1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
|
import os.path as op
import posixpath
import tempfile
import warnings
from datetime import datetime
import h5py
import numpy as np
import pandas as pd
import simplejson as json
from pandas.api.types import is_categorical_dtype
from .._logging import get_logger
from .._version import __format_version__, __format_version_scool__, __version__
from ..core import get, put
from ..util import (
get_binsize,
get_chromsizes,
get_meta,
infer_meta,
parse_cooler_uri,
rlencode,
)
from . import (
BIN1OFFSET_DTYPE,
BIN_DTYPE,
CHROM_DTYPE,
CHROMID_DTYPE,
CHROMOFFSET_DTYPE,
CHROMSIZE_DTYPE,
COORD_DTYPE,
COUNT_DTYPE,
MAGIC,
MAGIC_SCOOL,
PIXEL_DTYPES,
PIXEL_FIELDS,
URL,
)
from ._ingest import validate_pixels
logger = get_logger("cooler.create")
def write_chroms(grp, chroms, h5opts):
"""
Write the chromosome table.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
chroms : DataFrame
Chromosome table containing at least 'chrom' and 'length' columns
h5opts : dict
HDF5 dataset filter options.
"""
n_chroms = len(chroms)
names = np.array(chroms["name"], dtype=CHROM_DTYPE) # auto-adjusts char length
grp.create_dataset(
"name", shape=(n_chroms,), dtype=names.dtype, data=names, **h5opts
)
grp.create_dataset(
"length",
shape=(n_chroms,),
dtype=CHROMSIZE_DTYPE,
data=chroms["length"],
**h5opts
)
# Extra columns
columns = list(chroms.keys())
for col in ["name", "length"]:
columns.remove(col)
if columns:
put(grp, chroms[columns])
def write_bins(grp, bins, chromnames, h5opts, chrom_as_enum=True):
"""
Write the genomic bin table.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
bins : pandas.DataFrame
BED-like data frame with at least three columns: ``chrom``, ``start``,
``end``, sorted by ``chrom`` then ``start``, and forming a complete
genome segmentation. The ``chrom`` column must be sorted according to
the ordering in ``chroms``.
chromnames : sequence of str
Contig names.
h5opts : dict
HDF5 dataset filter options.
"""
n_chroms = len(chromnames)
n_bins = len(bins)
idmap = dict(zip(chromnames, range(n_chroms)))
# Convert chrom names to enum
chrom_ids = [idmap[chrom] for chrom in bins["chrom"]]
if chrom_as_enum:
chrom_dtype = h5py.special_dtype(enum=(CHROMID_DTYPE, idmap))
else:
chrom_dtype = CHROMID_DTYPE
# Store bins
try:
chrom_dset = grp.create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
except ValueError:
# If too many scaffolds for HDF5 enum header,
# try storing chrom IDs as raw int instead
if chrom_as_enum:
chrom_as_enum = False
chrom_dtype = CHROMID_DTYPE
chrom_dset = grp.create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
else:
raise
if not chrom_as_enum:
chrom_dset.attrs["enum_path"] = "/chroms/name"
grp.create_dataset(
"start", shape=(n_bins,), dtype=COORD_DTYPE, data=bins["start"], **h5opts
)
grp.create_dataset(
"end", shape=(n_bins,), dtype=COORD_DTYPE, data=bins["end"], **h5opts
)
# Extra columns
columns = list(bins.keys())
for col in ["chrom", "start", "end"]:
columns.remove(col)
if columns:
put(grp, bins[columns])
def prepare_pixels(grp, n_bins, max_size, columns, dtypes, h5opts):
columns = list(columns)
init_size = min(5 * n_bins, max_size)
grp.create_dataset(
"bin1_id",
dtype=dtypes.get("bin1_id", BIN_DTYPE),
shape=(init_size,),
maxshape=(max_size,),
**h5opts
)
grp.create_dataset(
"bin2_id",
dtype=dtypes.get("bin2_id", BIN_DTYPE),
shape=(init_size,),
maxshape=(max_size,),
**h5opts
)
if "count" in columns:
grp.create_dataset(
"count",
dtype=dtypes.get("count", COUNT_DTYPE),
shape=(init_size,),
maxshape=(max_size,),
**h5opts
)
for col in ["bin1_id", "bin2_id", "count"]:
try:
columns.remove(col)
except ValueError:
pass
if columns:
for col in columns:
grp.create_dataset(
col,
dtype=dtypes.get(col, float),
shape=(init_size,),
maxshape=(max_size,),
**h5opts
)
def write_pixels(filepath, grouppath, columns, iterable, h5opts, lock):
"""
Write the non-zero pixel table.
