1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
import os
import re
from collections import OrderedDict, defaultdict
from contextlib import contextmanager
import h5py
import numpy as np
import pandas as pd
from pandas.api.types import is_integer, is_scalar
def partition(start, stop, step):
"""Partition an integer interval into equally-sized subintervals.
Like builtin :py:func:`range`, but yields pairs of end points.
Examples
--------
>>> for lo, hi in partition(0, 9, 2):
print(lo, hi)
0 2
2 4
4 6
6 8
8 9
"""
return ((i, min(i + step, stop)) for i in range(start, stop, step))
def parse_cooler_uri(s):
"""
Parse a Cooler URI string
e.g. /path/to/mycoolers.cool::/path/to/cooler
"""
parts = s.split("::")
if len(parts) == 1:
file_path, group_path = parts[0], "/"
elif len(parts) == 2:
file_path, group_path = parts
if not group_path.startswith("/"):
group_path = "/" + group_path
else:
raise ValueError("Invalid Cooler URI string")
return file_path, group_path
def atoi(s):
return int(s.replace(",", ""))
def parse_humanized(s):
_NUMERIC_RE = re.compile("([0-9,.]+)")
_, value, unit = _NUMERIC_RE.split(s.replace(",", ""))
if not len(unit):
return int(value)
value = float(value)
unit = unit.upper().strip()
if unit in ("K", "KB"):
value *= 1000
elif unit in ("M", "MB"):
value *= 1000000
elif unit in ("G", "GB"):
value *= 1000000000
else:
raise ValueError(f"Unknown unit '{unit}'")
return int(value)
def parse_region_string(s):
"""
Parse a UCSC-style genomic region string into a triple.
Parameters
----------
s : str
UCSC-style string, e.g. "chr5:10,100,000-30,000,000". Ensembl and FASTA
style sequence names are allowed. End coordinate must be greater than
or equal to start.
Returns
-------
(str, int or None, int or None)
"""
def _tokenize(s):
token_spec = [
("HYPHEN", r"-"),
("COORD", r"[0-9,]+(\.[0-9]*)?(?:[a-z]+)?"),
("OTHER", r".+"),
]
tok_regex = r"\s*" + r"|\s*".join(r"(?P<%s>%s)" % pair for pair in token_spec)
tok_regex = re.compile(tok_regex, re.IGNORECASE)
for match in tok_regex.finditer(s):
typ = match.lastgroup
yield typ, match.group(typ)
def _check_token(typ, token, expected):
if typ is None:
raise ValueError("Expected {} token missing".format(" or ".join(expected)))
else:
if typ not in expected:
raise ValueError(f'Unexpected token "{token}"')
def _expect(tokens):
typ, token = next(tokens, (None, None))
_check_token(typ, token, ["COORD"])
start = parse_humanized(token)
typ, token = next(tokens, (None, None))
_check_token(typ, token, ["HYPHEN"])
typ, token = next(tokens, (None, None))
if typ is None:
return start, None
_check_token(typ, token, ["COORD"])
end = parse_humanized(token)
if end < start:
raise ValueError("End coordinate less than start")
return start, end
parts = s.split(":")
chrom = parts[0].strip()
if not len(chrom):
raise ValueError("Chromosome name cannot be empty")
if len(parts) < 2:
return (chrom, None, None)
start, end = _expect(_tokenize(parts[1]))
return (chrom, start, end)
def parse_region(reg, chromsizes=None):
"""
Genomic regions are represented as half-open intervals (0-based starts,
1-based ends) along the length coordinate of a contig/scaffold/chromosome.
Parameters
----------
reg : str or tuple
UCSC-style genomic region string, or
Triple (chrom, start, end), where ``start`` or ``end`` may be ``None``.
chromsizes : mapping, optional
Lookup table of scaffold lengths to check against ``chrom`` and the
``end`` coordinate. Required if ``end`` is not supplied.
Returns
-------
A well-formed genomic region triple (str, int, int)
"""
if isinstance(reg, str):
chrom, start, end = parse_region_string(reg)
else:
chrom, start, end = reg
start = int(start) if start is not None else start
end = int(end) if end is not None else end
try:
clen = chromsizes[chrom] if chromsizes is not None else None
except KeyError as e:
raise ValueError(f"Unknown sequence label: {chrom}") from e
start = 0 if start is None else start
if end is None:
if clen is None: # TODO --- remove?
raise ValueError("Cannot determine end coordinate.")
end = clen
if end < start:
raise ValueError("End cannot be less than start")
if start < 0 or (clen is not None and end > clen):
raise ValueError(f"Genomic region out of bounds: [{start}, {end})")
return chrom, start, end
def natsort_key(s, _NS_REGEX=re.compile(r"(\d+)", re.U)):
return tuple([int(x) if x.isdigit() else x for x in _NS_REGEX.split(s) if x])
def natsorted(iterable):
return sorted(iterable, key=natsort_key)
def argnatsort(array):
array = np.asarray(array)
if not len(array):
return np.array([], dtype=int)
cols = tuple(zip(*(natsort_key(x) for x in array)))
return np.lexsort(cols[::-1])
def read_chromsizes(
filepath_or,
name_patterns=(r"^chr[0-9]+$", r"^chr[XY]$", r"^chrM$"),
all_names=False,
**kwargs
):
"""
Parse a ``<db>.chrom.sizes`` or ``<db>.chromInfo.txt`` file from the UCSC
database, where ``db`` is a genome assembly name.
Parameters
----------
filepath_or : str or file-like
Path or url to text file, or buffer.
name_patterns : sequence, optional
Sequence of regular expressions to capture desired sequence names.
