1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
|
import math
import warnings
from bisect import bisect_right
from collections import OrderedDict, defaultdict
import h5py
import multiprocess as mp
import numpy as np
import pandas as pd
from ._logging import get_logger
from ._version import __format_version_mcool__
from .create import ContactBinner, create
from .parallel import lock
from .util import GenomeSegmentation, parse_cooler_uri
__all__ = ["merge_coolers", "coarsen_cooler", "zoomify_cooler"]
logger = get_logger(__name__)
HIGLASS_TILE_DIM = 256
ZOOMS_4DN = [
1000,
2000,
5000,
10000,
25000,
50000,
100000,
250000,
500000,
1000000,
2500000,
5000000,
10000000,
]
def merge_breakpoints(indexes, maxbuf):
"""
Partition k offset arrays for performing a k-way external merge, such that
no single merge pass loads more than ``maxbuf`` records into memory, with
one exception (see Notes).
Parameters
----------
indexes : sequence of 1D arrays of equal length
These offset-array indexes map non-negative integers to their offset
locations in a corresponding data table
maxbuf : int
Maximum cumulative number of records loaded into memory for a single
merge pass
Returns
-------
breakpoints : 1D array
breakpoint locations to segment all the offset arrays
cum_offset : 1D array
cumulative number of records that will be processed at each breakpoint
Notes
-----
The one exception to the post-condition is if any single increment of the
indexes maps to more than ``maxbuf`` records, these will produce
oversized chunks.
"""
# k = len(indexes)
# the virtual cumulative index if no pixels were merged
cumindex = np.vstack(indexes).sum(axis=0)
cum_start = 0
cum_nnz = cumindex[-1]
# n = len(cumindex)
breakpoints = [0]
cum_offsets = [0]
lo = 0
while True:
# find the next mark
hi = bisect_right(cumindex, min(cum_start + maxbuf, cum_nnz), lo=lo) - 1
if hi == lo:
# number of records to nearest mark exceeds `maxbuf`
# check for oversized chunks afterwards
hi += 1
breakpoints.append(hi)
cum_offsets.append(cumindex[hi])
if cumindex[hi] == cum_nnz:
break
lo = hi
cum_start = cumindex[hi]
breakpoints = np.array(breakpoints)
cum_offsets = np.array(cum_offsets)
return breakpoints, cum_offsets
class CoolerMerger(ContactBinner):
"""
Implementation of cooler merging.
"""
def __init__(self, coolers, maxbuf, columns=None, agg=None):
self.coolers = list(coolers)
self.maxbuf = maxbuf
self.columns = ["count"] if columns is None else columns
self.agg = {col: "sum" for col in self.columns}
if agg is not None:
self.agg.update(agg)
# check compatibility between input coolers
binsize = coolers[0].binsize
if binsize is not None:
if len({c.binsize for c in coolers}) > 1:
raise ValueError("Coolers must have the same resolution")
chromsizes = coolers[0].chromsizes
for i in range(1, len(coolers)):
if not np.all(coolers[i].chromsizes == chromsizes):
raise ValueError("Coolers must have the same chromosomes")
else:
bins = coolers[0].bins()[["chrom", "start", "end"]][:]
for i in range(1, len(coolers)):
bins2 = coolers[i].bins()[["chrom", "start", "end"]][:]
if (len(bins2) != len(bins)) or not np.all(bins2 == bins):
raise ValueError("Coolers must have same bin structure")
def __iter__(self):
indexes = [c._load_dset("indexes/bin1_offset") for c in self.coolers]
breakpoints, cum_offsets = merge_breakpoints(indexes, self.maxbuf)
chunksizes = np.diff(cum_offsets)
if chunksizes.max() > self.maxbuf:
warnings.warn(
f"Some merge passes will use more than {self.maxbuf} pixels"
)
nnzs = [len(c.pixels()) for c in self.coolers]
logger.info(f"nnzs: {nnzs}")
starts = [0] * len(self.coolers)
for bp in breakpoints[1:]:
stops = [index[bp] for index in indexes]
logger.info(f"current: {stops}")
# extract, concat
combined = pd.concat(
[
c.pixels()[start:stop]
for c, start, stop in zip(self.coolers, starts, stops)
if (stop - start) > 0
],
axis=0,
ignore_index=True,
)
# sort and aggregate
df = (
combined.groupby(["bin1_id", "bin2_id"], sort=True)
.aggregate(self.agg)
.reset_index()
)
yield {k: v.values for k, v in df.items()}
starts = stops
def merge_coolers(
output_uri, input_uris, mergebuf, columns=None, dtypes=None, agg=None, **kwargs
):
"""
Merge multiple coolers with identical axes.
