1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
|
import os
import h5py
import numpy as np
import pandas as pd
import simplejson as json
from pandas.api.types import is_integer_dtype
from .core import (
CSRReader,
DirectRangeQuery2D,
FillLowerRangeQuery2D,
RangeSelector1D,
RangeSelector2D,
get,
region_to_extent,
region_to_offset,
)
from .fileops import list_coolers
from .util import closing_hdf5, open_hdf5, parse_cooler_uri, parse_region
__all__ = ["Cooler", "annotate"]
# The 4DN data portal and hic2cool store these weight vectors in divisive form
_4DN_DIVISIVE_WEIGHTS = {"KR", "VC", "VC_SQRT"}
class Cooler:
"""
A convenient interface to a cooler data collection.
Parameters
----------
store : str, :py:class:`h5py.File` or :py:class:`h5py.Group`
Path to a cooler file, URI string, or open handle to the root HDF5
group of a cooler data collection.
root : str, optional [deprecated]
HDF5 Group path to root of cooler group if ``store`` is a file.
This option is deprecated. Instead, use a URI string of the form
:file:`<file_path>::<group_path>`.
kwargs : optional
Options to be passed to :py:class:`h5py.File()` upon every access.
By default, the file is opened with the default driver and mode='r'.
Notes
-----
If ``store`` is a file path, the file will be opened temporarily in
when performing operations. This allows :py:class:`Cooler` objects to be
serialized for multiprocess and distributed computations.
Metadata is accessible as a dictionary through the :py:attr:`info`
property.
Table selectors, created using :py:meth:`chroms`, :py:meth:`bins`, and
:py:meth:`pixels`, perform range queries over table rows,
returning :py:class:`pd.DataFrame` and :py:class:`pd.Series`.
A matrix selector, created using :py:meth:`matrix`, performs 2D matrix
range queries, returning :py:class:`numpy.ndarray` or
:py:class:`scipy.sparse.coo_matrix`.
"""
def __init__(self, store, root=None, **kwargs):
if isinstance(store, str):
if root is None:
self.filename, self.root = parse_cooler_uri(store)
elif h5py.is_hdf5(store):
with open_hdf5(store, **kwargs) as h5:
self.filename = h5.file.filename
self.root = root
else:
raise ValueError("Not a valid path to a Cooler file")
self.uri = self.filename + "::" + self.root
self.store = self.filename
self.open_kws = kwargs
else:
# Assume an open HDF5 handle, ignore open_kws
self.filename = store.file.filename
self.root = store.name
self.uri = self.filename + "::" + self.root
self.store = store.file
self.open_kws = {}
self._refresh()
def _refresh(self):
try:
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
_ct = chroms(grp)
_ct["name"] = _ct["name"].astype(object)
self._chromsizes = _ct.set_index("name")["length"]
self._chromids = dict(zip(_ct["name"], range(len(_ct))))
self._info = info(grp)
mode = self._info.get("storage-mode", "symmetric-upper")
self._is_symm_upper = mode == "symmetric-upper"
except KeyError:
err_msg = f"No cooler found at: {self.store}."
listing = list_coolers(self.store)
if len(listing):
err_msg += (
f" Coolers found in {listing}. "
+ "Use '::' to specify a group path"
)
raise KeyError(err_msg) from None
def _load_dset(self, path):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return grp[path][:]
def _load_attrs(self, path):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return dict(grp[path].attrs)
def open(self, mode="r", **kwargs):
""" Open the HDF5 group containing the Cooler with :py:mod:`h5py`
Functions as a context manager. Any ``open_kws`` passed during
construction are ignored.
Parameters
----------
mode : str, optional [default: 'r']
* ``'r'`` (readonly)
* ``'r+'`` or ``'a'`` (read/write)
Notes
-----
For other parameters, see :py:class:`h5py.File`.
"""
grp = h5py.File(self.filename, mode, **kwargs)[self.root]
return closing_hdf5(grp)
@property
def storage_mode(self):
"""Indicates whether ordinary sparse matrix encoding is used
(``"square"``) or whether a symmetric matrix is encoded by storing only
the upper triangular elements (``"symmetric-upper"``).
