File: consumer_benchmark_metrics.py

package info (click to toggle)
python-confluent-kafka 2.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,232 kB
  • sloc: python: 36,571; ansic: 9,717; sh: 1,519; makefile: 198
file content (373 lines) | stat: -rw-r--r-- 16,128 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
"""
Consumer benchmark metrics collection and validation for Kafka performance testing.

Implements consumer-specific metrics tracking including poll latencies,
consumption rates, per-topic breakdowns, and reliability analysis.
"""
import time
import statistics
from typing import List, Dict, Any
from collections import defaultdict
import psutil


class ConsumerMetricsCollector:
    """Collects comprehensive performance metrics for consumer testing."""

    def __init__(self, operation_type: str = "poll", serialization_type: str = None):
        # Basic timing
        self.start_time = None
        self.end_time = None

        # Operation type: "poll" or "consume"
        self.operation_type = operation_type
        self.serialization_type = serialization_type

        # Consumer metrics (generic for both poll/consume)
        self.messages_consumed = 0
        self.operation_attempts = 0  # poll_attempts or consume_attempts
        self.operation_timeouts = 0  # poll_timeouts or consume_timeouts
        self.operation_errors = 0    # poll_errors or consume_errors
        self.operation_latencies = []  # in milliseconds
        self.error_messages = []

        # Data tracking
        self.total_bytes = 0
        self.message_sizes = []

        # Simple offset tracking for single topic/partition scenarios
        self.offsets_consumed = defaultdict(dict)  # topic -> partition -> last_offset

        # Memory tracking
        self.initial_memory_mb = None
        self.peak_memory_mb = 0

        # Batch efficiency tracking
        self.consume_call_count = 0
        self.empty_consume_count = 0

        # Process object for efficient memory monitoring
        self._process = None

    def start(self):
        """Start metrics collection"""
        self.start_time = time.time()
        self.initial_memory_mb = self._get_memory_usage()

    def record_api_call(self, operation_latency_ms: float):
        """Record a consumer API call (poll or consume) with its latency"""
        self.operation_attempts += 1
        self.operation_latencies.append(operation_latency_ms)

    def record_timeout(self, topic: str = "unknown"):
        """Record a consumer operation timeout"""
        self.operation_timeouts += 1

    def record_error(self, error_msg: str, topic: str = "unknown"):
        """Record a consumer error"""
        self.operation_errors += 1
        self.error_messages.append(error_msg)

    def record_processed_message(self, message_size: int, topic: str, partition: int,
                                 offset: int, operation_latency_ms: float):
        """Record a successfully processed message"""
        self.messages_consumed += 1
        self.total_bytes += message_size
        self.message_sizes.append(message_size)

        # Track offsets
        self.offsets_consumed[topic][partition] = offset

        # Update peak memory usage
        self._update_memory_usage()

    def finalize(self):
        """Finalize metrics collection"""
        self.end_time = time.time()

    def record_batch_operation(self, messages_returned: int):
        """Record a batch operation (consume() call) and how many messages it returned"""
        self.consume_call_count += 1
        if messages_returned == 0:
            self.empty_consume_count += 1

    def _get_memory_usage(self) -> float:
        """Get current memory usage in MB"""
        if psutil is None:
            return 0.0
        try:
            if self._process is None:
                self._process = psutil.Process()
            return self._process.memory_info().rss / (1024 * 1024)
        except (psutil.Error, OSError):
            return 0.0

    def _update_memory_usage(self):
        """Update peak memory usage"""
        current_memory = self._get_memory_usage()
        if current_memory > self.peak_memory_mb:
            self.peak_memory_mb = current_memory

    def _percentile(self, data, percentile):
        """Calculate percentile for datasets where quantiles() fails"""
        if not data:
            return 0
        sorted_data = sorted(data)
        k = (len(sorted_data) - 1) * percentile / 100.0
        f = int(k)
        c = k - f
        if f == len(sorted_data) - 1:
            return sorted_data[f]
        return sorted_data[f] * (1 - c) + sorted_data[f + 1] * c

    def get_summary(self) -> Dict[str, Any]:
        """Get consumer-specific metrics summary"""
        if not self.start_time or not self.end_time:
            return {}

        duration = self.end_time - self.start_time

        # Consumer-specific calculations
        consumption_rate = self.messages_consumed / duration if duration > 0 else 0
        operation_rate = self.operation_attempts / duration if duration > 0 else 0