Parameters
----------
filepath : str
Path to HDF5 output file.
grouppath : str
Qualified path to destination HDF5 group.
columns : sequence
Sequence of column names
iterable : an iterable object
An object that processes and yields binned contacts from some input
source as a stream of chunks. The chunks must be either pandas
DataFrames or mappings of column names to arrays.
h5opts : dict
HDF5 filter options.
lock : multiprocessing.Lock, optional
Optional lock to synchronize concurrent HDF5 file access.
"""
nnz = 0
total = 0
for i, chunk in enumerate(iterable):
if isinstance(chunk, pd.DataFrame):
chunk = {k: v.values for k, v in chunk.items()}
try:
if lock is not None:
lock.acquire()
logger.debug(f"writing chunk {i}")
with h5py.File(filepath, "r+") as fw:
grp = fw[grouppath]
dsets = [grp[col] for col in columns]
n = len(chunk[columns[0]])
for col, dset in zip(columns, dsets):
dset.resize((nnz + n,))
dset[nnz : nnz + n] = chunk[col]
nnz += n
if "count" in chunk:
total += chunk["count"].sum()
fw.flush()
finally:
if lock is not None:
lock.release()
return nnz, total
def index_pixels(grp, n_bins, nnz):
bin1 = grp["bin1_id"]
bin1_offset = np.zeros(n_bins + 1, dtype=BIN1OFFSET_DTYPE)
curr_val = 0
for start, _length, value in zip(*rlencode(bin1, 1000000)):
bin1_offset[curr_val : value + 1] = start
curr_val = value + 1
bin1_offset[curr_val:] = nnz
return bin1_offset
def index_bins(grp, n_chroms, n_bins):
chrom_ids = grp["chrom"]
chrom_offset = np.zeros(n_chroms + 1, dtype=CHROMOFFSET_DTYPE)
curr_val = 0
for start, _length, value in zip(*rlencode(chrom_ids)):
chrom_offset[curr_val : value + 1] = start
curr_val = value + 1
chrom_offset[curr_val:] = n_bins
return chrom_offset
def write_indexes(grp, chrom_offset, bin1_offset, h5opts):
"""
Write the indexes.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
chrom_offset : sequence
Lookup table: chromosome ID -> first row in bin table (bin ID)
corresponding to that chromosome.
bin1_offset : sequence
Lookup table: genomic bin ID -> first row in pixel table (pixel ID)
having that bin on the first axis.
"""
grp.create_dataset(
"chrom_offset",
shape=(len(chrom_offset),),
dtype=CHROMOFFSET_DTYPE,
data=chrom_offset,
**h5opts
)
grp.create_dataset(
"bin1_offset",
shape=(len(bin1_offset),),
dtype=BIN1OFFSET_DTYPE,
data=bin1_offset,
**h5opts
)
def write_info(grp, info, scool=False):
"""
Write the file description and metadata attributes.
Parameters
----------
grp : h5py.Group
Group handle of an open HDF5 file with write permissions.
info : dict
Dictionary, unnested with the possible exception of the ``metadata``
key. ``metadata``, if present, must be JSON-serializable.
Required keys
-------------
nbins : int
number of genomic bins
nnz : int
number of non-zero pixels
"""
assert "nbins" in info
if not scool:
assert "nnz" in info
info.setdefault("genome-assembly", "unknown")
info["metadata"] = json.dumps(info.get("metadata", {}))
info["creation-date"] = datetime.now().isoformat()
info["generated-by"] = "cooler-" + __version__
if scool:
info["format"] = MAGIC_SCOOL
info["format-version"] = __format_version_scool__
else:
info["format"] = MAGIC
info["format-version"] = __format_version__
info["format-url"] = URL
grp.attrs.update(info)
def _rename_chroms(grp, rename_dict, h5opts):
chroms = get(grp["chroms"]).set_index("name")
n_chroms = len(chroms)
new_names = np.array(
chroms.rename(rename_dict).index.values, dtype=CHROM_DTYPE
) # auto-adjusts char length
# Replace chroms/name
del grp["chroms/name"]
grp["chroms"].create_dataset(
"name", shape=(n_chroms,), dtype=new_names.dtype, data=new_names, **h5opts
)
# Replace the bins/chroms enum mapping if applicable
bins = get(grp["bins"])
n_bins = len(bins)
if is_categorical_dtype(bins["chrom"]):
idmap = dict(zip(new_names, range(n_chroms)))
chrom_ids = bins["chrom"].cat.codes
chrom_dtype = h5py.special_dtype(enum=(CHROMID_DTYPE, idmap))
del grp["bins/chrom"]
try:
grp["bins"].create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
except ValueError:
# If HDF5 enum header would be too large,
# try storing chrom IDs as raw int instead
chrom_dtype = CHROMID_DTYPE
grp["bins"].create_dataset(
"chrom", shape=(n_bins,), dtype=chrom_dtype, data=chrom_ids, **h5opts
)
def rename_chroms(clr, rename_dict, h5opts=None):
"""
Substitute existing chromosome/contig names for new ones. They will be
written to the file and the Cooler object will be refreshed.