"""
return self._info.get("storage-mode", "symmetric-upper")
@property
def binsize(self):
""" Resolution in base pairs if uniform else None """
return self._info["bin-size"]
@property
def chromsizes(self):
""" Ordered mapping of reference sequences to their lengths in bp """
return self._chromsizes
@property
def chromnames(self):
""" List of reference sequence names """
return list(self._chromsizes.index)
def offset(self, region):
""" Bin ID containing the left end of a genomic region
Parameters
----------
region : str or tuple
Genomic range
Returns
-------
int
Examples
--------
>>> c.offset('chr3') # doctest: +SKIP
1311
"""
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return region_to_offset(
grp,
self._chromids,
parse_region(region, self._chromsizes),
self.binsize
)
def extent(self, region):
""" Bin IDs containing the left and right ends of a genomic region
Parameters
----------
region : str or tuple
Genomic range
Returns
-------
2-tuple of ints
Examples
--------
>>> c.extent('chr3') # doctest: +SKIP
(1311, 2131)
"""
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return region_to_extent(
grp,
self._chromids,
parse_region(region, self._chromsizes),
self.binsize
)
@property
def info(self):
""" File information and metadata
Returns
-------
dict
"""
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return info(grp)
@property
def shape(self):
return (self._info["nbins"],) * 2
def chroms(self, **kwargs):
""" Chromosome table selector
Returns
-------
Table selector
"""
def _slice(fields, lo, hi):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return chroms(grp, lo, hi, fields, **kwargs)
return RangeSelector1D(None, _slice, None, self._info["nchroms"])
def bins(self, **kwargs):
""" Bin table selector
Returns
-------
Table selector
"""
def _slice(fields, lo, hi):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return bins(grp, lo, hi, fields, **kwargs)
def _fetch(region):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return region_to_extent(
grp,
self._chromids,
parse_region(region, self._chromsizes),
self.binsize,
)
return RangeSelector1D(None, _slice, _fetch, self._info["nbins"])
def pixels(self, join=False, **kwargs):
""" Pixel table selector
Parameters
----------
join : bool, optional
Whether to expand bin ID columns into chrom, start, and end
columns. Default is ``False``.
Returns
-------
Table selector
"""
def _slice(fields, lo, hi):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return pixels(grp, lo, hi, fields, join, **kwargs)
def _fetch(region):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
i0, i1 = region_to_extent(
grp,
self._chromids,
parse_region(region, self._chromsizes),
self.binsize,
)
lo = grp["indexes"]["bin1_offset"][i0]
hi = grp["indexes"]["bin1_offset"][i1]
return lo, hi
return RangeSelector1D(None, _slice, _fetch, self._info["nnz"])
def matrix(
self,
field=None,
balance=True,
sparse=False,
as_pixels=False,
join=False,
ignore_index=True,
divisive_weights=None,
chunksize=10000000,
):
""" Contact matrix selector
Parameters
----------
field : str, optional
Which column of the pixel table to fill the matrix with. By
default, the 'count' column is used.
balance : bool, optional
Whether to apply pre-calculated matrix balancing weights to the
selection. Default is True and uses a column named 'weight'.
Alternatively, pass the name of the bin table column containing
the desired balancing weights. Set to False to return untransformed
counts.
sparse: bool, optional
Return a scipy.sparse.coo_matrix instead of a dense 2D numpy array.
as_pixels: bool, optional
Return a DataFrame of the corresponding rows from the pixel table
instead of a rectangular sparse matrix. False by default.
join : bool, optional
If requesting pixels, specifies whether to expand the bin ID
columns into (chrom, start, end). Has no effect when requesting a
rectangular matrix. Default is True.
ignore_index : bool, optional
If requesting pixels, don't populate the index column with the
pixel IDs to improve performance. Default is True.
divisive_weights : bool, optional
Force balancing weights to be interpreted as divisive (True) or
multiplicative (False). Weights are always assumed to be
multiplicative by default unless named KR, VC or SQRT_VC, in which
case they are assumed to be divisive by default.
