducer

async def init_app():
    app = web.Application()
    app['producer'] = AIOProducer({"bootstrap.servers": "localhost:9092"})
    return app

async def handle_event(request):
    producer = request.app['producer']
    delivery_future = await producer.produce("events", value="data")
    message = await delivery_future
    return web.json_response({"offset": message.offset()})
```

For more details, see [Integrating Apache Kafka With Python Asyncio Web Applications](https://www.confluent.io/blog/kafka-python-asyncio-integration/).

### AsyncIO with Schema Registry

The AsyncIO producer and consumer work seamlessly with async Schema Registry serializers:

```python
from confluent_kafka.experimental.aio import AIOProducer
from confluent_kafka.schema_registry import AsyncSchemaRegistryClient
from confluent_kafka.schema_registry._async.avro import AsyncAvroSerializer

async def setup_async_avro_producer():
    schema_registry_client = AsyncSchemaRegistryClient({"url": "http://localhost:8081"})

    avro_serializer = await AsyncAvroSerializer(
        schema_registry_client=schema_registry_client,
        schema_str=user_schema
    )

    producer = AIOProducer({"bootstrap.servers": "localhost:9092"})

    # Serialize and produce
    serialized_data = await avro_serializer(user_data, SerializationContext("users", MessageField.VALUE))
    delivery_future = await producer.produce("users", value=serialized_data)
    message = await delivery_future
```

#### Available Async Serializers

- `AsyncAvroSerializer` / `AsyncAvroDeserializer`
- `AsyncJSONSerializer` / `AsyncJSONDeserializer`
- `AsyncProtobufSerializer` / `AsyncProtobufDeserializer`

Note: Async deserialization follows the same pattern; use the corresponding `Async*Deserializer` with `AIOConsumer`.

#### Import paths

```python
from confluent_kafka.schema_registry._async.avro import AsyncAvroSerializer, AsyncAvroDeserializer
from confluent_kafka.schema_registry._async.json_schema import AsyncJSONSerializer, AsyncJSONDeserializer
from confluent_kafka.schema_registry._async.protobuf import AsyncProtobufSerializer, AsyncProtobufDeserializer
```

**API Consistency:** The async Schema Registry client and serializers maintain 100% interface parity with their synchronous counterparts. All configuration options, method signatures, and behaviors are identical - just add `await` and use the `Async` prefixed classes.

For Client-Side Field Level Encryption (CSFLE) with Data Contract rules, see the encryption examples:

- `avro_producer_encryption.py`
- `json_producer_encryption.py`
- `protobuf_producer_encryption.py`

## Transactional Examples

- [eos_transactions.py](eos_transactions.py): Transactional producer with exactly once semantics (EOS).

## Schema Registry & Serialization Examples

This client provides serializers for Avro, JSON Schema, and Protobuf that integrate with Schema Registry on both [Confluent Platform](https://docs.confluent.io/platform/current/schema-registry/index.html) and [Confluent Cloud](https://docs.confluent.io/cloud/current/sr/index.html). Both synchronous and asynchronous versions are available.

### Configuration for Schema Registry

```python
# For Confluent Platform (local)
schema_registry_conf = {'url': 'http://localhost:8081'}

# For Confluent Cloud
# schema_registry_conf = {
#     'url': 'https://<ccloud-schema-registry-url>',
#     'basic.auth.user.info': '<sr-api-key>:<sr-api-secret>'
# }
```

Notes (Confluent Cloud): Find the Schema Registry URL and create an SR API key/secret
in the Confluent Cloud Console (Cluster -> Schema Registry). Reference:
[Confluent Cloud Schema Registry docs](https://docs.confluent.io/cloud/current/sr/index.html)

**Note for Confluent Cloud Users**:

- **Automatic Zone Detection**: When connected to a Confluent Cloud cluster, the producer automatically prioritizes brokers in the same availability zone to reduce latency. No extra configuration is required.
- **Simplified Configuration Profiles**: You can use predefined configuration profiles optimized for different workloads (for example, high performance). These can be selected in the Confluent Cloud Console and are used by the client upon connection. You can still override specific settings in your client configuration.

### Synchronous Usage

Use synchronous serializers (`AvroSerializer`, `JSONSerializer`, `ProtobufSerializer`) directly in the `Producer` configuration. The serializer handles schema registration and caching automatically.

