File: test_core.py

package info (click to toggle)
python-cooler 0.10.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 32,600 kB
  • sloc: python: 11,033; makefile: 173; sh: 31
file content (344 lines) | stat: -rw-r--r-- 10,169 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
from io import BytesIO

import h5py
import numpy as np
import pandas as pd
import pytest
from scipy import sparse

from cooler import core
from cooler.core._rangequery import _comes_before, _contains
from cooler.core._selectors import _IndexingMixin


def make_hdf5_table(mode):
    s = BytesIO()
    f = h5py.File(s, mode)
    h5opts = dict(compression="gzip", compression_opts=6, maxshape=(None,))
    grp = f.create_group("table")
    grp.create_dataset(
        "chrom",
        data=np.array(["chr1", "chr1", "chr1", "chr2", "chr2"], dtype="S"),
        **h5opts,
    )
    grp.create_dataset("start", data=[0, 10, 20, 0, 10], **h5opts)
    grp.create_dataset("end", data=[10, 20, 32, 10, 21], **h5opts)
    grp.create_dataset("value", data=[1.1, 2.0, 3.0, 4.0, 5.0], **h5opts)
    f.flush()
    return f


def test_get():
    f = make_hdf5_table("a")
    out = core.get(f["table"], 0, 3, ["chrom", "value"])
    assert isinstance(out, pd.DataFrame)
    assert len(out.columns) == 2
    assert out["chrom"].astype("U").tolist() == ["chr1", "chr1", "chr1"]
    assert np.allclose(out["value"].values, [1.1, 2.0, 3.0])

    out = core.get(f["table"], 0, 3, "value")
    assert isinstance(out, pd.Series)
    assert np.allclose(out.values, [1.1, 2.0, 3.0])

    out = core.get(f["table"], 0, 3, "value", as_dict=True)
    assert isinstance(out, dict)
    assert np.allclose(out["value"], [1.1, 2.0, 3.0])

    out = core.get(f["table"])
    assert len(out) == 5
    assert len(out.columns) == 4

    out = core.get(f["table"], lo=None)
    assert len(out) == 5
    assert len(out.columns) == 4

    out = core.get(f["table"], lo=3)
    assert len(out) == 2
    assert len(out.columns) == 4


def test_put():
    f = make_hdf5_table("a")

    # append
    df = pd.DataFrame(
        {
            "chrom": ["chr3", "chr3"],
            "start": [0, 20],
            "end": [20, 40],
            "value": [4.0, 5.0],
        }
    )
    core.put(f["table"], df, lo=5)
    f.flush()
    out = core.get(f["table"])
    assert len(out) == 7

    # insert a categorical column
    s = pd.Series(pd.Categorical(out["chrom"], ordered=True), index=out.index)
    s.name = "chrom_enum"
    core.put(f["table"], s)
    assert h5py.check_dtype(enum=f["table/chrom_enum"].dtype)
    out = core.get(f["table"])
    assert len(out.columns) == 5
    assert isinstance(out["chrom_enum"].dtype, pd.CategoricalDtype)
    out = core.get(f["table"], convert_enum=False)
    assert len(out.columns) == 5
    assert pd.api.types.is_integer_dtype(out["chrom_enum"].dtype)

    # don't convert categorical to enum
    s.name = "chrom_string"
    core.put(f["table"], s, store_categories=False)
    out = core.get(f["table"])
    assert len(out.columns) == 6
    assert not isinstance(out["chrom_string"].dtype, pd.CategoricalDtype)

    # scalar input
    core.put(f["table"], {"foo": 42})
    out = core.get(f["table"])
    assert len(out.columns) == 7
    assert (out["foo"] == 42).all()


def test_delete():
    f = make_hdf5_table("a")
    core.delete(f["table"])
    assert len(f["table"].keys()) == 0

    f = make_hdf5_table("a")
    core.delete(f["table"], ["chrom"])
    assert len(f["table"].keys()) == 3

    f = make_hdf5_table("a")
    core.delete(f["table"], "chrom")
    assert len(f["table"].keys()) == 3


def test_region_to_offset_extent(mock_cooler):
    chromID_lookup = pd.Series({"chr1": 0, "chr2": 1})
    binsize = 100