The merged cooler is stored at ``output_uri``.
.. versionadded:: 0.8.0
Parameters
----------
output_uri : str
Output cooler file path or URI.
input_uris : list of str
List of input file path or URIs of coolers to combine.
mergebuf : int
Maximum number of pixels processed at a time.
columns : list of str, optional
Specify which pixel value columns to include in the aggregation.
Default is to use all available value columns.
dtypes : dict, optional
Specific dtypes to use for value columns. Default is to propagate
the current dtypes of the value columns.
agg : dict, optional
Functions to use for aggregating each value column. Pass the same kind
of dict accepted by ``pandas.DataFrame.groupby.agg``. Default is to
apply 'sum' to every value column.
kwargs
Passed to ``cooler.create``.
Notes
-----
The default output file mode is 'w'. If appending output to an existing
file, pass `mode='a'`.
See also
--------
cooler.coarsen_cooler
cooler.zoomify_cooler
"""
# TODO: combine metadata from inputs
from .api import Cooler
logger.info("Merging:\n{}".format("\n".join(input_uris)))
clrs = [Cooler(path) for path in input_uris]
is_symm = [clr.storage_mode == "symmetric-upper" for clr in clrs]
if all(is_symm):
symmetric_upper = True
elif not any(is_symm):
symmetric_upper = False
else:
raise ValueError("Cannot merge symmetric and non-symmetric coolers.")
if columns is None:
columns = ["count"]
dtype_map = defaultdict(list)
for clr in clrs:
pixel_dtypes = clr.pixels().dtypes
for col in columns:
if col not in pixel_dtypes:
raise ValueError(
"Pixel value column '{}' not found in "
"input '{}'.".format(col, clr.filename)
)
else:
dtype_map[col].append(pixel_dtypes[col])
if dtypes is None:
dtypes = {}
for col in columns:
if col not in dtypes:
dtypes[col] = np.find_common_type(dtype_map[col], [])
bins = clrs[0].bins()[["chrom", "start", "end"]][:]
assembly = clrs[0].info.get("genome-assembly", None)
iterator = CoolerMerger(clrs, maxbuf=mergebuf, columns=columns, agg=agg)
create(
output_uri,
bins,
iterator,
columns=columns,
dtypes=dtypes,
assembly=assembly,
symmetric_upper=symmetric_upper,
**kwargs
)
def _optimal_prune_partition(edges, maxlen): # pragma: no cover
"""Given an integer interval partition ``edges``, find the coarsened
partition with the longest subintervals such that no new subinterval
created by removing edges exceeds ``maxlen``.
"""
n = len(edges)
if n < 2:
raise ValueError("Partition must have 2 or more edges.")
opt = np.zeros(n, dtype=int)
pred = np.zeros(n, dtype=int)
opt[0] = 0
for i in range(1, n):
# default to immediate predecessor edge
opt[i] = opt[i - 1] + min(maxlen, edges[i] - edges[i - 1])
pred[i] = i - 1
# try earlier predecessors until we exceed maxlen
for k in range(i - 2, -1, -1):
length = edges[i] - edges[k]
if length > maxlen:
break
s = opt[k] + length
if s >= opt[i]:
opt[i] = s
pred[i] = k
# backtrack to trace optimal path
path = np.zeros(n, dtype=int)
i = path[0] = n - 1
j = 1
while i > 0:
i = path[j] = pred[i]
j += 1
path = path[:j][::-1]
return edges[path]
def _greedy_prune_partition(edges, maxlen):
"""Given an integer interval partition ``edges`` from 0..nnz, prune the
edges to make the new subintervals roughly ``maxlen`` in length.
"""
edges = np.asarray(edges)
assert len(edges) >= 2 and edges[0] == 0
cumlen = np.r_[0, np.cumsum(np.diff(edges))]
cuts = [maxlen * i for i in range(0, int(np.ceil(cumlen[-1] / maxlen)))]
cuts.append(cumlen[-1])
idx = np.unique(np.searchsorted(cumlen, cuts))
return edges[idx]
def get_quadtree_depth(chromsizes, base_binsize, bins_per_tile):
"""
Number of zoom levels for a quad-tree tiling of a genomic heatmap.