Returns
-------
Matrix selector
Notes
-----
If ``as_pixels=True``, only data explicitly stored in the pixel table
will be returned: if the cooler's storage mode is symmetric-upper,
lower triangular elements will not be generated. If
``as_pixels=False``, those missing non-zero elements will
automatically be filled in.
"""
if balance in _4DN_DIVISIVE_WEIGHTS and divisive_weights is None:
divisive_weights = True
def _slice(field, i0, i1, j0, j1):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
return matrix(
grp,
i0,
i1,
j0,
j1,
field,
balance,
sparse,
as_pixels,
join,
ignore_index,
divisive_weights,
chunksize,
self._is_symm_upper,
)
def _fetch(region, region2=None):
with open_hdf5(self.store, **self.open_kws) as h5:
grp = h5[self.root]
if region2 is None:
region2 = region
region1 = parse_region(region, self._chromsizes)
region2 = parse_region(region2, self._chromsizes)
i0, i1 = region_to_extent(
grp, self._chromids, region1, self.binsize
)
j0, j1 = region_to_extent(
grp, self._chromids, region2, self.binsize
)
return i0, i1, j0, j1
return RangeSelector2D(field, _slice, _fetch, (self._info["nbins"],) * 2)
def __repr__(self):
if isinstance(self.store, str):
filename = os.path.basename(self.store)
container = f"{filename}::{self.root}"
else:
container = repr(self.store)
return f'<Cooler "{container}">'
def info(h5):
"""
File and user metadata dict.
Parameters
----------
h5 : :py:class:`h5py.File` or :py:class:`h5py.Group`
Open handle to cooler file.
Returns
-------
dict
"""
d = {}
for k, v in h5.attrs.items():
if isinstance(v, str):
try:
v = json.loads(v)
except ValueError:
pass
d[k] = v
return d
def chroms(h5, lo=0, hi=None, fields=None, **kwargs):
"""
Table describing the chromosomes/scaffolds/contigs used.
They appear in the same order they occur in the heatmap.
Parameters
----------
h5 : :py:class:`h5py.File` or :py:class:`h5py.Group`
Open handle to cooler file.
lo, hi : int, optional
Range of rows to select from the table.
fields : sequence of str, optional
Subset of columns to select from table.
Returns
-------
:py:class:`DataFrame`
"""
if fields is None:
fields = (
pd.Index(["name", "length"])
.append(pd.Index(h5["chroms"].keys()))
.drop_duplicates()
)
return get(h5["chroms"], lo, hi, fields, **kwargs)
def bins(h5, lo=0, hi=None, fields=None, **kwargs):
"""
Table describing the genomic bins that make up the axes of the heatmap.
Parameters
----------
h5 : :py:class:`h5py.File` or :py:class:`h5py.Group`
Open handle to cooler file.
lo, hi : int, optional
Range of rows to select from the table.
fields : sequence of str, optional
Subset of columns to select from table.
Returns
-------
:py:class:`DataFrame`
"""
if fields is None:
fields = (
pd.Index(["chrom", "start", "end"])
.append(pd.Index(h5["bins"].keys()))
.drop_duplicates()
)
# If convert_enum is not explicitly set to False, chrom IDs will get
# converted to categorical chromosome names, provided the ENUM header
# exists in bins/chrom. Otherwise, they will return as integers.
out = get(h5["bins"], lo, hi, fields, **kwargs)
# Handle the case where the ENUM header doesn't exist but we want to
# convert integer chrom IDs to categorical chromosome names.
if "chrom" in fields:
convert_enum = kwargs.get("convert_enum", True)
if isinstance(fields, str):
chrom_col = out
else:
chrom_col = out["chrom"]
if is_integer_dtype(chrom_col.dtype) and convert_enum:
chromnames = chroms(h5, fields="name")
chrom_col = pd.Categorical.from_codes(chrom_col, chromnames, ordered=True)
if isinstance(fields, str):
out = pd.Series(chrom_col, out.index)
else:
out["chrom"] = chrom_col
return out
def pixels(h5, lo=0, hi=None, fields=None, join=True, **kwargs):
"""
Table describing the nonzero upper triangular pixels of the Hi-C contact
heatmap.