        # Operation metrics (generic for poll/consume)
        operation_error_rate = (self.operation_errors / self.operation_attempts
                                if self.operation_attempts > 0 else 0)
        operation_success_rate = ((self.operation_attempts - self.operation_timeouts -
                                   self.operation_errors) / self.operation_attempts
                                  if self.operation_attempts > 0 else 0)

        # Operation latency analysis
        if self.operation_latencies:
            avg_operation_latency = statistics.mean(self.operation_latencies)
            p50_operation_latency = statistics.median(self.operation_latencies)
            max_operation_latency = max(self.operation_latencies)

            try:
                quantiles = statistics.quantiles(self.operation_latencies, n=100)
                p95_operation_latency = quantiles[94]  # 95th percentile
                p99_operation_latency = quantiles[98]  # 99th percentile
            except statistics.StatisticsError:
                p95_operation_latency = self._percentile(self.operation_latencies, 95)
                p99_operation_latency = self._percentile(self.operation_latencies, 99)
        else:
            avg_operation_latency = p50_operation_latency = p95_operation_latency = (
                p99_operation_latency) = max_operation_latency = 0

        # Message size analysis
        if self.message_sizes:
            avg_message_size = statistics.mean(self.message_sizes)
            min_message_size = min(self.message_sizes)
            max_message_size = max(self.message_sizes)
            median_message_size = statistics.median(self.message_sizes)
        else:
            avg_message_size = min_message_size = max_message_size = median_message_size = 0

        # Memory usage analysis
        memory_growth_mb = 0
        if self.initial_memory_mb and self.peak_memory_mb:
            memory_growth_mb = self.peak_memory_mb - self.initial_memory_mb

        # Batch efficiency analysis
        messages_per_consume = self.messages_consumed / self.consume_call_count if self.consume_call_count > 0 else 0
        empty_consume_rate = self.empty_consume_count / self.consume_call_count if self.consume_call_count > 0 else 0

        # Base summary
        base_summary = {
            'start_time': self.start_time,
            'end_time': self.end_time,
            'duration_seconds': duration
        }

        # Consumer metrics
        # Dynamic metric names based on operation type
        op_name = self.operation_type  # "poll" or "consume"

        consumer_metrics = {
            # Basic metrics
            'messages_consumed': self.messages_consumed,
            'consumption_rate_msg_per_sec': consumption_rate,
            'data_throughput_mb_per_sec': (self.total_bytes / (1024 * 1024)) / duration if duration > 0 else 0,
            'avg_latency_ms': avg_operation_latency,
            'p50_latency_ms': p50_operation_latency,
            'p95_latency_ms': p95_operation_latency,
            'p99_latency_ms': p99_operation_latency,
            'max_latency_ms': max_operation_latency,
            'error_rate': operation_error_rate,
            'success_rate': operation_success_rate,
            'total_bytes': self.total_bytes,

            # Enhanced metrics
            'avg_message_size_bytes': avg_message_size,
            'median_message_size_bytes': median_message_size,
            'min_message_size_bytes': min_message_size,
            'max_message_size_bytes': max_message_size,
            'memory_growth_mb': memory_growth_mb,
            'peak_memory_mb': self.peak_memory_mb,

