1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
"""
Consumer benchmark metrics collection and validation for Kafka performance testing.
Implements consumer-specific metrics tracking including poll latencies,
consumption rates, per-topic breakdowns, and reliability analysis.
"""
import time
import statistics
from typing import List, Dict, Any
from collections import defaultdict
import psutil
class ConsumerMetricsCollector:
"""Collects comprehensive performance metrics for consumer testing."""
def __init__(self, operation_type: str = "poll", serialization_type: str = None):
# Basic timing
self.start_time = None
self.end_time = None
# Operation type: "poll" or "consume"
self.operation_type = operation_type
self.serialization_type = serialization_type
# Consumer metrics (generic for both poll/consume)
self.messages_consumed = 0
self.operation_attempts = 0 # poll_attempts or consume_attempts
self.operation_timeouts = 0 # poll_timeouts or consume_timeouts
self.operation_errors = 0 # poll_errors or consume_errors
self.operation_latencies = [] # in milliseconds
self.error_messages = []
# Data tracking
self.total_bytes = 0
self.message_sizes = []
# Simple offset tracking for single topic/partition scenarios
self.offsets_consumed = defaultdict(dict) # topic -> partition -> last_offset
# Memory tracking
self.initial_memory_mb = None
self.peak_memory_mb = 0
# Batch efficiency tracking
self.consume_call_count = 0
self.empty_consume_count = 0
# Process object for efficient memory monitoring
self._process = None
def start(self):
"""Start metrics collection"""
self.start_time = time.time()
self.initial_memory_mb = self._get_memory_usage()
def record_api_call(self, operation_latency_ms: float):
"""Record a consumer API call (poll or consume) with its latency"""
self.operation_attempts += 1
self.operation_latencies.append(operation_latency_ms)
def record_timeout(self, topic: str = "unknown"):
"""Record a consumer operation timeout"""
self.operation_timeouts += 1
def record_error(self, error_msg: str, topic: str = "unknown"):
"""Record a consumer error"""
self.operation_errors += 1
self.error_messages.append(error_msg)
def record_processed_message(self, message_size: int, topic: str, partition: int,
offset: int, operation_latency_ms: float):
"""Record a successfully processed message"""
self.messages_consumed += 1
self.total_bytes += message_size
self.message_sizes.append(message_size)
# Track offsets
self.offsets_consumed[topic][partition] = offset
# Update peak memory usage
self._update_memory_usage()
def finalize(self):
"""Finalize metrics collection"""
self.end_time = time.time()
def record_batch_operation(self, messages_returned: int):
"""Record a batch operation (consume() call) and how many messages it returned"""
self.consume_call_count += 1
if messages_returned == 0:
self.empty_consume_count += 1
def _get_memory_usage(self) -> float:
"""Get current memory usage in MB"""
if psutil is None:
return 0.0
try:
if self._process is None:
self._process = psutil.Process()
return self._process.memory_info().rss / (1024 * 1024)
except (psutil.Error, OSError):
return 0.0
def _update_memory_usage(self):
"""Update peak memory usage"""
current_memory = self._get_memory_usage()
if current_memory > self.peak_memory_mb:
self.peak_memory_mb = current_memory
def _percentile(self, data, percentile):
"""Calculate percentile for datasets where quantiles() fails"""
if not data:
return 0
sorted_data = sorted(data)
k = (len(sorted_data) - 1) * percentile / 100.0
f = int(k)
c = k - f
if f == len(sorted_data) - 1:
return sorted_data[f]
return sorted_data[f] * (1 - c) + sorted_data[f + 1] * c
def get_summary(self) -> Dict[str, Any]:
"""Get consumer-specific metrics summary"""
if not self.start_time or not self.end_time:
return {}
duration = self.end_time - self.start_time
# Consumer-specific calculations
consumption_rate = self.messages_consumed / duration if duration > 0 else 0
operation_rate = self.operation_attempts / duration if duration > 0 else 0
# Operation metrics (generic for poll/consume)
operation_error_rate = (self.operation_errors / self.operation_attempts
if self.operation_attempts > 0 else 0)
operation_success_rate = ((self.operation_attempts - self.operation_timeouts -
self.operation_errors) / self.operation_attempts
if self.operation_attempts > 0 else 0)
# Operation latency analysis
if self.operation_latencies:
avg_operation_latency = statistics.mean(self.operation_latencies)
p50_operation_latency = statistics.median(self.operation_latencies)