Parameters
----------
h5 : :py:class:`h5py.File` or :py:class:`h5py.Group`
Open handle to cooler file.
lo, hi : int, optional
Range of rows to select from the table.
fields : sequence of str, optional
Subset of columns to select from table.
join : bool, optional
Whether or not to expand bin ID columns to their full bin description
(chrom, start, end). Default is True.
Returns
-------
:py:class:`DataFrame`
"""
if fields is None:
fields = (
pd.Index(["bin1_id", "bin2_id"])
.append(pd.Index(h5["pixels"].keys()))
.drop_duplicates()
)
df = get(h5["pixels"], lo, hi, fields, **kwargs)
if join:
bins = get(h5["bins"], 0, None, ["chrom", "start", "end"], **kwargs)
df = annotate(df, bins, replace=True)
return df
def annotate(pixels, bins, replace=False):
"""
Add bin annotations to a data frame of pixels.
This is done by performing a relational "join" against the bin IDs of a
table that describes properties of the genomic bins. New columns will be
appended on the left of the output data frame.
.. versionchanged:: 0.8.0
The default value of ``replace`` changed to False.
Parameters
----------
pixels : :py:class:`DataFrame`
A data frame containing columns named ``bin1_id`` and/or ``bin2_id``.
If columns ``bin1_id`` and ``bin2_id`` are both present in ``pixels``,
the adjoined columns will be suffixed with '1' and '2' accordingly.
bins : :py:class:`DataFrame` or DataFrame selector
Data structure that contains a full description of the genomic bins of
the contact matrix, where the index corresponds to bin IDs.
replace : bool, optional
Remove the original ``bin1_id`` and ``bin2_id`` columns from the
output. Default is False.
Returns
-------
:py:class:`DataFrame`
"""
columns = pixels.columns
ncols = len(columns)
is_selector = isinstance(bins, RangeSelector1D)
if "bin1_id" in columns:
if len(bins) > len(pixels):
bin1 = pixels["bin1_id"]
lo = bin1.min()
hi = bin1.max()
lo = 0 if np.isnan(lo) else lo
hi = 0 if np.isnan(hi) else hi
if is_selector:
right = bins[lo:hi + bin1.dtype.type(1)] # slicing works like iloc
else:
right = bins.loc[lo:hi]
elif is_selector:
right = bins[:]
else:
right = bins
pixels = pixels.merge(right, how="left", left_on="bin1_id", right_index=True)
if "bin2_id" in columns:
if len(bins) > len(pixels):
bin2 = pixels["bin2_id"]
lo = bin2.min()
hi = bin2.max()
lo = 0 if np.isnan(lo) else lo
hi = 0 if np.isnan(hi) else hi
if is_selector:
right = bins[lo:hi + bin2.dtype.type(1)] # slicing works like iloc
else:
right = bins.loc[lo:hi]
elif is_selector:
right = bins[:]
else:
right = bins
pixels = pixels.merge(
right, how="left", left_on="bin2_id", right_index=True, suffixes=("1", "2")
)
# rearrange columns
pixels = pixels[list(pixels.columns[ncols:]) + list(pixels.columns[:ncols])]
# drop bin IDs
if replace:
cols_to_drop = [col for col in ("bin1_id", "bin2_id") if col in columns]
pixels = pixels.drop(cols_to_drop, axis=1)
return pixels
def matrix(
h5,
i0,
i1,
j0,
j1,
field=None,
balance=True,
sparse=False,
as_pixels=False,
join=True,
ignore_index=True,
divisive_weights=False,
chunksize=10000000,
fill_lower=True,
):
"""
Two-dimensional range query on the Hi-C contact heatmap.