Parameters
----------
clr : Cooler
Cooler object that can be opened with write permissions.
rename_dict : dict
Dictionary of old -> new chromosome names. Any names omitted from
the dictionary will be kept as is.
h5opts : dict, optional
HDF5 filter options.
"""
h5opts = _set_h5opts(h5opts)
with clr.open("r+") as f:
_rename_chroms(f, rename_dict, h5opts)
clr._refresh()
def _get_dtypes_arg(dtypes, kwargs):
if "dtype" in kwargs:
if dtypes is None:
dtypes = kwargs.pop("dtype")
warnings.warn("Use dtypes= instead of dtype=", FutureWarning)
else:
raise ValueError(
'Received both "dtypes" and "dtype" arguments. '
'Please use "dtypes" to provide a column name -> dtype mapping. '
'"dtype" remains as an alias but is deprecated.'
)
return dtypes
def _set_h5opts(h5opts):
result = {}
if h5opts is not None:
result.update(h5opts)
available_opts = {
"chunks",
"maxshape",
"compression",
"compression_opts",
"scaleoffset",
"shuffle",
"fletcher32",
"fillvalue",
"track_times",
}
for key in result.keys():
if key not in available_opts:
raise ValueError(f"Unknown storage option '{key}'.")
result.setdefault("compression", "gzip")
if result["compression"] == "gzip" and "compression_opts" not in result:
result["compression_opts"] = 6
result.setdefault("shuffle", True)
return result
def create(
cool_uri,
bins,
pixels,
columns=None,
dtypes=None,
metadata=None,
assembly=None,
symmetric_upper=True,
mode=None,
h5opts=None,
boundscheck=True,
triucheck=True,
dupcheck=True,
ensure_sorted=False,
lock=None,
append=False,
append_scool=False,
scool_root_uri=None,
**kwargs
):
"""
Create a new Cooler.
Deprecated parameters
---------------------
chromsizes : Series
Chromsizes are now inferred from ``bins``.
append : bool, optional
Append new Cooler to the file if it exists. If False, an existing file
with the same name will be truncated. Default is False.
Use the ``mode`` argument instead.
dtype : dict, optional
Dictionary mapping column names in the pixel table to dtypes.
Use the ``dtypes`` argument instead.
"""
file_path, group_path = parse_cooler_uri(cool_uri)
if mode is None:
mode = "a" if append else "w"
h5opts = _set_h5opts(h5opts)
if not isinstance(bins, pd.DataFrame):
raise ValueError(
"Second positional argument must be a pandas DataFrame. "
"Note that the `chromsizes` argument is now deprecated: "
"see documentation for `create`."
)
if append_scool and scool_root_uri is None:
raise ValueError(
"If the parameter `append_scool` is set, the parameter `scool_root_uri` must be defined."
)
dtypes = _get_dtypes_arg(dtypes, kwargs)
for col in ["chrom", "start", "end"]:
if col not in bins.columns:
raise ValueError(f"Missing column from bin table: '{col}'.")
# Populate expected pixel column names. Include user-provided value
# columns.
if columns is None:
columns = ["bin1_id", "bin2_id", "count"]
else:
columns = list(columns)
for col in ["bin1_id", "bin2_id"]: # don't include count!
