1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2020 Confluent Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pytest
from confluent_kafka import TopicPartition
from confluent_kafka.serialization import (MessageField,
SerializationContext)
from confluent_kafka.schema_registry.avro import (AvroSerializer,
AvroDeserializer)
from confluent_kafka.schema_registry import Schema, SchemaReference
class User(object):
schema_str = """
{
"namespace": "confluent.io.examples.serialization.avro",
"name": "User",
"type": "record",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": "int"},
{"name": "favorite_color", "type": "string"}
]
}
"""
def __init__(self, name, favorite_number, favorite_color):
self.name = name
self.favorite_number = favorite_number
self.favorite_color = favorite_color
def __eq__(self, other):
return all([
self.name == other.name,
self.favorite_number == other.favorite_number,
self.favorite_color == other.favorite_color])
class AwardProperties(object):
schema_str = """
{
"namespace": "confluent.io.examples.serialization.avro",
"name": "AwardProperties",
"type": "record",
"fields": [
{"name": "year", "type": "int"},
{"name": "points", "type": "int"}
]
}
"""
def __init__(self, points, year):
self.points = points
self.year = year
def __eq__(self, other):
return all([
self.points == other.points,
self.year == other.year
])
class Award(object):
schema_str = """
{
"namespace": "confluent.io.examples.serialization.avro",
"name": "Award",
"type": "record",
"fields": [
{"name": "name", "type": "string"},
{"name": "properties", "type": "AwardProperties"}
]
}
"""
def __init__(self, name, properties):
self.name = name
self.properties = properties
def __eq__(self, other):
return all([
self.name == other.name,
self.properties == other.properties
])
class AwardedUser(object):
schema_str = """
{
"namespace": "confluent.io.examples.serialization.avro",
"name": "AwardedUser",
"type": "record",
"fields": [
{"name": "award", "type": "Award"},
{"name": "user", "type": "User"}
]
}
"""
def __init__(self, award, user):
self.award = award
self.user = user
def __eq__(self, other):
return all([
self.award == other.award,
self.user == other.user
])
def _register_avro_schemas_and_build_awarded_user_schema(kafka_cluster):
sr = kafka_cluster.schema_registry()
user = User('Bowie', 47, 'purple')
award_properties = AwardProperties(10, 2023)
award = Award("Best In Show", award_properties)
awarded_user = AwardedUser(award, user)
user_schema_ref = SchemaReference("confluent.io.examples.serialization.avro.User", "user", 1)
award_properties_schema_ref = SchemaReference("confluent.io.examples.serialization.avro.AwardProperties",
"award_properties", 1)
award_schema_ref = SchemaReference("confluent.io.examples.serialization.avro.Award", "award", 1)
sr.register_schema("user", Schema(User.schema_str, 'AVRO'))
sr.register_schema("award_properties", Schema(AwardProperties.schema_str, 'AVRO'))
sr.register_schema("award", Schema(Award.schema_str, 'AVRO', [award_properties_schema_ref]))
references = [user_schema_ref, award_schema_ref]
schema = Schema(AwardedUser.schema_str, 'AVRO', references)
return awarded_user, schema
def _references_test_common(kafka_cluster, awarded_user, serializer_schema, deserializer_schema):
"""
Common (both reader and writer) avro schema reference test.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
"""
topic = kafka_cluster.create_topic_and_wait_propogation("reference-avro")
sr = kafka_cluster.schema_registry()
value_serializer = AvroSerializer(
sr,
serializer_schema,
lambda user, ctx: dict(
award=dict(
name=user.award.name,
properties=dict(year=user.award.properties.year, points=user.award.properties.points)
),
user=dict(
name=user.user.name,
favorite_number=user.user.favorite_number,
favorite_color=user.user.favorite_color
)
)
)
value_deserializer = \
AvroDeserializer(
sr,
deserializer_schema,
lambda user, ctx: AwardedUser(
award=Award(
name=user.get('award').get('name'),
properties=AwardProperties(
year=user.get('award').get('properties').get('year'),
points=user.get('award').get('properties').get('points')
)
),
user=User(
name=user.get('user').get('name'),
favorite_number=user.get('user').get('favorite_number'),
favorite_color=user.get('user').get('favorite_color')
)
)
)
producer = kafka_cluster.producer(value_serializer=value_serializer)
producer.produce(topic, value=awarded_user, partition=0)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
msg = consumer.poll()
awarded_user2 = msg.value()