            # Operation-specific metrics (dynamic naming)
            f'{op_name}_attempts': self.operation_attempts,
            f'{op_name}_rate_per_sec': operation_rate,
            f'{op_name}_timeouts': self.operation_timeouts,
            f'{op_name}_errors': self.operation_errors,
            f'messages_per_{op_name}': messages_per_consume,  # Will be messages_per_poll or messages_per_consume
            f'empty_{op_name}_rate': empty_consume_rate,  # Will be empty_poll_rate or empty_consume_rate
            f'{op_name}_call_count': self.consume_call_count,  # Generic call count
            f'empty_{op_name}_count': self.empty_consume_count,
        }

        base_summary.update(consumer_metrics)
        return base_summary


class ConsumerMetricsBounds:
    """Performance bounds for consumer metrics validation"""

    def __init__(self,
                 min_consumption_rate: float = 1.0,
                 max_avg_latency_ms: float = 5000.0,
                 max_p95_latency_ms: float = 10000.0,
                 min_success_rate: float = 0.90,
                 max_error_rate: float = 0.05,
                 max_memory_growth_mb: float = 600.0,
                 min_messages_per_consume: float = 0.5,
                 max_empty_consume_rate: float = 0.5):
        self.min_consumption_rate = min_consumption_rate
        self.max_avg_latency_ms = max_avg_latency_ms
        self.max_p95_latency_ms = max_p95_latency_ms
        self.min_success_rate = min_success_rate
        self.max_error_rate = max_error_rate
        # Enhanced bounds
        self.max_memory_growth_mb = max_memory_growth_mb
        self.min_messages_per_consume = min_messages_per_consume
        self.max_empty_consume_rate = max_empty_consume_rate


def validate_consumer_metrics(metrics: Dict[str, Any], bounds: ConsumerMetricsBounds) -> tuple[bool, List[str]]:
    """Validate consumer metrics against performance bounds"""
    violations = []

    # Consumption rate check
    consumption_rate = metrics.get('consumption_rate_msg_per_sec', 0)
    if consumption_rate < bounds.min_consumption_rate:
        violations.append(f"Consumption rate {consumption_rate:.2f} msg/s below minimum {bounds.min_consumption_rate}")

    # Latency checks
    avg_latency = metrics.get('avg_latency_ms', 0)
    if avg_latency > bounds.max_avg_latency_ms:
        violations.append(f"Average latency {avg_latency:.2f}ms exceeds maximum {bounds.max_avg_latency_ms}ms")

    p95_latency = metrics.get('p95_latency_ms', 0)
    if p95_latency > bounds.max_p95_latency_ms:
        violations.append(f"P95 latency {p95_latency:.2f}ms exceeds maximum {bounds.max_p95_latency_ms}ms")

    # Success rate check
    success_rate = metrics.get('success_rate', 0)
    if success_rate < bounds.min_success_rate:
        violations.append(f"Success rate {success_rate:.4f} below minimum {bounds.min_success_rate}")

    # Error rate check
    error_rate = metrics.get('error_rate', 0)
    if error_rate > bounds.max_error_rate:
        violations.append(f"Error rate {error_rate:.4f} exceeds maximum {bounds.max_error_rate}")

    # Enhanced metrics validation
    memory_growth = metrics.get('memory_growth_mb', 0)
    if memory_growth > bounds.max_memory_growth_mb:
        violations.append(f"Memory growth {memory_growth:.2f}MB exceeds maximum {bounds.max_memory_growth_mb}MB")

    # Batch efficiency validation (only for consume operations, poll operations don't have batch metrics)
    # Check if this is a consume operation by looking for consume-specific metrics
    if 'messages_per_consume' in metrics:
        messages_per_consume = metrics.get('messages_per_consume', 0)
        if messages_per_consume < bounds.min_messages_per_consume:
            violations.append(f"Messages per consume {messages_per_consume:.2f} "
                              f"below minimum {bounds.min_messages_per_consume}")

        empty_consume_rate = metrics.get('empty_consume_rate', 0)
        if empty_consume_rate > bounds.max_empty_consume_rate:
            violations.append(f"Empty consume rate {empty_consume_rate:.3f} "
                              f"exceeds maximum {bounds.max_empty_consume_rate}")