```python
# From examples/avro_producer.py
schema_registry_conf = {'url': 'http://localhost:8081'}
# For Confluent Cloud you can pass `--sr-api-key` and `--sr-api-secret` to the script.
schema_registry_client = SchemaRegistryClient(schema_registry_conf)

avro_serializer = AvroSerializer(schema_registry_client,
                                 user_schema,
                                 lambda user, ctx: user.to_dict())

producer_conf = {
    'bootstrap.servers': 'localhost:9092',
    'key.serializer': StringSerializer('utf_8'),
    'value.serializer': avro_serializer
}

producer = Producer(producer_conf)
```

### Asynchronous usage (Experimental AsyncIO)

Use async serializers with `AIOProducer` and `AIOConsumer`. Note that you must
instantiate the serializer and then call it to serialize the data *before*
producing.

```python
# From examples/README.md
from confluent_kafka.experimental.aio import AIOProducer
from confluent_kafka.schema_registry import AsyncSchemaRegistryClient
from confluent_kafka.schema_registry._async.avro import AsyncAvroSerializer

async def setup_async_avro_producer():
    # Use the appropriate configuration from the section above
    schema_registry_conf = {"url": "http://localhost:8081"}
    schema_registry_client = AsyncSchemaRegistryClient(schema_registry_conf)

    avro_serializer = await AsyncAvroSerializer(
        schema_registry_client=schema_registry_client,
        schema_str=user_schema
    )

    producer = AIOProducer({"bootstrap.servers": "localhost:9092"})

    # Serialize and produce
    serialized_data = await avro_serializer(user_data, SerializationContext("users", MessageField.VALUE))
    delivery_future = await producer.produce("users", value=serialized_data)
    message = await delivery_future
```

#### Available Async Serializers

- `AsyncAvroSerializer` / `AsyncAvroDeserializer`
- `AsyncJSONSerializer` / `AsyncJSONDeserializer`
- `AsyncProtobufSerializer` / `AsyncProtobufDeserializer`

Note: Async deserialization follows the same pattern; use the corresponding `Async*Deserializer` with `AIOConsumer`.

#### Import paths

