1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
import gzip
import sys
import click
import pandas as pd
from .. import api
from ..core import (
CSRReader,
DirectRangeQuery2D,
FillLowerRangeQuery2D,
region_to_extent,
)
from ..util import parse_region
from . import cli
from ._util import DelimitedTuple
def make_annotator(bins, balanced, join, annotate, one_based_ids, one_based_starts):
def annotator(chunk):
if annotate is not None:
extra_fields = list(annotate)
try:
extra_cols = bins[extra_fields]
except KeyError as e:
print(f"Column not found:\n {e}")
sys.exit(1)
extra = api.annotate(
chunk[["bin1_id", "bin2_id"]], extra_cols, replace=True
)
if balanced:
df = api.annotate(chunk, bins[["weight"]])
chunk["balanced"] = df["weight1"] * df["weight2"] * chunk["count"]
if join:
chunk = api.annotate(chunk, bins[["chrom", "start", "end"]], replace=True)
if annotate is not None:
chunk = pd.concat([chunk, extra], axis=1)
if one_based_ids:
for col in ["bin1_id", "bin2_id"]:
if col in chunk.columns:
chunk[col] += 1
if one_based_starts:
for col in ["start1", "start2"]:
if col in chunk.columns:
chunk[col] += 1
return chunk
return annotator
@cli.command()
@click.argument(
"cool_uri",
metavar="COOL_PATH"
)
@click.option(
"--table", "-t",
help="Which table to dump. Choosing 'chroms' or 'bins' will cause all "
"pixel-related options to be ignored. Note that for coolers stored "
"in symmetric-upper mode, 'pixels' only holds the upper triangle "
"values of the matrix.",
type=click.Choice(["chroms", "bins", "pixels"]),
default="pixels",
show_default=True,
)
@click.option(
"--columns", "-c",
help="Restrict output to a subset of columns, provided as a "
"comma-separated list.",
type=DelimitedTuple(sep=","),
)
@click.option(
"--header", "-H",
help="Print the header of column names as the first row.",
is_flag=True,
default=False,
show_default=True,
)
@click.option(
"--na-rep",
help="Missing data representation. Default is empty ''.",
default=""
)
@click.option(
"--float-format",
help="Format string for floating point numbers (e.g. '.12g', '03.2f').",
default="g",
show_default=True,
)
@click.option(
"--range", "-r",
help="The coordinates of a genomic region shown along the row dimension, "
"in UCSC-style notation. (Example: chr1:10,000,000-11,000,000). "
"If omitted, the entire contact matrix is printed.",
type=str,
)
@click.option(
"--range2", "-r2",
type=str,
help="The coordinates of a genomic region shown along the column dimension. "
"If omitted, the column range is the same as the row range.",
)
@click.option(
"--fill-lower", "-f",
help="For coolers using 'symmetric-upper' storage, populate implicit areas "
"of the genomic query box by generating lower triangle pixels. If not "
"specified, only upper triangle pixels are reported. This option has no "
"effect on coolers stored in 'square' mode.",
is_flag=True,
default=False,
show_default=True,
)
@click.option(
"--balanced/--no-balance", "-b",
help="Apply balancing weights to data. This will print an extra column "
"called `balanced`",
is_flag=True,
default=False,
show_default=True,
)
@click.option(
"--join",
help="Print the full chromosome bin coordinates instead of bin IDs. "
"This will replace the `bin1_id` column with `chrom1`, `start1`, and "
"`end1`, and the `bin2_id` column with `chrom2`, `start2` and `end2`.",
is_flag=True,
default=False,
show_default=True,
)
@click.option(
"--annotate",
help="Join additional columns from the bin table against the pixels. "
"Provide a comma separated list of column names (no spaces). "
"The merged columns will be suffixed by '1' and '2' accordingly.",
type=DelimitedTuple(sep=","),
)
@click.option(
"--one-based-ids",
help="Print bin IDs as one-based rather than zero-based.",
is_flag=True,
default=False,
)
@click.option(
"--one-based-starts",
help="Print start coordinates as one-based rather than zero-based.",
is_flag=True,
default=False,
)
@click.option(
"--chunksize", "-k",
help="Sets the number of pixel records loaded from disk at one time. "
"Can affect the performance of joins on high resolution datasets. ",
type=int,
default=1_000_000,
show_default=True,
)
@click.option(
"--out", "-o",
help="Output text file If .gz extension is detected, file is written "
"using zlib. Default behavior is to stream to stdout.",
)
def dump(
cool_uri,
table,
columns,
header,
na_rep,
float_format,
range,
range2,
fill_lower,
balanced,
join,
annotate,
one_based_ids,
one_based_starts,
chunksize,
out,
):
"""
Dump a cooler's data to a text stream.
COOL_PATH : Path to COOL file or cooler URI.
"""
clr = api.Cooler(cool_uri)
# Choose the output stream
if out is None or out == "-":
f = sys.stdout
elif out.endswith(".gz"):
f = gzip.open(out, "wt")
else:
f = open(out, "w")
# Choose the source table
if table == "chroms":
selector = clr.chroms()
if columns is not None:
selector = selector[list(columns)]
chunks = (selector[:],)
elif table == "bins":
selector = clr.bins()
if columns is not None:
selector = selector[list(columns)]
chunks = (selector[:],)
else: # Pixel table
# Load all the bins
bins = clr.bins()[:]
n_bins = len(bins)
if chunksize is None:
chunksize = len(bins)
if balanced and "weight" not in bins.columns:
print("Balancing weights not found", file=sys.stderr)
sys.exit(1)
h5 = clr.open("r")
reader = CSRReader(h5['pixels'], h5['indexes/bin1_offset'][:])
field = "count"
if range:
# User-specified bbox provided
i0, i1 = region_to_extent(
h5,
clr._chromids,
parse_region(range, clr.chromsizes),
binsize=clr.binsize
)
if range2 is not None:
j0, j1 = region_to_extent(
h5,
clr._chromids,
parse_region(range2, clr.chromsizes),
binsize=clr.binsize,
)
else:
j0, j1 = i0, i1
bbox = (i0, i1, j0, j1)
else:
# Dump everything
bbox = (0, n_bins, 0, n_bins)
if fill_lower and clr.storage_mode == "symmetric-upper":
engine = FillLowerRangeQuery2D(reader, field, bbox, chunksize)
else:
engine = DirectRangeQuery2D(reader, field, bbox, chunksize)
chunks = (
pd.DataFrame(
dct, columns=["bin1_id", "bin2_id", field],
) for dct in engine
)
if balanced or join or annotate:
annotator = make_annotator(
bins, balanced, join, annotate, one_based_ids, one_based_starts
)
chunks = map(annotator, chunks)
if float_format is not None:
float_format = "%" + float_format
is_first_chunk = True
for chunk in chunks:
if is_first_chunk:
if header:
chunk[0:0].to_csv(
f, sep="\t", index=False, header=True, float_format=float_format
)
is_first_chunk = False
chunk.to_csv(
f,
sep="\t",
index=False,
header=False,
float_format=float_format,
na_rep=na_rep,
)
else:
f.flush()
|