At the base resolution, we need N tiles, where N is the smallest power of
2 such that the tiles fully cover the 1D data extent. From that starting
point, determine the number of zoom levels required to "coarsen" the map
up to 1 tile.
"""
# length of a base-level tile in bp
tile_length_bp = bins_per_tile * base_binsize
# number of tiles required along 1 dimension at this base resolution
total_bp = sum(chromsizes)
n_tiles = math.ceil(total_bp / tile_length_bp)
# number of aggregation levels required to reach a single tile
n_zoom_levels = int(math.ceil(np.log2(n_tiles)))
return n_zoom_levels
def geomprog(start, mul):
"""
Generate a geometric progression of integers.
Beginning with integer ``start``, yield an unbounded geometric progression
with integer ratio ``mul``.
"""
start, mul = int(start), int(mul)
yield start
while True:
start *= mul
yield start
def niceprog(start):
"""
Generate a nice progression of integers.
Beginning with integer ``start``, yield a sequence of "nicely" spaced
integers: an unbounded geometric progression with ratio 10, interspersed
with steps of ratios 2 and 5.
"""
start = int(start)
yield start
while True:
for mul in (2, 5, 10):
yield start * mul
start *= 10
def preferred_sequence(start, stop, style='nice'):
"""
Return a sequence of integers with a "preferred" stepping pattern.
Parameters
----------
start : int
Starting value in the progression.
stop : int
Upper bound of progression, inclusive. Values will not exceed this.
style : {'nice', 'binary'}
Style of progression. 'nice' gives geometric steps of 10 with 2 and 5
in between. 'binary' gives geometric steps of 2.
Returns
------
list of int
Examples
--------
For certain values of `start` (n * 10^i), nice stepping produces familiar
"preferred" sequences [1]_:
Note denominations in Dollars (1-2-5)
>>> preferred_sequence(1, 100, 'nice')
[1, 2, 5, 10, 20, 50, 100]
Coin denominations in Cents
>>> preferred_sequence(5, 100, 'nice')
[5, 10, 25, 50, 100]
.. [1] https://en.wikipedia.org/wiki/Preferred_number#1-2-5_series
"""
if start > stop:
return []
if style == 'binary':
gen = geomprog(start, 2)
elif style == 'nice':
gen = niceprog(start)
else:
ValueError(
f"Expected style value of 'binary' or 'nice'; got '{style}'."
)
seq = [next(gen)]
while True:
n = next(gen)
if n > stop:
break
seq.append(n)
return seq
def get_multiplier_sequence(resolutions, bases=None):
"""
From a set of target resolutions and one or more base resolutions
deduce the most efficient sequence of integer multiple aggregations
to satisfy all targets starting from the base resolution(s).
Parameters
----------
resolutions: sequence of int
The target resolutions
bases: sequence of int, optional
The base resolutions for which data already exists.
If not provided, the smallest resolution is assumed to be the base.
Returns
-------
resn: 1D array
Resolutions, sorted in ascending order.
pred: 1D array
Index of the predecessor resolution in `resn`. A value of -1 implies
that the resolution is a base resolution.
mult: 1D array
Multiplier to go from predecessor to target resolution.
"""
if bases is None:
# assume the base resolution is the smallest one
bases = {min(resolutions)}
else:
bases = set(bases)
resn = np.array(sorted(bases.union(resolutions)))
pred = -np.ones(len(resn), dtype=int)
mult = -np.ones(len(resn), dtype=int)
for i, target in list(enumerate(resn))[::-1]:
p = i - 1
while p >= 0:
if target % resn[p] == 0:
pred[i] = p
mult[i] = target // resn[p]
break
else:
p -= 1
for i, p in enumerate(pred):
if p == -1 and resn[i] not in bases:
raise ValueError(
"Resolution {} cannot be derived from "
"the base resolutions: {}.".format(resn[i], bases)
)
return resn, pred, mult
class CoolerCoarsener(ContactBinner):
"""
Implementation of cooler coarsening.