if col not in columns:
columns.insert(0, col)
# Populate dtypes for expected pixel columns, and apply user overrides.
if dtypes is None:
dtypes = dict(PIXEL_DTYPES)
else:
dtypes_ = dict(dtypes)
dtypes = dict(PIXEL_DTYPES)
dtypes.update(dtypes_)
# Get empty "meta" header frame (assigns the undeclared dtypes).
# Any columns from the input not in meta will be ignored.
meta = get_meta(columns, dtypes, default_dtype=float)
# Determine the appropriate iterable
try:
from dask.dataframe import DataFrame as dask_df
except (ImportError, AttributeError): # pragma: no cover
dask_df = ()
if isinstance(pixels, dask_df):
iterable = (x.compute() for x in pixels.to_delayed())
input_columns = infer_meta(pixels).columns
elif isinstance(pixels, pd.DataFrame):
iterable = (pixels,)
input_columns = infer_meta(pixels).columns
elif isinstance(pixels, dict):
iterable = (pixels,)
input_columns = infer_meta([(k, v.dtype) for (k, v) in pixels.items()]).columns
else:
iterable = pixels
input_columns = None
# If possible, ensure all expected columns are available
if input_columns is not None:
for col in columns:
if col not in input_columns:
col_type = "Standard" if col in PIXEL_FIELDS else "User"
raise ValueError(
f"{col_type} column not found in input: '{col}'"
)
# Prepare chroms and bins
bins = bins.copy()
bins["chrom"] = bins["chrom"].astype(object)
chromsizes = get_chromsizes(bins)
try:
chromsizes = chromsizes.items()
except AttributeError:
pass
chromnames, lengths = zip(*chromsizes)
chroms = pd.DataFrame(
{"name": chromnames, "length": lengths}, columns=["name", "length"]
)
binsize = get_binsize(bins)
n_chroms = len(chroms)
n_bins = len(bins)
if not symmetric_upper and triucheck:
warnings.warn(
"Creating a non-symmetric matrix, but `triucheck` was set to "
"True. Changing to False."
)
triucheck = False
# Chain input validation to the end of the pipeline
if boundscheck or triucheck or dupcheck or ensure_sorted:
validator = validate_pixels(
n_bins, boundscheck, triucheck, dupcheck, ensure_sorted
)
iterable = map(validator, iterable)
# Create root group
with h5py.File(file_path, mode) as f:
logger.info(f'Creating cooler at "{file_path}::{group_path}"')
if group_path == "/":
for name in ["chroms", "bins", "pixels", "indexes"]:
if name in f:
del f[name]
else:
try:
f.create_group(group_path)
except ValueError:
del f[group_path]
f.create_group(group_path)
# Write chroms, bins and pixels
if append_scool:
src_path, src_group = parse_cooler_uri(scool_root_uri)
dst_path, dst_group = parse_cooler_uri(cool_uri)
with h5py.File(src_path, "r+") as src, h5py.File(dst_path, "r+") as dst:
dst[dst_group]["chroms"] = src["chroms"]
# hard link to root bins table, but only the three main datasets
dst[dst_group]["bins/chrom"] = src["bins/chrom"]
dst[dst_group]["bins/start"] = src["bins/start"]
dst[dst_group]["bins/end"] = src["bins/end"]
# create per cell the additional columns e.g. 'weight'
# these columns are individual for each cell
columns = list(bins.keys())
for col in ["chrom", "start", "end"]:
columns.remove(col)
if columns:
put(dst[dst_group]['bins'], bins[columns])
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
grp = h5.create_group("pixels")
if symmetric_upper:
max_size = n_bins * (n_bins - 1) // 2 + n_bins
else:
max_size = n_bins * n_bins
prepare_pixels(grp, n_bins, max_size, meta.columns, dict(meta.dtypes), h5opts)
else:
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing chroms")
grp = h5.create_group("chroms")
write_chroms(grp, chroms, h5opts)
logger.info("Writing bins")
grp = h5.create_group("bins")
write_bins(grp, bins, chroms["name"], h5opts)
grp = h5.create_group("pixels")
if symmetric_upper:
max_size = n_bins * (n_bins - 1) // 2 + n_bins
else:
max_size = n_bins * n_bins
prepare_pixels(grp, n_bins, max_size, meta.columns, dict(meta.dtypes), h5opts)