    # For poll operations, we skip batch efficiency validation since they're single-message operations
    is_valid = len(violations) == 0
    return is_valid, violations


def print_consumer_metrics_report(metrics: Dict[str, Any], is_valid: bool, violations: List[str],
                                  consumer_type: str = None, batch_size: int = None, serialization_type: str = None):
    """Print simplified consumer metrics report"""
    # Detect operation type from metrics keys
    op_name = "consume"  # default
    if any(key.startswith('poll_') for key in metrics.keys()):
        op_name = "poll"

    # Build informative header
    header_parts = ["Consumer Performance Report"]
    if consumer_type:
        header_parts.append(f"{consumer_type.upper()}")
    if op_name == "consume" and batch_size is not None:
        header_parts.append(f"{op_name.upper()}(batch_size={batch_size})")
    if serialization_type:
        header_parts.append(f"serialization_type={serialization_type}")
    else:
        header_parts.append(f"{op_name.upper()}()")

    header = " - ".join(header_parts)
    print(f"\n=== {header} ===")

    # Basic metrics
    print(f"Duration: {metrics.get('duration_seconds', 0):.2f}s")
    print(f"Messages consumed: {metrics.get('messages_consumed', 0)}")
    print(f"Consumption throughput: {metrics.get('consumption_rate_msg_per_sec', 0):.2f} msg/s")
    print(f"Data throughput: {metrics.get('data_throughput_mb_per_sec', 0):.4f} MB/s")

    # Latency metrics
    print("\nLatency Metrics:")
    print(f"  Average: {metrics.get('avg_latency_ms', 0):.2f}ms")
    print(f"  P50: {metrics.get('p50_latency_ms', 0):.2f}ms")
    print(f"  P95: {metrics.get('p95_latency_ms', 0):.2f}ms")
    print(f"  P99: {metrics.get('p99_latency_ms', 0):.2f}ms")
    print(f"  Max: {metrics.get('max_latency_ms', 0):.2f}ms")

    # Reliability metrics
    print("\nReliability:")
    print(f"  Error rate: {metrics.get('error_rate', 0):.4f}")

    # Message size analysis
    print("\nMessage Size Analysis:")
    print(f"  Average: {metrics.get('avg_message_size_bytes', 0):.0f} bytes")
    print(f"  Median: {metrics.get('median_message_size_bytes', 0):.0f} bytes")
    print(f"  Range: {metrics.get('min_message_size_bytes', 0):.0f} - "
          f"{metrics.get('max_message_size_bytes', 0):.0f} bytes")

    # Memory usage (if available)
    if metrics.get('peak_memory_mb', 0) > 0:
        print("\nMemory Usage:")
        print(f"  Peak: {metrics.get('peak_memory_mb', 0):.2f}MB")
        print(f"  Growth: {metrics.get('memory_growth_mb', 0):.2f}MB")

    # Batch efficiency (only for consume operations, not poll)
    # Try to detect operation type from metric keys
    op_name = "consume"  # default
    if any(key.startswith('poll_') for key in metrics.keys()):
        op_name = "poll"

    # Only show efficiency metrics for batch operations (consume), not single-message operations (poll)
    if op_name == "consume":
        print(f"\n{op_name.title()} Efficiency:")
        print(f"  Messages per {op_name}(): {metrics.get(f'messages_per_{op_name}', 0):.2f}")
        print(f"  Empty {op_name} rate: {metrics.get(f'empty_{op_name}_rate', 0):.3f}")
        print(f"  Total {op_name}() calls: {metrics.get(f'{op_name}_call_count', 0)}")

    # Validation
    print("\nValidation:")
    if is_valid:
        print("  All performance bounds satisfied")
    else:
        print("  Performance bounds violations:")
        for violation in violations:
            print(f"    - {violation}")

    print("=" * 50)