"""
def __init__(self, source_uri, factor, chunksize, columns, agg, batchsize, map=map):
from .api import Cooler
self._map = map
self.source_uri = source_uri
self.batchsize = batchsize
assert isinstance(factor, int) and factor > 1
self.factor = factor
self.chunksize = int(chunksize)
self.index_columns = ["bin1_id", "bin2_id"]
self.value_columns = list(columns)
self.columns = self.index_columns + self.value_columns
self.agg = {col: "sum" for col in self.value_columns}
if agg is not None:
self.agg.update(agg)
clr = Cooler(source_uri)
chromsizes = clr.chromsizes
# Info for the old bin segmentation
self.old_binsize = clr.binsize
self.old_chrom_offset = clr._load_dset("indexes/chrom_offset")
self.old_bin1_offset = clr._load_dset("indexes/bin1_offset")
# Calculate the new bin segmentation
if self.old_binsize is None:
self.new_binsize = None
else:
self.new_binsize = self.old_binsize * factor
old_bins = clr.bins()[["chrom", "start", "end"]][:]
self.new_bins = self.coarsen_bins(old_bins, chromsizes, factor)
self.gs = GenomeSegmentation(chromsizes, self.new_bins)
# Pre-compute the partition of bin1 offsets that groups the pixels into
# coarsened bins along the i-axis. Then remove some of the internal
# edges of this partition to make bigger groups of pixels. This way
# we ensure that none of the original groups gets split.
edges = []
for _chrom, i in self.gs.idmap.items():
# Respect chrom1 boundaries
c0 = self.old_chrom_offset[i]
c1 = self.old_chrom_offset[i + 1]
edges.extend(self.old_bin1_offset[c0:c1:factor])
edges.append(self.old_bin1_offset[-1])
self.edges = _greedy_prune_partition(edges, self.chunksize)
@staticmethod
def coarsen_bins(old_bins, chromsizes, factor):
def _each(group):
out = group[["chrom", "start"]].copy().iloc[::factor]
end = group["end"].iloc[factor - 1 :: factor].values
if len(end) < len(out):
end = np.r_[end, chromsizes[group.name]]
out["end"] = end
return out
return old_bins.groupby("chrom").apply(_each).reset_index(drop=True)
def _aggregate(self, span):
from .api import Cooler
lo, hi = span
clr = Cooler(self.source_uri)
# convert_enum=False returns chroms as raw ints
table = clr.pixels(join=True, convert_enum=False)[self.columns]
chunk = table[lo:hi]
logger.info(f"{lo} {hi}")
# use the "start" point as anchor for re-binning
binsize = self.gs.binsize
chrom_binoffset = self.gs.chrom_binoffset
chrom_abspos = self.gs.chrom_abspos
start_abspos = self.gs.start_abspos
chrom_id1 = chunk["chrom1"].values
chrom_id2 = chunk["chrom2"].values
start1 = chunk["start1"].values
start2 = chunk["start2"].values
if binsize is None:
abs_start1 = chrom_abspos[chrom_id1] + start1
abs_start2 = chrom_abspos[chrom_id2] + start2
chunk["bin1_id"] = (
np.searchsorted(start_abspos, abs_start1, side="right") - 1
)
chunk["bin2_id"] = (
np.searchsorted(start_abspos, abs_start2, side="right") - 1
)
else:
rel_bin1 = np.floor(start1 / binsize).astype(int)
rel_bin2 = np.floor(start2 / binsize).astype(int)
chunk["bin1_id"] = chrom_binoffset[chrom_id1] + rel_bin1
chunk["bin2_id"] = chrom_binoffset[chrom_id2] + rel_bin2
return (
chunk.groupby(self.index_columns, sort=True)
.aggregate(self.agg)
.reset_index()
)
def aggregate(self, span):
try:
chunk = self._aggregate(span)
except MemoryError as e: # pragma: no cover
raise RuntimeError(str(e)) from e
return chunk
def __iter__(self):
# Distribute batches of `batchsize` pixel spans at once.
batchsize = self.batchsize
spans = list(zip(self.edges[:-1], self.edges[1:]))
for i in range(0, len(spans), batchsize):
try:
if batchsize > 1:
lock.acquire()
results = self._map(self.aggregate, spans[i : i + batchsize])
finally:
if batchsize > 1:
lock.release()
for df in results:
yield {k: v.values for k, v in df.items()}
def coarsen_cooler(
base_uri,
output_uri,
factor,
chunksize,
nproc=1,
columns=None,
dtypes=None,
agg=None,
**kwargs
):
"""
Coarsen a cooler to a lower resolution by an integer factor *k*.