assert awarded_user2 == awarded_user
@pytest.mark.parametrize("avsc, data, record_type",
[('basic_schema.avsc', {'name': 'abc'}, "record"),
('primitive_string.avsc', u'Jämtland', "string"),
('primitive_bool.avsc', True, "bool"),
('primitive_float.avsc', 32768.2342, "float"),
('primitive_double.avsc', 68.032768, "float")])
def test_avro_record_serialization(kafka_cluster, load_file, avsc, data, record_type):
"""
Tests basic Avro serializer functionality
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): Avro file reader
avsc (str) avsc: Avro schema file
data (object): data to be serialized
"""
topic = kafka_cluster.create_topic_and_wait_propogation("serialization-avro")
sr = kafka_cluster.schema_registry()
schema_str = load_file(avsc)
value_serializer = AvroSerializer(sr, schema_str)
value_deserializer = AvroDeserializer(sr)
producer = kafka_cluster.producer(value_serializer=value_serializer)
producer.produce(topic, value=data, partition=0)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
msg = consumer.poll()
actual = msg.value()
if record_type == 'record':
assert [v == actual[k] for k, v in data.items()]
elif record_type == 'float':
assert data == pytest.approx(actual)
else:
assert actual == data
@pytest.mark.parametrize("avsc, data,record_type",
[('basic_schema.avsc', dict(name='abc'), 'record'),
('primitive_string.avsc', u'Jämtland', 'string'),
('primitive_bool.avsc', True, 'bool'),
('primitive_float.avsc', 768.2340, 'float'),
('primitive_double.avsc', 6.868, 'float')])
def test_delivery_report_serialization(kafka_cluster, load_file, avsc, data, record_type):
"""
Tests basic Avro serializer functionality
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
load_file (callable(str)): Avro file reader
avsc (str) avsc: Avro schema file
data (object): data to be serialized
"""
topic = kafka_cluster.create_topic_and_wait_propogation("serialization-avro-dr")
sr = kafka_cluster.schema_registry()
schema_str = load_file(avsc)
value_serializer = AvroSerializer(sr, schema_str)
value_deserializer = AvroDeserializer(sr)
producer = kafka_cluster.producer(value_serializer=value_serializer)
def assert_cb(err, msg):
actual = value_deserializer(
msg.value(), SerializationContext(topic, MessageField.VALUE, msg.headers()))
if record_type == "record":
assert [v == actual[k] for k, v in data.items()]
elif record_type == 'float':
assert data == pytest.approx(actual)
else:
assert actual == data
producer.produce(topic, value=data, partition=0, on_delivery=assert_cb)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
msg = consumer.poll()
actual = msg.value()
# schema may include default which need not exist in the original
if record_type == 'record':
assert [v == actual[k] for k, v in data.items()]
elif record_type == 'float':
assert data == pytest.approx(actual)
else:
assert actual == data
def test_avro_record_serialization_custom(kafka_cluster):
"""
Tests basic Avro serializer to_dict and from_dict object hook functionality.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
"""
topic = kafka_cluster.create_topic_and_wait_propogation("serialization-avro")
sr = kafka_cluster.schema_registry()
user = User('Bowie', 47, 'purple')
value_serializer = AvroSerializer(
sr,
User.schema_str,
lambda user, ctx:
dict(
name=user.name,
favorite_number=user.favorite_number,
favorite_color=user.favorite_color
)
)
value_deserializer = AvroDeserializer(
sr,
User.schema_str,
lambda user_dict, ctx: User(**user_dict)
)
producer = kafka_cluster.producer(value_serializer=value_serializer)
producer.produce(topic, value=user, partition=0)
producer.flush()
consumer = kafka_cluster.consumer(value_deserializer=value_deserializer)
consumer.assign([TopicPartition(topic, 0)])
msg = consumer.poll()
user2 = msg.value()
assert user2 == user
def test_avro_reference(kafka_cluster):
"""
Tests Avro schema reference with both serializer and deserializer schemas provided.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
"""
awarded_user, schema = _register_avro_schemas_and_build_awarded_user_schema(kafka_cluster)
_references_test_common(kafka_cluster, awarded_user, schema, schema)
def test_avro_reference_deserializer_none(kafka_cluster):
"""
Tests Avro schema reference with serializer schema provided and deserializer schema set to None.
Args:
kafka_cluster (KafkaClusterFixture): cluster fixture
"""
awarded_user, schema = _register_avro_schemas_and_build_awarded_user_schema(kafka_cluster)
_references_test_common(kafka_cluster, awarded_user, schema, None)
|