# Multiprocess HDF5 reading is supported only if the same HDF5 file is not
# open in write mode anywhere. To read and write to the same file, pass a
# lock shared with the HDF5 reading processes. `write_pixels` will acquire
# it and open the file for writing for the duration of each write step
# only. After it closes the file and releases the lock, the reading
# processes will have to re-acquire the lock and re-open the file to obtain
# the updated file state for reading.
logger.info("Writing pixels")
target = posixpath.join(group_path, "pixels")
nnz, ncontacts = write_pixels(
file_path, target, meta.columns, iterable, h5opts, lock
)
# Write indexes
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing indexes")
grp = h5.create_group("indexes")
chrom_offset = index_bins(h5["bins"], n_chroms, n_bins)
bin1_offset = index_pixels(h5["pixels"], n_bins, nnz)
write_indexes(grp, chrom_offset, bin1_offset, h5opts)
logger.info("Writing info")
info = {}
info["bin-type"] = "fixed" if binsize is not None else "variable"
info["bin-size"] = binsize if binsize is not None else "null"
info["storage-mode"] = "symmetric-upper" if symmetric_upper else "square"
info["nchroms"] = n_chroms
info["nbins"] = n_bins
info["sum"] = ncontacts
info["nnz"] = nnz
if assembly is not None:
info["genome-assembly"] = assembly
if metadata is not None:
info["metadata"] = metadata
write_info(h5, info)
def create_from_unordered(
cool_uri,
bins,
chunks,
columns=None,
dtypes=None,
mode=None,
mergebuf=20_000_000,
delete_temp=True,
temp_dir=None,
max_merge=200,
**kwargs
):
"""
Create a Cooler in two passes via an external sort mechanism. In the first
pass, a sequence of data chunks are processed and sorted in memory and saved
to temporary Coolers. In the second pass, the temporary Coolers are merged
into the output. This way the individual chunks do not need to be provided
in any particular order.
"""
from ..api import Cooler
from ..reduce import CoolerMerger
# chromsizes = get_chromsizes(bins)
bins = bins.copy()
bins["chrom"] = bins["chrom"].astype(object)
if columns is not None:
columns = [col for col in columns if col not in {"bin1_id", "bin2_id"}]
if temp_dir is None:
temp_dir = op.dirname(parse_cooler_uri(cool_uri)[0])
elif temp_dir == "-":
temp_dir = None # makes tempfile module use the system dir
dtypes = _get_dtypes_arg(dtypes, kwargs)
temp_files = []
# Sort pass
tf = tempfile.NamedTemporaryFile(
suffix=".multi.cool", delete=delete_temp, dir=temp_dir
)
temp_files.append(tf)
uris = []
for i, chunk in enumerate(chunks):
uri = tf.name + "::" + str(i)
uris.append(uri)
logger.info(f"Writing chunk {i}: {uri}")
create(uri, bins, chunk, columns=columns, dtypes=dtypes, mode="a", **kwargs)
# Merge passes
n = len(uris)
if n > max_merge > 0:
# Recursive merge: do the first of two merge passes.
# Divide into ~sqrt(n) merges
edges = np.linspace(0, n, int(np.sqrt(n)), dtype=int)
tf2 = tempfile.NamedTemporaryFile(
suffix=".multi.cool", delete=delete_temp, dir=temp_dir
)
temp_files.append(tf2)
uris2 = []
for lo, hi in zip(edges[:-1], edges[1:]):
chunk_subset = CoolerMerger(
[Cooler(uri) for uri in uris[lo:hi]], mergebuf, columns=columns
)
uri = tf2.name + "::" + f"{lo}-{hi}"
uris2.append(uri)
logger.info(f"Merging chunks {lo}-{hi}: {uri}")
create(
uri,
bins,
chunk_subset,
columns=columns,
dtypes=dtypes,
mode="a",
**kwargs
)
final_uris = uris2
else:
# Do a single merge pass
final_uris = uris
# Do the final merge pass
chunks = CoolerMerger(
[Cooler(uri) for uri in final_uris], mergebuf, columns=columns
)
logger.info(f"Merging into {cool_uri}")
create(cool_uri, bins, chunks, columns=columns, dtypes=dtypes, mode=mode, **kwargs)
del temp_files
def append(cool_uri, table, data, chunked=False, force=False, h5opts=None, lock=None): # pragma: no cover
"""
Append one or more data columns to an existing table.
Parameters
----------
cool_uri : str
Path to Cooler file or URI to Cooler group.
table : str
Name of table (HDF5 group).
data : dict-like
DataFrame, Series or mapping of column names to data. If the input is a
dask DataFrame or Series, the data is written in chunks.
chunked : bool, optional
If True, the values of the data dict are treated as separate chunk
iterators of column data.
force : bool, optional
If True, replace existing columns with the same name as the input.
h5opts : dict, optional
HDF5 dataset filter options to use (compression, shuffling,
checksumming, etc.). Default is to use autochunking and GZIP
compression, level 6.
lock : multiprocessing.Lock, optional
Optional lock to synchronize concurrent HDF5 file access.