This is done by pooling *k*-by-*k* neighborhoods of pixels and aggregating.
Each chromosomal block is coarsened individually. Result is a coarsened
cooler stored at ``output_uri``.
.. versionadded:: 0.8.0
Parameters
----------
base_uri : str
Input cooler file path or URI.
output_uri : str
Input cooler file path or URI.
factor : int
Coarsening factor.
chunksize : int
Number of pixels processed at a time per worker.
nproc : int, optional
Number of workers for batch processing of pixels. Default is 1,
i.e. no process pool.
columns : list of str, optional
Specify which pixel value columns to include in the aggregation.
Default is to use all available value columns.
dtypes : dict, optional
Specific dtypes to use for value columns. Default is to propagate
the current dtypes of the value columns.
agg : dict, optional
Functions to use for aggregating each value column. Pass the same kind
of dict accepted by ``pandas.DataFrame.groupby.agg``. Default is to
apply 'sum' to every value column.
kwargs
Passed to ``cooler.create``.
See also
--------
cooler.zoomify_cooler
cooler.merge_coolers
"""
# TODO: decide whether to default to 'count' or whatever is there besides bin1_id, bin2_id
# dtypes = dict(clr.pixels().dtypes.drop(['bin1_id', 'bin2_id']))
from .api import Cooler
clr = Cooler(base_uri)
factor = int(factor)
if columns is None:
columns = ["count"]
if dtypes is None:
dtypes = {}
input_dtypes = clr.pixels().dtypes
for col in columns:
if col not in input_dtypes:
raise ValueError(
"Pixel value column '{}' not found in "
"input '{}'.".format(col, clr.filename)
)
else:
dtypes.setdefault(col, input_dtypes[col])
try:
# Note: fork before opening to prevent inconsistent global HDF5 state
if nproc > 1:
pool = mp.Pool(nproc)
kwargs.setdefault("lock", lock)
iterator = CoolerCoarsener(
base_uri,
factor,
chunksize,
columns=columns,
agg=agg,
batchsize=nproc,
map=pool.map if nproc > 1 else map,
)
new_bins = iterator.new_bins
kwargs.setdefault("append", True)
create(
output_uri,
new_bins,
iterator,
dtypes=dtypes,
symmetric_upper=clr.storage_mode == "symmetric-upper",
**kwargs
)
finally:
if nproc > 1:
pool.close()
def zoomify_cooler(
base_uris,
outfile,
resolutions,
chunksize,
nproc=1,
columns=None,
dtypes=None,
agg=None,
**kwargs
):
"""
Generate multiple cooler resolutions by recursive coarsening.
Result is a "zoomified" or "multires" cool file stored at ``outfile``
using the MCOOL v2 layout, where coolers are stored under a hierarchy of
the form ``resolutions/<r>`` for each resolution ``r``.
.. versionadded:: 0.8.0
Parameters
----------
base_uris : str or sequence of str
One or more cooler URIs to use as "base resolutions" for aggregation.
outfile : str
Output multires cooler (mcool) file path.
resolutions : list of int
A list of target resolutions to generate.
chunksize : int
Number of pixels processed at a time per worker.
nproc : int, optional
Number of workers for batch processing of pixels. Default is 1,
i.e. no process pool.
columns : list of str, optional
Specify which pixel value columns to include in the aggregation.
Default is to use only the column named 'count' if it exists.
dtypes : dict, optional
Specific dtypes to use for value columns. Default is to propagate
the current dtypes of the value columns.
agg : dict, optional
Functions to use for aggregating each value column. Pass the same kind
of dict accepted by ``pandas.DataFrame.groupby.agg``. Default is to
apply 'sum' to every value column.
kwargs
Passed to ``cooler.create``.