Depending on the options, returns either a 2D NumPy array, a rectangular
sparse ``coo_matrix``, or a data frame of pixels.
Parameters
----------
h5 : :py:class:`h5py.File` or :py:class:`h5py.Group`
Open handle to cooler file.
i0, i1 : int, optional
Bin range along the 0th (row) axis of the heatap.
j0, j1 : int, optional
Bin range along the 1st (col) axis of the heatap.
field : str, optional
Which column of the pixel table to fill the matrix with. By default,
the 'count' column is used.
balance : bool, optional
Whether to apply pre-calculated matrix balancing weights to the
selection. Default is True and uses a column named 'weight'.
Alternatively, pass the name of the bin table column containing the
desired balancing weights. Set to False to return untransformed counts.
sparse: bool, optional
Return a scipy.sparse.coo_matrix instead of a dense 2D numpy array.
as_pixels: bool, optional
Return a DataFrame of the corresponding rows from the pixel table
instead of a rectangular sparse matrix. False by default.
join : bool, optional
If requesting pixels, specifies whether to expand the bin ID columns
into (chrom, start, end). Has no effect when requesting a rectangular
matrix. Default is True.
ignore_index : bool, optional
If requesting pixels, don't populate the index column with the pixel
IDs to improve performance. Default is True.
Returns
-------
ndarray, coo_matrix or DataFrame
Notes
-----
If ``as_pixels=True``, only data explicitly stored in the pixel table
will be returned: if the cooler's storage mode is symmetric-upper,
lower triangular elements will not be generated. If ``as_pixels=False``,
those missing non-zero elements will automatically be filled in.
"""
if field is None:
field = "count"
if isinstance(balance, str):
name = balance
elif balance:
name = "weight"
if balance and name not in h5["bins"]:
raise ValueError(
f"No column 'bins/{name}'"
+ "found. Use ``cooler.balance_cooler`` to "
+ "calculate balancing weights or set balance=False."
)
reader = CSRReader(h5['pixels'], h5['indexes/bin1_offset'][:])
if as_pixels:
# The historical behavior for as_pixels is to return only explicitly stored
# pixels so we ignore the ``fill_lower`` parameter in this case.
engine = DirectRangeQuery2D(
reader, field, (i0, i1, j0, j1), chunksize, return_index=not ignore_index
)
df = engine.to_frame()
if balance:
weights = Cooler(h5).bins()[[name]]
df2 = annotate(df, weights, replace=False)
if divisive_weights:
df2[name + "1"] = 1 / df2[name + "1"]
df2[name + "2"] = 1 / df2[name + "2"]
df["balanced"] = df2[name + "1"] * df2[name + "2"] * df2[field]
if join:
bins = Cooler(h5).bins()[["chrom", "start", "end"]]
df = annotate(df, bins, replace=True)
return df
elif sparse:
if fill_lower:
engine = FillLowerRangeQuery2D(reader, field, (i0, i1, j0, j1), chunksize)
else:
engine = DirectRangeQuery2D(reader, field, (i0, i1, j0, j1), chunksize)
mat = engine.to_sparse_matrix()
if balance:
weights = h5["bins"][name]
bias1 = weights[i0:i1]
bias2 = bias1 if (i0, i1) == (j0, j1) else weights[j0:j1]
if divisive_weights:
bias1 = 1 / bias1
bias2 = 1 / bias2
mat.data = bias1[mat.row] * bias2[mat.col] * mat.data
return mat
else:
if fill_lower:
engine = FillLowerRangeQuery2D(reader, field, (i0, i1, j0, j1), chunksize)
else:
engine = DirectRangeQuery2D(reader, field, (i0, i1, j0, j1), chunksize)
arr = engine.to_array()
if balance:
weights = h5["bins"][name]
bias1 = weights[i0:i1]
bias2 = bias1 if (i0, i1) == (j0, j1) else weights[j0:j1]
if divisive_weights:
bias1 = 1 / bias1
bias2 = 1 / bias2
arr = arr * np.outer(bias1, bias2)
return arr
|