    region = ("chr1", 159, 402)
    first, last = 1, 4
    assert core.region_to_extent(mock_cooler, chromID_lookup, region, binsize) == (
        first,
        last + 1,
    )
    assert core.region_to_extent(mock_cooler, chromID_lookup, region, None) == (
        first,
        last + 1,
    )
    assert core.region_to_offset(mock_cooler, chromID_lookup, region, binsize) == first
    assert core.region_to_offset(mock_cooler, chromID_lookup, region, None) == first

    region = ("chr1", 159, 400)
    first, last = 1, 3
    assert core.region_to_extent(mock_cooler, chromID_lookup, region, binsize) == (
        first,
        last + 1,
    )
    assert core.region_to_extent(mock_cooler, chromID_lookup, region, None) == (
        first,
        last + 1,
    )
    assert core.region_to_offset(mock_cooler, chromID_lookup, region, binsize) == first
    assert core.region_to_offset(mock_cooler, chromID_lookup, region, None) == first


def test_interval_ops():
    assert _comes_before(1, 5, 6, 10)
    assert not _comes_before(6, 10, 1, 5)
    assert _comes_before(1, 5, 6, 10, strict=True)
    assert _comes_before(1, 5, 5, 10, strict=True)
    assert _comes_before(1, 5, 3, 10)
    assert not _comes_before(1, 5, 3, 10, strict=True)

    assert _contains(1, 10, 3, 5)
    assert _contains(1, 10, 3, 5, strict=True)
    assert _contains(1, 10, 3, 10)
    assert not _contains(1, 10, 3, 10, strict=True)
    assert not _contains(1, 5, 6, 10)


def test_indexing_mixin():
    class Impl(_IndexingMixin):
        def __init__(self, shape):
            self._shape = shape

        def __getitem__(self, key):
            s1, s2 = self._unpack_index(key)
            i0, i1 = self._process_slice(s1, self._shape[0])
            j0, j1 = self._process_slice(s2, self._shape[1])
            return i0, i1, j0, j1

    obj = Impl((10, 10))

    # row scalar
    assert obj[5] == (5, 6, 0, 10)
    assert obj[5,] == (5, 6, 0, 10)

    # row slice
    assert obj[:] == (0, 10, 0, 10)
    assert obj[1:5] == (1, 5, 0, 10)
    assert obj[:-2] == (0, 8, 0, 10)
    assert obj[-2:] == (8, 10, 0, 10)

    # slice + scalar
    assert obj[1:5, 3] == (1, 5, 3, 4)
    assert obj[2, 1:5] == (2, 3, 1, 5)
    assert obj[2, 0:-2] == (2, 3, 0, 8)
    assert obj[-2, 0:-2] == (8, 9, 0, 8)

    # row + col scalar query
    assert obj[5, 5] == (5, 6, 5, 6)

    # row + col slices
    assert obj[:, :] == (0, 10, 0, 10)
    assert obj[1:5, :] == (1, 5, 0, 10)
    assert obj[:, 2:3] == (0, 10, 2, 3)
    assert obj[1:5, 2:3] == (1, 5, 2, 3)

    with pytest.raises(IndexError):
        obj[10]

    with pytest.raises(TypeError):
        obj[{}]

    # with pytest.raises(TypeError):
    #     obj[4.5]


def test_selector1d():
    slicer = lambda fields, lo, hi: (lo, hi)  # noqa
    fetcher = lambda x: x  # noqa
    nmax = 50

    s = core.RangeSelector1D(None, slicer, fetcher, nmax)
    assert s[30] == (30, 31)
    assert s[10:20] == (10, 20)
    assert s[:20] == (0, 20)
    assert s[10:] == (10, nmax)
    assert s[:] == (0, nmax)
    assert s[:nmax] == (0, nmax)
    assert s[:-10] == (0, nmax - 10)
    assert s[1:1] == (1, 1)
    with pytest.raises(IndexError):
        s[:, :]
    with pytest.raises(ValueError):
        s[::2]
    # assert_raises(TypeError, lambda : s['blah'])
    assert s.shape == (nmax,)