See also
--------
cooler.coarsen_cooler
cooler.merge_coolers
"""
# TODO: provide presets? {'pow2', '4dn'}
from .api import Cooler
if isinstance(base_uris, str):
base_uris = [base_uris]
parsed_uris = {}
n_bins_longest_chrom = {}
base_resolutions = set()
for input_uri in base_uris:
infile, ingroup = parse_cooler_uri(input_uri)
clr = Cooler(infile, ingroup)
base_binsize = clr.binsize
parsed_uris[base_binsize] = (infile, ingroup)
n_bins_longest_chrom[base_binsize] = clr.bins()[:].groupby("chrom").size().max()
base_resolutions.add(base_binsize)
# Determine the sequence of reductions.
resn, pred, mult = get_multiplier_sequence(resolutions, base_resolutions)
n_zooms = len(resn)
logger.info(
f"Copying base matrices and producing {n_zooms} new zoom levels."
)
if columns is None:
columns = ["count"]
# Copy base matrix
for base_binsize in base_resolutions:
logger.info("Bin size: " + str(base_binsize))
infile, ingroup = parsed_uris[base_binsize]
with h5py.File(infile, "r") as src, h5py.File(outfile, "w") as dest: # noqa
prefix = f"/resolutions/{base_binsize}"
src.copy(ingroup + "/chroms", dest, prefix + "/chroms")
src.copy(ingroup + "/bins", dest, prefix + "/bins")
for col in ["bin1_id", "bin2_id"] + list(columns):
src.copy(
ingroup + f"/pixels/{col}",
dest,
prefix + f"/pixels/{col}",
)
src.copy(ingroup + "/indexes", dest, prefix + "/indexes")
dest[prefix].attrs.update(src[ingroup].attrs)
# Aggregate
# Use lock to sync read/write ops on same file
for i in range(n_zooms):
if pred[i] == -1:
continue
prev_binsize = resn[pred[i]]
binsize = prev_binsize * mult[i]
logger.info(f"Aggregating from {prev_binsize} to {binsize}.")
coarsen_cooler(
outfile + f"::resolutions/{prev_binsize}",
outfile + f"::resolutions/{binsize}",
mult[i],
chunksize,
nproc=nproc,
columns=columns,
dtypes=dtypes,
agg=agg,
mode="r+",
**kwargs
)
with h5py.File(outfile, "r+") as fw:
fw.attrs.update({
"format": "HDF5::MCOOL",
"format-version": __format_version_mcool__
})
def legacy_zoomify(input_uri, outfile, nproc, chunksize, lock=None):
"""
Quad-tree tiling using legacy MCOOL layout (::0, ::1, ::2, etc.).
"""
from .api import Cooler
infile, ingroup = parse_cooler_uri(input_uri)
clr = Cooler(infile, ingroup)
n_zooms = get_quadtree_depth(clr.chromsizes, clr.binsize, HIGLASS_TILE_DIM)
factor = 2
logger.info(f"total_length (bp): {np.sum(clr.chromsizes)}")
logger.info(f"binsize: {clr.binsize}")
logger.info(f"n_zooms: {n_zooms}")
logger.info(f"quad tile cover: {2 ** n_zooms}")
logger.info(
"Copying base matrix to level "
+ "{0} and producing {0} new zoom levels ".format(n_zooms)
+ "counting down to 0..."
)
zoom_levels = OrderedDict()
zoomLevel = str(n_zooms)
binsize = clr.binsize
logger.info("Zoom level: " + str(zoomLevel) + " bin size: " + str(binsize))
# Copy base matrix
with h5py.File(infile, "r") as src, h5py.File(outfile, "w") as dest: # noqa
src.copy(ingroup, dest, str(zoomLevel))
zoom_levels[zoomLevel] = binsize
# Aggregate
# Use lock to sync read/write ops on same file
for i in range(n_zooms - 1, -1, -1):
# prev_binsize = binsize
binsize *= factor
prevLevel = str(i + 1)
zoomLevel = str(i)
logger.info(
"Aggregating at zoom level: "
+ str(zoomLevel)
+ " bin size: "
+ str(binsize)
)
coarsen_cooler(
outfile + "::" + str(prevLevel),
outfile + "::" + str(zoomLevel),
factor,
chunksize=chunksize,
nproc=nproc,
lock=lock,
)
zoom_levels[zoomLevel] = binsize
with h5py.File(outfile, "r+") as fw:
fw.attrs.update({"max-zoom": n_zooms})
# grp = fw.require_group('.zooms')
fw.attrs["max-zooms"] = n_zooms
fw.attrs.update(zoom_levels)
return n_zooms, zoom_levels
|