"""
h5opts = _set_h5opts(h5opts)
file_path, group_path = parse_cooler_uri(cool_uri)
try:
from dask.dataframe import DataFrame as dask_df
from dask.dataframe import Series as dask_series
except (ImportError, AttributeError):
dask_df = ()
dask_series = ()
if isinstance(data, dask_series):
data = data.to_frame()
try:
names = data.keys()
except AttributeError:
names = data.columns
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
for name in names:
if name in h5[table]:
if not force:
raise ValueError(
f"'{name}' column already exists. "
+ "Use --force option to overwrite."
)
else:
del h5[table][name]
if isinstance(data, dask_df):
# iterate over dataframe chunks
for chunk in data.to_delayed():
i = 0
for chunk in data.to_delayed():
chunk = chunk.compute()
try:
if lock is not None:
lock.acquire()
put(h5[table], chunk, lo=i, h5opts=h5opts)
finally:
if lock is not None:
lock.release()
i += len(chunk)
elif chunked:
# iterate over chunks from each column
for key in data.keys():
i = 0
for chunk in data[key]:
try:
if lock is not None:
lock.acquire()
put(h5[table], {key: chunk}, lo=i, h5opts=h5opts)
finally:
if lock is not None:
lock.release()
i += len(chunk)
else:
# write all the data
try:
if lock is not None:
lock.acquire()
put(h5[table], data, lo=0, h5opts=h5opts)
finally:
if lock is not None:
lock.release()
_DOC_OTHER_PARAMS = """
columns : sequence of str, optional
Customize which value columns from the input pixels to store in the
cooler. Non-standard value columns will be given dtype ``float64``
unless overriden using the ``dtypes`` argument. If ``None``, we only
attempt to store a value column named ``"count"``.
dtypes : dict, optional
Dictionary mapping column names to dtypes. Can be used to override the
default dtypes of ``bin1_id``, ``bin2_id`` or ``count`` or assign
dtypes to custom value columns. Non-standard value columns given in
``dtypes`` must also be provided in the ``columns`` argument or they
will be ignored.
metadata : dict, optional
Experiment metadata to store in the file. Must be JSON compatible.
assembly : str, optional
Name of genome assembly.
ordered : bool, optional [default: False]
If the input chunks of pixels are provided with correct triangularity
and in ascending order of (``bin1_id``, ``bin2_id``), set this to
``True`` to write the cooler in one step.
If ``False`` (default), we create the cooler in two steps using an
external sort mechanism. See Notes for more details.
symmetric_upper : bool, optional [default: True]
If True, sets the file's storage-mode property to ``symmetric-upper``:
use this only if the input data references the upper triangle of a
symmetric matrix! For all other cases, set this option to False.
mode : {'w' , 'a'}, optional [default: 'w']
Write mode for the output file. 'a': if the output file exists, append
the new cooler to it. 'w': if the output file exists, it will be
truncated. Default is 'w'.
Other parameters
----------------
mergebuf : int, optional
Maximum number of records to buffer in memory at any give time during
the merge step.
delete_temp : bool, optional
Whether to delete temporary files when finished.
Useful for debugging. Default is False.
temp_dir : str, optional
Create temporary files in a specified directory instead of the same
directory as the output file. Pass ``-`` to use the system default.
max_merge : int, optional
If merging more than ``max_merge`` chunks, do the merge recursively in
two passes.
h5opts : dict, optional
HDF5 dataset filter options to use (compression, shuffling,
checksumming, etc.). Default is to use autochunking and GZIP
compression, level 6.
lock : multiprocessing.Lock, optional
Optional lock to control concurrent access to the output file.
ensure_sorted : bool, optional
Ensure that each input chunk is properly sorted.
boundscheck : bool, optional
Input validation: Check that all bin IDs lie in the expected range.
dupcheck : bool, optional
Input validation: Check that no duplicate pixels exist within any chunk.
triucheck : bool, optional
Input validation: Check that ``bin1_id`` <= ``bin2_id`` when creating
coolers in symmetric-upper mode.
""".strip()
_DOC_NOTES = """
Notes
-----
If the pixel chunks are provided in the correct order required for the
output to be properly sorted, then the cooler can be created in a single
step by setting ``ordered=True``.
If not, the cooler is created in two steps via an external sort mechanism.
In the first pass, the sequence of pixel chunks are processed and sorted in
memory and saved to temporary coolers. In the second pass, the temporary
coolers are merged into the output file. This way the individual chunks do
not need to be provided in any particular order. When ``ordered=False``,
the following options for the merge step are available: ``mergebuf``,
``delete_temp``, ``temp_dir``, ``max_merge``.
Each chunk of pixels will go through a validation pipeline, which can be
customized with the following options: ``boundscheck``, ``triucheck``,
``dupcheck``, ``ensure_sorted``.