    # FIXME - questionable behavior
    assert s[30:20] == (30, 20)  # lo > hi
    assert s[nmax + 10 : nmax + 30] == (nmax + 10, nmax + 30)  # lo > nmax
    assert s[10.0] == (10, 11)  # accepting floats
    # assert s[10.1] == (10.1, 11.1)  # not casting
    # assert s[nmax+10] == (nmax+10, nmax+11)

    slicer = lambda fields, lo, hi: pd.DataFrame(  # noqa
        np.zeros((hi - lo, len(fields))), columns=fields
    )
    fetcher = lambda x: list(map(int, x.split(":")))  # noqa
    nmax = 50
    sel = core.RangeSelector1D(["a", "b", "c"], slicer, fetcher, nmax)
    assert sel.columns.tolist() == ["a", "b", "c"]
    assert list(sel.keys()) == ["a", "b", "c"]
    assert isinstance(sel.dtypes, pd.Series)
    assert "a" in sel
    assert len(sel) == 50
    assert len(sel[["a", "b"]].columns) == 2
    assert len(sel[["a"]].columns) == 1
    assert np.all(sel[5] == 0)
    assert np.all(sel[5,] == 0)
    assert len(sel.fetch("5:10")) == 5

    # some things are broken here
    series_view = sel["a"]
    assert len(series_view) == 50
    assert series_view.shape == (50,)
    # series_view.columns ???


def test_selector2d():
    slicer = lambda field, i0, i1, j0, j1: (i0, i1, j0, j1)  # noqa
    fetcher = lambda x: x  # noqa
    nmax = 50

    s = core.RangeSelector2D(None, slicer, fetcher, (nmax, nmax))
    assert s[30] == (30, 31, 0, nmax)
    assert s[10:20, 10:20] == (10, 20, 10, 20)
    assert s[:] == (0, nmax, 0, nmax)
    with pytest.raises(IndexError):
        s[:, :, :]
    with pytest.raises(ValueError):
        s[::2, :]
    assert s.shape == (nmax, nmax)

    slicer = lambda field, i0, i1, j0, j1: (  # noqa
        np.zeros((i1 - i0, j1 - j0))
    )
    fetcher = lambda x, y=None: (0, 10, 0, 10)  # noqa
    nmax = 50
    sel = core.RangeSelector2D("count", slicer, fetcher, (nmax, nmax))
    assert sel.shape == (50, 50)
    assert len(sel) == 50
    assert sel[:10, 5:10].shape == (10, 5)
    assert sel.fetch("0:10", "0:10").shape == (10, 10)


def test_slice_matrix(mock_cooler):
    slices = [
        (0, 10, 0, 10),
        (0, 10, 10, 20),
        (5, 15, 10, 20),
        (10, 20, 5, 15),
        (1, 1, 5, 15),
        (1, 1, 1, 1),
    ]
    for i0, i1, j0, j1 in slices:
        r = sparse.coo_matrix(
            (
                (
                    mock_cooler["pixels/count"],
                    (mock_cooler["pixels/bin1_id"], mock_cooler["pixels/bin2_id"]),
                )
            ),
            (mock_cooler.attrs["nbins"],) * 2,
        )
        r_triu = r.toarray()
        r_fill = r.toarray() + r.toarray().T

        reader = core.CSRReader(
            mock_cooler["pixels"], mock_cooler["indexes"]["bin1_offset"]
        )

        # query of data in storage (upper triangle)
        query = core.DirectRangeQuery2D(
            reader,
            field="count",
            bbox=(i0, i1, j0, j1),
            chunksize=10,
            return_index=True,
        )
        arr_triu = query.to_array()
        assert np.allclose(r_triu[i0:i1, j0:j1], arr_triu)

        # query with filled-in lower triangle
        query = core.FillLowerRangeQuery2D(
            reader,
            field="count",
            bbox=(i0, i1, j0, j1),
            chunksize=10,
            return_index=True,
        )
        arr_fill = query.to_array()
        assert np.allclose(r_fill[i0:i1, j0:j1], arr_fill)


def test_csr_reader():
    pass


def test_query_rect():
    pass