1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
import os.path as op
from io import BytesIO
import h5py
import numpy as np
import pandas as pd
import pytest
from cooler import util
testdir = op.realpath(op.dirname(__file__))
datadir = op.join(testdir, "data")
def test_partition():
p = list(util.partition(0, 9, 2))
assert p == [(0, 2), (2, 4), (4, 6), (6, 8), (8, 9)]
def test_buffered():
a = pd.DataFrame(np.random.random((4, 3)), columns=["a", "b", "c"])
b = pd.DataFrame(np.random.random((3, 3)), columns=["a", "b", "c"])
c = pd.DataFrame(np.random.random((3, 3)), columns=["a", "b", "c"])
it = util.buffered([a, b, c], size=6)
assert len(next(it)) == 7
assert len(next(it)) == 3
def test_rlencode():
s, l, v = util.rlencode([1, 1, 1, 1, 5, 5, 5, 5, 3, 3, 8, 9, 9]) # noqa
assert list(s) == [0, 4, 8, 10, 11]
assert list(l) == [4, 4, 2, 1, 2]
assert list(v) == [1, 5, 3, 8, 9]
s, l, v = util.rlencode([]) # noqa
assert list(s) == []
assert list(l) == []
assert list(v) == []
def test_parse_cooler_uri():
for uri in [
"/foo/bar/baz.mcool::resolutions/1000",
"/foo/bar/baz.mcool::/resolutions/1000",
]:
fp, gp = util.parse_cooler_uri(uri)
assert fp == "/foo/bar/baz.mcool"
assert gp == "/resolutions/1000"
for uri in ["/foo/bar/baz.cool", "/foo/bar/baz.cool::/"]:
fp, gp = util.parse_cooler_uri(uri)
assert fp == "/foo/bar/baz.cool"
assert gp == "/"
for uri in [
"/foo/bar/baz.cool::/a/b::c.cool",
]:
with pytest.raises(ValueError):
util.parse_cooler_uri(uri)
def test_atoi():
assert util.atoi("1,000") == 1000
with pytest.raises(ValueError):
assert util.atoi("1,000.05") # not an integer
def test_parse_region_string():
# UCSC-style names
assert util.parse_region_string("chr21") == ("chr21", None, None)
assert util.parse_region_string("chr21:1000-2000") == ("chr21", 1000, 2000)
assert util.parse_region_string("chr21:1,000-2,000") == ("chr21", 1000, 2000)
# Ensembl style names
assert util.parse_region_string("6") == ("6", None, None)
assert util.parse_region_string("6:1000-2000") == ("6", 1000, 2000)
assert util.parse_region_string("6:1,000-2,000") == ("6", 1000, 2000)
# FASTA style names
assert util.parse_region_string("gb|accession|locus") == (
"gb|accession|locus",
None,
None,
)
assert util.parse_region_string("gb|accession|locus:1000-2000") == (
"gb|accession|locus",
1000,
2000,
)
assert util.parse_region_string("gb|accession|locus:1,000-2,000") == (
"gb|accession|locus",
1000,
2000,
)
# Punctuation in names (aside from :)
assert util.parse_region_string("name-with-hyphens-") == (
"name-with-hyphens-",
None,
None,
)
assert util.parse_region_string("GL000207.1") == ("GL000207.1", None, None)
assert util.parse_region_string("GL000207.1:1000-2000") == (
"GL000207.1",
1000,
2000,
)
# Trailing dash
assert util.parse_region_string("chr21:1000-") == ("chr21", 1000, None)
# Humanized units
assert util.parse_region_string("6:1kb-2kb") == ("6", 1000, 2000)
assert util.parse_region_string("6:1k-2000") == ("6", 1000, 2000)
assert util.parse_region_string("6:1kb-2M") == ("6", 1000, 2000000)
assert util.parse_region_string("6:1Gb-") == ("6", 1000000000, None)
# Bad inputs
for region in [
"chr1:2,000-1,000", # reverse selection
"chr1::1000-2000", # more than one colon
"chr1:1kb-2kDa", # unknown unit kDa
"chr1:1000", # missing end
"chr1:-2000", # missing start
":1000-2000", # missing chromosome name
"chr1:$100-300", # invalid token
]:
with pytest.raises(ValueError):
util.parse_region_string(region)
def test_parse_region():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
assert util.parse_region(("chr1", 0, 10)) == ("chr1", 0, 10)
assert util.parse_region("chr1:0-10") == ("chr1", 0, 10)
assert util.parse_region("chr1:0-", chromsizes) == ("chr1", 0, chromsizes["chr1"])
# Don't accept undefined end unless chromsizes exists
# NOTE: parse_region_string works here
with pytest.raises(ValueError):
util.parse_region("chr1:0-")
# catch end < start in non-string case
with pytest.raises(ValueError):
util.parse_region(("chr1", 10, 0))
# catch errors when chromsizes is given
for region in [
("chr1", 0, 1000),
("chr1", -5, 10),
("DoesNotExist", 0, 10),
"DoesNotExist",
]:
with pytest.raises(ValueError):
util.parse_region(region, chromsizes)
def test_natsort():
chroms_alpha = ["chr1", "chr10", "chr2", "chr3"]
chroms_nat = ["chr1", "chr2", "chr3", "chr10"]