""".strip()
def _format_docstring(**kwargs):
def decorate(func):
func.__doc__ = func.__doc__.format(**kwargs)
return func
return decorate
@_format_docstring(other_parameters=_DOC_OTHER_PARAMS, notes=_DOC_NOTES)
def create_cooler(
cool_uri,
bins,
pixels,
columns=None,
dtypes=None,
metadata=None,
assembly=None,
ordered=False,
symmetric_upper=True,
mode="w",
mergebuf=20_000_000,
delete_temp=True,
temp_dir=None,
max_merge=200,
boundscheck=True,
dupcheck=True,
triucheck=True,
ensure_sorted=False,
h5opts=None,
lock=None,
):
r"""
Create a cooler from bins and pixels at the specified URI.
Because the number of pixels is often very large, the input pixels are
normally provided as an iterable (e.g., an iterator or generator) of
DataFrame **chunks** that fit in memory.
.. versionadded:: 0.8.0
Parameters
----------
cool_uri : str
Path to cooler file or URI string. If the file does not exist,
it will be created.
bins : pandas.DataFrame
Segmentation of the chromosomes into genomic bins as a BED-like
DataFrame with columns ``chrom``, ``start`` and ``end``. May contain
additional columns.
pixels : DataFrame, dictionary, or iterable of either
A table, given as a dataframe or a column-oriented dict, containing
columns labeled ``bin1_id``, ``bin2_id`` and ``count``, sorted by
(``bin1_id``, ``bin2_id``). If additional columns are included in the
pixel table, their names and dtypes must be specified using the
``columns`` and ``dtypes`` arguments. For larger input data, an
**iterable** can be provided that yields the pixel data as a sequence
of chunks. If the input is a dask DataFrame, it will also be processed
one chunk at a time.
{other_parameters}
See also
--------
cooler.create_scool
cooler.create.sanitize_records
cooler.create.sanitize_pixels
{notes}
"""
# dispatch to the approprate creation method
if isinstance(pixels, (pd.DataFrame, dict)):
pixels = pd.DataFrame(pixels).sort_values(["bin1_id", "bin2_id"])
ordered = True
if ordered:
create(
cool_uri,
bins,
pixels,
columns=columns,
dtypes=dtypes,
metadata=metadata,
assembly=assembly,
symmetric_upper=symmetric_upper,
mode=mode,
boundscheck=boundscheck,
dupcheck=dupcheck,
triucheck=triucheck,
ensure_sorted=ensure_sorted,
h5opts=h5opts,
lock=lock,
)
else:
create_from_unordered(
cool_uri,
bins,
pixels,
columns=columns,
dtypes=dtypes,
metadata=metadata,
assembly=assembly,
symmetric_upper=symmetric_upper,
mode=mode,
boundscheck=boundscheck,
dupcheck=dupcheck,
triucheck=triucheck,
ensure_sorted=ensure_sorted,
h5opts=h5opts,
lock=lock,
mergebuf=mergebuf,
delete_temp=delete_temp,
temp_dir=temp_dir,
max_merge=max_merge,
)
@_format_docstring(other_parameters=_DOC_OTHER_PARAMS, notes=_DOC_NOTES)
def create_scool(
cool_uri,
bins,
cell_name_pixels_dict,
columns=None,
dtypes=None,
metadata=None,
assembly=None,
ordered=False,
symmetric_upper=True,
mode="w",
mergebuf=20_000_000,
delete_temp=True,
temp_dir=None,
max_merge=200,
boundscheck=True,
dupcheck=True,
triucheck=True,
ensure_sorted=False,
h5opts=None,
lock=None,
**kwargs
):
r"""
Create a single-cell (scool) file.
For each cell store a cooler matrix under **/cells**, where all matrices
have the same dimensions.
Each cell is a regular cooler data collection, so the input must be a
bin table and pixel table for each cell. The pixel tables are provided as
a dictionary where the key is a unique cell name. The bin tables can be
provided as a dict with the same keys or a single common bin table can be
given.
.. versionadded:: 0.8.9
Parameters
----------
cool_uri : str
Path to scool file or URI string. If the file does not exist,
it will be created.
bins : :class:`pandas.DataFrame` or Dict[str, DataFrame]
A single bin table or dictionary of cell names to bins tables. A bin
table is a dataframe with columns ``chrom``, ``start`` and ``end``.
May contain additional columns.
cell_name_pixels_dict : Dict[str, DataFrame]
Cell name as key and pixel table DataFrame as value.