max_operation_latency = max(self.operation_latencies)
try:
quantiles = statistics.quantiles(self.operation_latencies, n=100)
p95_operation_latency = quantiles[94] # 95th percentile
p99_operation_latency = quantiles[98] # 99th percentile
except statistics.StatisticsError:
p95_operation_latency = self._percentile(self.operation_latencies, 95)
p99_operation_latency = self._percentile(self.operation_latencies, 99)
else:
avg_operation_latency = p50_operation_latency = p95_operation_latency = (
p99_operation_latency) = max_operation_latency = 0
# Message size analysis
if self.message_sizes:
avg_message_size = statistics.mean(self.message_sizes)
min_message_size = min(self.message_sizes)
max_message_size = max(self.message_sizes)
median_message_size = statistics.median(self.message_sizes)
else:
avg_message_size = min_message_size = max_message_size = median_message_size = 0
# Memory usage analysis
memory_growth_mb = 0
if self.initial_memory_mb and self.peak_memory_mb:
memory_growth_mb = self.peak_memory_mb - self.initial_memory_mb
# Batch efficiency analysis
messages_per_consume = self.messages_consumed / self.consume_call_count if self.consume_call_count > 0 else 0
empty_consume_rate = self.empty_consume_count / self.consume_call_count if self.consume_call_count > 0 else 0
# Base summary
base_summary = {
'start_time': self.start_time,
'end_time': self.end_time,
'duration_seconds': duration
}
# Consumer metrics
# Dynamic metric names based on operation type
op_name = self.operation_type # "poll" or "consume"
consumer_metrics = {
# Basic metrics
'messages_consumed': self.messages_consumed,
'consumption_rate_msg_per_sec': consumption_rate,
'data_throughput_mb_per_sec': (self.total_bytes / (1024 * 1024)) / duration if duration > 0 else 0,
'avg_latency_ms': avg_operation_latency,
'p50_latency_ms': p50_operation_latency,
'p95_latency_ms': p95_operation_latency,
'p99_latency_ms': p99_operation_latency,
'max_latency_ms': max_operation_latency,
'error_rate': operation_error_rate,
'success_rate': operation_success_rate,
'total_bytes': self.total_bytes,
# Enhanced metrics
'avg_message_size_bytes': avg_message_size,
'median_message_size_bytes': median_message_size,
'min_message_size_bytes': min_message_size,
'max_message_size_bytes': max_message_size,
'memory_growth_mb': memory_growth_mb,
'peak_memory_mb': self.peak_memory_mb,
# Operation-specific metrics (dynamic naming)
f'{op_name}_attempts': self.operation_attempts,
f'{op_name}_rate_per_sec': operation_rate,
f'{op_name}_timeouts': self.operation_timeouts,
f'{op_name}_errors': self.operation_errors,
f'messages_per_{op_name}': messages_per_consume, # Will be messages_per_poll or messages_per_consume
f'empty_{op_name}_rate': empty_consume_rate, # Will be empty_poll_rate or empty_consume_rate
f'{op_name}_call_count': self.consume_call_count, # Generic call count
f'empty_{op_name}_count': self.empty_consume_count,
}
base_summary.update(consumer_metrics)
return base_summary
class ConsumerMetricsBounds:
"""Performance bounds for consumer metrics validation"""
def __init__(self,
min_consumption_rate: float = 1.0,
max_avg_latency_ms: float = 5000.0,
max_p95_latency_ms: float = 10000.0,
min_success_rate: float = 0.90,
max_error_rate: float = 0.05,
max_memory_growth_mb: float = 600.0,
min_messages_per_consume: float = 0.5,
max_empty_consume_rate: float = 0.5):
self.min_consumption_rate = min_consumption_rate
self.max_avg_latency_ms = max_avg_latency_ms
self.max_p95_latency_ms = max_p95_latency_ms
self.min_success_rate = min_success_rate
self.max_error_rate = max_error_rate
# Enhanced bounds
self.max_memory_growth_mb = max_memory_growth_mb
self.min_messages_per_consume = min_messages_per_consume
self.max_empty_consume_rate = max_empty_consume_rate
def validate_consumer_metrics(metrics: Dict[str, Any], bounds: ConsumerMetricsBounds) -> tuple[bool, List[str]]:
"""Validate consumer metrics against performance bounds"""
violations = []
# Consumption rate check
consumption_rate = metrics.get('consumption_rate_msg_per_sec', 0)
if consumption_rate < bounds.min_consumption_rate:
violations.append(f"Consumption rate {consumption_rate:.2f} msg/s below minimum {bounds.min_consumption_rate}")
# Latency checks
avg_latency = metrics.get('avg_latency_ms', 0)
if avg_latency > bounds.max_avg_latency_ms:
violations.append(f"Average latency {avg_latency:.2f}ms exceeds maximum {bounds.max_avg_latency_ms}ms")
p95_latency = metrics.get('p95_latency_ms', 0)
if p95_latency > bounds.max_p95_latency_ms:
violations.append(f"P95 latency {p95_latency:.2f}ms exceeds maximum {bounds.max_p95_latency_ms}ms")
# Success rate check
success_rate = metrics.get('success_rate', 0)
if success_rate < bounds.min_success_rate:
violations.append(f"Success rate {success_rate:.4f} below minimum {bounds.min_success_rate}")
# Error rate check
error_rate = metrics.get('error_rate', 0)
if error_rate > bounds.max_error_rate:
violations.append(f"Error rate {error_rate:.4f} exceeds maximum {bounds.max_error_rate}")
# Enhanced metrics validation
memory_growth = metrics.get('memory_growth_mb', 0)
if memory_growth > bounds.max_memory_growth_mb:
violations.append(f"Memory growth {memory_growth:.2f}MB exceeds maximum {bounds.max_memory_growth_mb}MB")
# Batch efficiency validation (only for consume operations, poll operations don't have batch metrics)
# Check if this is a consume operation by looking for consume-specific metrics
if 'messages_per_consume' in metrics:
messages_per_consume = metrics.get('messages_per_consume', 0)
if messages_per_consume < bounds.min_messages_per_consume:
violations.append(f"Messages per consume {messages_per_consume:.2f} "
f"below minimum {bounds.min_messages_per_consume}")
empty_consume_rate = metrics.get('empty_consume_rate', 0)
if empty_consume_rate > bounds.max_empty_consume_rate:
violations.append(f"Empty consume rate {empty_consume_rate:.3f} "
f"exceeds maximum {bounds.max_empty_consume_rate}")
# For poll operations, we skip batch efficiency validation since they're single-message operations
is_valid = len(violations) == 0
return is_valid, violations
def print_consumer_metrics_report(metrics: Dict[str, Any], is_valid: bool, violations: List[str],
consumer_type: str = None, batch_size: int = None, serialization_type: str = None):
"""Print simplified consumer metrics report"""
# Detect operation type from metrics keys
op_name = "consume" # default
if any(key.startswith('poll_') for key in metrics.keys()):
op_name = "poll"
# Build informative header
header_parts = ["Consumer Performance Report"]
if consumer_type:
header_parts.append(f"{consumer_type.upper()}")
if op_name == "consume" and batch_size is not None:
header_parts.append(f"{op_name.upper()}(batch_size={batch_size})")
if serialization_type:
header_parts.append(f"serialization_type={serialization_type}")
else:
header_parts.append(f"{op_name.upper()}()")
header = " - ".join(header_parts)
print(f"\n=== {header} ===")
# Basic metrics
print(f"Duration: {metrics.get('duration_seconds', 0):.2f}s")
print(f"Messages consumed: {metrics.get('messages_consumed', 0)}")
print(f"Consumption throughput: {metrics.get('consumption_rate_msg_per_sec', 0):.2f} msg/s")
print(f"Data throughput: {metrics.get('data_throughput_mb_per_sec', 0):.4f} MB/s")
# Latency metrics
print("\nLatency Metrics:")
print(f" Average: {metrics.get('avg_latency_ms', 0):.2f}ms")
print(f" P50: {metrics.get('p50_latency_ms', 0):.2f}ms")
print(f" P95: {metrics.get('p95_latency_ms', 0):.2f}ms")
print(f" P99: {metrics.get('p99_latency_ms', 0):.2f}ms")
print(f" Max: {metrics.get('max_latency_ms', 0):.2f}ms")
# Reliability metrics
print("\nReliability:")
print(f" Error rate: {metrics.get('error_rate', 0):.4f}")
# Message size analysis
print("\nMessage Size Analysis:")
print(f" Average: {metrics.get('avg_message_size_bytes', 0):.0f} bytes")
print(f" Median: {metrics.get('median_message_size_bytes', 0):.0f} bytes")
print(f" Range: {metrics.get('min_message_size_bytes', 0):.0f} - "
f"{metrics.get('max_message_size_bytes', 0):.0f} bytes")
# Memory usage (if available)
if metrics.get('peak_memory_mb', 0) > 0:
print("\nMemory Usage:")
print(f" Peak: {metrics.get('peak_memory_mb', 0):.2f}MB")
print(f" Growth: {metrics.get('memory_growth_mb', 0):.2f}MB")
# Batch efficiency (only for consume operations, not poll)
# Try to detect operation type from metric keys
op_name = "consume" # default
if any(key.startswith('poll_') for key in metrics.keys()):
op_name = "poll"
# Only show efficiency metrics for batch operations (consume), not single-message operations (poll)
if op_name == "consume":
print(f"\n{op_name.title()} Efficiency:")
print(f" Messages per {op_name}(): {metrics.get(f'messages_per_{op_name}', 0):.2f}")
print(f" Empty {op_name} rate: {metrics.get(f'empty_{op_name}_rate', 0):.3f}")
print(f" Total {op_name}() calls: {metrics.get(f'{op_name}_call_count', 0)}")
# Validation
print("\nValidation:")
if is_valid:
print(" All performance bounds satisfied")
else:
print(" Performance bounds violations:")
for violation in violations:
print(f" - {violation}")
print("=" * 50)
|