assert util.natsorted(chroms_alpha) == chroms_nat
assert list(util.argnatsort(chroms_alpha)) == [0, 2, 3, 1]
def test_read_chromsizes():
util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
# def test_fetch_chromsizes():
# util.fetch_chromsizes("hg19")
def test_load_fasta():
fa = util.load_fasta(["chr1", "chr2"], op.join(datadir, "toy.fasta"))
assert len(fa["chr1"]) == 32
assert len(fa["chr2"]) == 32
with pytest.raises(ValueError):
util.load_fasta(["chr1", "chr2"])
# s1 = StringIO(">chr1\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")
# s2 = StringIO(">chr2\nTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT")
# fa = util.load_fasta(['chr1', 'chr2'], s1, s2)
# assert len(fa['chr1']) == 32
# assert len(fa['chr2']) == 31
def test_binnify():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
bins = util.binnify(chromsizes, 10)
assert len(bins) == 8
def test_digest():
fa = util.load_fasta(["chr1", "chr2"], op.join(datadir, "toy.fasta"))
bins = util.digest(fa, "HindIII")
assert len(bins) == 2
with pytest.raises(ValueError):
util.digest(fa, "HindMCMXCIX")
def test_get_binsize():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
bins = util.binnify(chromsizes, 10)
assert util.get_binsize(bins) == 10
# variable-sized bins
bins = pd.read_csv(
op.join(datadir, "toy.bins.var.bed"), names=["chrom", "start", "end"], sep="\t"
)
assert util.get_binsize(bins) is None
# ambiguous case: one bin per chromosome with different lengths
bins = pd.DataFrame(
{"chrom": ["chr1", "chr2", "chr3"], "start": [0, 0, 0], "end": [100, 200, 300]}
)
assert util.get_binsize(bins) is None
def test_get_chromsizes():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
bins = util.binnify(chromsizes, 10)
assert np.allclose(util.get_chromsizes(bins), chromsizes)
def test_bedslice():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
bins = util.binnify(chromsizes, 10)
grouped = bins.groupby("chrom", observed=True)
df = util.bedslice(grouped, chromsizes, "chr1:0-12")
assert df["chrom"].tolist() == ["chr1", "chr1"]
assert df["start"].tolist() == [0, 10]
def test_cmd_exists():
util.cmd_exists("ls")
def test_mad():
from scipy.stats import median_abs_deviation
x = np.arange(50)
assert np.isclose(util.mad(x), median_abs_deviation(x, scale=1))
def test_hdf5_contextmanagers():
path = op.join(datadir, "toy.symm.upper.2.cool")
# file path creates managed handle that gets closed on teardown
with util.open_hdf5(path) as f:
pass
assert not f.id
# allow appendable open file to pass through with mode='r'
# might be good to raise a warning
f = h5py.File(path, "r+")
with util.open_hdf5(f, "r"):
pass
assert f.id
f.close()
# open file passes through without getting closed on teardown
f = h5py.File(path, "r")
with util.open_hdf5(f):
pass
assert f.id
# can't change mode on open file
with pytest.raises(ValueError):
with util.open_hdf5(f, "r+"):
pass
# not allowed on open files
for mode in ["w", "w-", "x"]:
with pytest.raises(ValueError):
with util.open_hdf5(f, mode):
pass
# group's parent file gets closed on teardown
with util.closing_hdf5(f["chroms"]):
pass
assert not f.id
# closing works as a standalone object, not only as a contextmanager
f = h5py.File(path, "r")
grp = util.closing_hdf5(f["chroms"])
grp.close()
assert not f.id
def test_hdf5_attrs_to_jsonable_dict():
b = BytesIO()
f = h5py.File(b, "a")
f.attrs["a"] = np.array([1, 2, 3])
f.attrs["b"] = "hello"
f.attrs["c"] = 3
dct = util.attrs_to_jsonable(f.attrs)
assert dct["a"] == [1, 2, 3]
assert dct["b"] == "hello"
assert dct["c"] == 3
def test_check_bins():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
bins = util.binnify(chromsizes, 10)
bins["chrom"] = bins["chrom"].astype(str)
bins = util.check_bins(bins, chromsizes)
assert isinstance(bins["chrom"].dtype, pd.CategoricalDtype)
def test_genome_segmentation():
chromsizes = util.read_chromsizes(op.join(datadir, "toy.chrom.sizes"))
bins = util.binnify(chromsizes, 10)
gs = util.GenomeSegmentation(chromsizes, bins)
df = gs.fetch("chr1")
assert len(df) == 4
df = gs.fetch("chr1:2-30")
assert len(df) == 3
util.balanced_partition(gs, 2, ["chr1"])
def test_dataframe_meta():
df = pd.DataFrame({"a": [1, 2, 3], "b": [4.0, 5.0, 6.0]})
util.infer_meta(df)
# meta2 = util.get_meta(df.columns, df.dtypes)
# assert meta1 == meta2
|