```python
from confluent_kafka.schema_registry._async.avro import AsyncAvroSerializer, AsyncAvroDeserializer
from confluent_kafka.schema_registry._async.json_schema import AsyncJSONSerializer, AsyncJSONDeserializer
from confluent_kafka.schema_registry._async.protobuf import AsyncProtobufSerializer, AsyncProtobufDeserializer
```

**API Consistency:** The async Schema Registry client and serializers maintain 100% interface parity with their synchronous counterparts. All configuration options, method signatures, and behaviors are identical - just add `await` and use the `Async` prefixed classes.

### Example Files by Serialization Format

#### Avro Serialization

- [avro_producer.py](avro_producer.py): Produce Avro serialized data using AvroSerializer.
- [avro_consumer.py](avro_consumer.py): Read Avro serialized data using AvroDeserializer.
- [avro_producer_encryption.py](avro_producer_encryption.py): Produce Avro data with client-side field level encryption (CSFLE).
- [avro_consumer_encryption.py](avro_consumer_encryption.py): Consume Avro data with client-side field level encryption (CSFLE).

#### JSON Serialization

- [json_producer.py](json_producer.py): Produce JSON serialized data using JSONSerializer.
- [json_consumer.py](json_consumer.py): Read JSON serialized data using JSONDeserializer.
- [json_producer_encryption.py](json_producer_encryption.py): Produce JSON data with client-side field level encryption (CSFLE).
- [json_consumer_encryption.py](json_consumer_encryption.py): Consume JSON data with client-side field level encryption (CSFLE).

#### Protobuf Serialization

- [protobuf_producer.py](protobuf_producer.py): Produce Protobuf serialized data using ProtobufSerializer.
- [protobuf_consumer.py](protobuf_consumer.py): Read Protobuf serialized data using ProtobufDeserializer.
- [protobuf_producer_encryption.py](protobuf_producer_encryption.py): Produce Protobuf data with client-side field level encryption (CSFLE).
- [protobuf_consumer_encryption.py](protobuf_consumer_encryption.py): Consume Protobuf data with client-side field level encryption (CSFLE).

## Authentication Examples

- [sasl_producer.py](sasl_producer.py): Demonstrates SASL Authentication.
- [oauth_producer.py](oauth_producer.py): Demonstrates OAuth Authentication (client credentials).
- [oauth_oidc_ccloud_producer.py](oauth_oidc_ccloud_producer.py): Demonstrates OAuth OIDC authentication with Confluent Cloud.
- [oauth_oidc_ccloud_azure_imds_producer.py](oauth_oidc_ccloud_azure_imds_producer.py): Demonstrates OAuth/OIDC Authentication with Confluent Cloud (Azure IMDS metadata based authentication).
- [oauth_schema_registry.py](oauth_schema_registry.py): Demonstrates OAuth authentication with Schema Registry.

## Admin API Examples

- [adminapi.py](adminapi.py): Various AdminClient operations (topics, configs, ACLs).
- [adminapi_logger.py](adminapi_logger.py): AdminClient operations with custom logger configuration.
- [get_watermark_offsets.py](get_watermark_offsets.py): Consumer method for listing committed offsets and consumer lag for group and topics.

## Confluent Cloud Examples

- [confluent_cloud.py](confluent_cloud.py): Produce messages to Confluent Cloud and then read them back again.
- [confluentinc/examples](https://github.com/confluentinc/examples/tree/master/clients/cloud/python): Integration with Confluent Cloud and Confluent Cloud Schema Registry.

### Confluent Cloud Resources

- [Getting Started with Python](https://developer.confluent.io/get-started/python/) - Step-by-step tutorial.
- [Confluent Cloud Console](https://confluent.cloud/) - Sign up and manage clusters.
- [Python Client Configuration for Confluent Cloud](https://docs.confluent.io/cloud/current/client-apps/config-client.html#python-client)
- [Confluent Developer](https://developer.confluent.io/) - Tutorials, guides, and code examples.

## Running the Examples

Most examples require a running Kafka cluster. You can use:

- Local Kafka installation
- Docker Compose (see `docker/` subdirectory)
- [Confluent Cloud](https://confluent.cloud/) - see [Getting Started with Python](https://developer.confluent.io/get-started/python/) guide.

### Basic Usage Pattern

```bash
# Most examples follow this pattern:
python3 <example_name>.py <bootstrap_servers> [additional_args]

# For example:
python3 producer.py localhost:9092
python3 consumer.py localhost:9092
python3 asyncio_example.py localhost:9092 my-topic
```

### Examples with Schema Registry

For Avro, JSON, and Protobuf examples, you'll also need a Schema Registry:

```bash
python3 avro_producer.py localhost:9092 http://localhost:8081
```

### Schema Registry Resources

- [Schema Registry Overview](https://docs.confluent.io/platform/current/schema-registry/index.html)
- [Using Schema Registry with Python](https://docs.confluent.io/kafka-clients/python/current/overview.html#schema-registry)
- [Confluent Cloud Schema Registry](https://docs.confluent.io/cloud/current/sr/index.html)

Check each example's source code for specific command-line arguments and configuration requirements.

## venv setup

It's usually a good idea to install Python dependencies in a virtual environment to avoid
conflicts between projects.

To setup a venv with the latest release version of confluent-kafka and dependencies of all examples installed:

```bash
python3 -m venv venv_examples
source venv_examples/bin/activate
python3 -m pip install confluent_kafka
python3 -m pip  install -r requirements/requirements-examples.txt
```

To setup a venv that uses the current source tree version of confluent_kafka, you
need to have a C compiler and librdkafka installed
([from a package](https://github.com/edenhill/librdkafka#installing-prebuilt-packages), or
[from source](https://github.com/edenhill/librdkafka#build-from-source)). Then:

```bash
python3 -m venv venv_examples
source venv_examples/bin/activate
python3 -m pip install .[examples]
```

When you're finished with the venv:

```bash
deactivate
```