A table, given as a dataframe or a column-oriented dict, containing
columns labeled ``bin1_id``, ``bin2_id`` and ``count``, sorted by
(``bin1_id``, ``bin2_id``). If additional columns are included in the
pixel table, their names and dtypes must be specified using the
``columns`` and ``dtypes`` arguments. For larger input data, an
**iterable** can be provided that yields the pixel data as a sequence
of chunks. If the input is a dask DataFrame, it will also be processed
one chunk at a time.
{other_parameters}
See also
--------
cooler.create_cooler
cooler.zoomify_cooler
{notes}
"""
file_path, group_path = parse_cooler_uri(cool_uri)
h5opts = _set_h5opts(h5opts)
if isinstance(bins, pd.DataFrame):
bins_dict = {cell_name: bins for cell_name in cell_name_pixels_dict}
cell_names = sorted(cell_name_pixels_dict)
else:
# Assume bins is a dict of cell name -> dataframe
bins_dict = bins
if len(bins_dict) == 0:
raise ValueError("At least one bin must be given.")
else:
bins = bins_dict[next(iter(bins_dict))][["chrom", "start", "end"]]
# Sort bins_dict and cell_name_pixels_dict to guarantee matching keys
bins_keys = sorted(bins_dict)
cell_names = sorted(cell_name_pixels_dict)
for key_bins, key_pixels in zip(bins_keys, cell_names):
if key_bins != key_pixels:
raise ValueError('Bins and pixel dicts do not have matching keys')
dtypes = _get_dtypes_arg(dtypes, kwargs)
for col in ["chrom", "start", "end"]:
if col not in bins.columns:
raise ValueError(f"Missing column from bin table: '{col}'.")
# Populate dtypes for expected pixel columns, and apply user overrides.
if dtypes is None:
dtypes = dict(PIXEL_DTYPES)
else:
dtypes_ = dict(dtypes)
dtypes = dict(PIXEL_DTYPES)
dtypes.update(dtypes_)
# Determine the appropriate iterable
# try:
# from dask.dataframe import DataFrame as dask_df
# except (ImportError, AttributeError): # pragma: no cover
# dask_df = ()
# Prepare chroms and bins
bins = bins.copy()
bins["chrom"] = bins["chrom"].astype(object)
chromsizes = get_chromsizes(bins)
try:
chromsizes = chromsizes.items()
except AttributeError:
pass
chromnames, lengths = zip(*chromsizes)
chroms = pd.DataFrame(
{"name": chromnames, "length": lengths}, columns=["name", "length"]
)
binsize = get_binsize(bins)
n_chroms = len(chroms)
n_bins = len(bins)
# Create root group
with h5py.File(file_path, mode) as f:
logger.info(f'Creating cooler at "{file_path}::{group_path}"')
if group_path == "/":
for name in ["chroms", "bins"]:
if name in f:
del f[name]
else:
try:
f.create_group(group_path)
except ValueError:
del f[group_path]
f.create_group(group_path)
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing chroms")
grp = h5.create_group("chroms")
write_chroms(grp, chroms, h5opts)
logger.info("Writing bins")
grp = h5.create_group("bins")
write_bins(grp, bins, chroms["name"], h5opts)
with h5py.File(file_path, "r+") as f:
h5 = f[group_path]
logger.info("Writing info")
info = {}
info["bin-type"] = "fixed" if binsize is not None else "variable"
info["bin-size"] = binsize if binsize is not None else "null"
info["nchroms"] = n_chroms
info["ncells"] = len(cell_name_pixels_dict)
info["nbins"] = n_bins
if assembly is not None:
info["genome-assembly"] = assembly
if metadata is not None:
info["metadata"] = metadata
write_info(h5, info, True)
# Append single cells
for key in cell_names:
if '/' in key:
cell_name = key.split('/')[-1]
else:
cell_name = key
create(
cool_uri + '::/cells/' + cell_name,
bins_dict[key],
cell_name_pixels_dict[key],
columns=columns,
dtypes=dtypes,
metadata=metadata,
assembly=assembly,
ordered=ordered,
symmetric_upper=symmetric_upper,
mode='a',
boundscheck=boundscheck,
dupcheck=dupcheck,
triucheck=triucheck,
ensure_sorted=ensure_sorted,
h5opts=h5opts,
lock=lock,
mergebuf=mergebuf,
delete_temp=delete_temp,
temp_dir=temp_dir,
max_merge=max_merge,
append_scool=True,
scool_root_uri=cool_uri
)
|