Each corresponding set of records will be sorted in natural order.
all_names : bool, optional
Whether to return all contigs listed in the file. Default is
``False``.
Returns
-------
:py:class:`pandas.Series`
Series of integer bp lengths indexed by sequence name.
References
----------
* `UCSC assembly terminology <http://genome.ucsc.edu/FAQ/FAQdownloads.html#download9>`_
* `GRC assembly terminology <https://www.ncbi.nlm.nih.gov/grc/help/definitions>`_
"""
if isinstance(filepath_or, str) and filepath_or.endswith(".gz"):
kwargs.setdefault("compression", "gzip")
chromtable = pd.read_csv(
filepath_or,
sep="\t",
usecols=[0, 1],
names=["name", "length"],
dtype={"name": str},
**kwargs
)
if not all_names:
parts = []
for pattern in name_patterns:
part = chromtable[chromtable["name"].str.contains(pattern)]
part = part.iloc[argnatsort(part["name"])]
parts.append(part)
chromtable = pd.concat(parts, axis=0)
chromtable.index = chromtable["name"].values
return chromtable["length"]
def fetch_chromsizes(db, **kwargs):
"""
Download chromosome sizes from UCSC as a :py:class:`pandas.Series`, indexed
by chromosome label.
"""
return read_chromsizes(
"http://hgdownload.cse.ucsc.edu/goldenPath/{}/database/chromInfo.txt.gz".format(
db
),
**kwargs
)
def load_fasta(names, *filepaths):
"""
Load lazy FASTA records from one or multiple files without reading them
into memory.
Parameters
----------
names : sequence of str
Names of sequence records in FASTA file or files.
filepaths : str
Paths to one or more FASTA files to gather records from.
Returns
-------
OrderedDict of sequence name -> sequence record
"""
import pyfaidx
if len(filepaths) == 0:
raise ValueError("Need at least one file")
if len(filepaths) == 1:
fa = pyfaidx.Fasta(filepaths[0], as_raw=True)
else:
fa = {}
for filepath in filepaths:
fa.update(pyfaidx.Fasta(filepath, as_raw=True).records)
records = OrderedDict((chrom, fa[chrom]) for chrom in names)
return records
def binnify(chromsizes, binsize):
"""
Divide a genome into evenly sized bins.
Parameters
----------
chromsizes : Series
pandas Series indexed by chromosome name with chromosome lengths in bp.
binsize : int
size of bins in bp
Returns
-------
bins : :py:class:`pandas.DataFrame`
Dataframe with columns: ``chrom``, ``start``, ``end``.
"""
def _each(chrom):
clen = chromsizes[chrom]
n_bins = int(np.ceil(clen / binsize))
binedges = np.arange(0, (n_bins + 1)) * binsize
binedges[-1] = clen
return pd.DataFrame(
{"chrom": [chrom] * n_bins, "start": binedges[:-1], "end": binedges[1:]},
columns=["chrom", "start", "end"],
)
bintable = pd.concat(map(_each, chromsizes.keys()), axis=0, ignore_index=True)
bintable["chrom"] = pd.Categorical(
bintable["chrom"], categories=list(chromsizes.index), ordered=True
)
return bintable
make_bintable = binnify
def digest(fasta_records, enzyme):
"""
Divide a genome into restriction fragments.
Parameters
----------
fasta_records : OrderedDict
Dictionary of chromosome names to sequence records.
enzyme: str
Name of restriction enzyme (e.g., 'DpnII').
Returns
-------
frags : :py:class:`pandas.DataFrame`
Dataframe with columns: ``chrom``, ``start``, ``end``.
"""
try:
import Bio.Restriction as biorst
import Bio.Seq as bioseq
except ImportError:
raise ImportError(
"Biopython is required to find restriction fragments."
) from None
# http://biopython.org/DIST/docs/cookbook/Restriction.html#mozTocId447698
chroms = fasta_records.keys()
try:
cut_finder = getattr(biorst, enzyme).search
except AttributeError as e:
raise ValueError(f"Unknown enzyme name: {enzyme}") from e
def _each(chrom):
seq = bioseq.Seq(str(fasta_records[chrom]))
cuts = np.r_[0, np.array(cut_finder(seq)) + 1, len(seq)].astype(int)
n_frags = len(cuts) - 1
frags = pd.DataFrame(
{"chrom": [chrom] * n_frags, "start": cuts[:-1], "end": cuts[1:]},
columns=["chrom", "start", "end"],
)
return frags
return pd.concat(map(_each, chroms), axis=0, ignore_index=True)
def get_binsize(bins):
"""
Infer bin size from a bin DataFrame. Assumes that the last bin of each
contig is allowed to differ in size from the rest.
Returns
-------
int or None if bins are non-uniform
"""
sizes = set()
for _chrom, group in bins.groupby("chrom"):
sizes.update((group["end"] - group["start"]).iloc[:-1].unique())
if len(sizes) > 1:
return None
if len(sizes) == 1:
return next(iter(sizes))
else:
return None
def get_chromsizes(bins):
"""
Infer chromsizes Series from a bin DataFrame. Assumes that the last bin of
each contig is allowed to differ in size from the rest.
Returns
-------
int or None if bins are non-uniform
"""
chromtable = (
bins.drop_duplicates(["chrom"], keep="last")[["chrom", "end"]]
.reset_index(drop=True)
.rename(columns={"chrom": "name", "end": "length"})
)
chroms, lengths = list(chromtable["name"]), list(chromtable["length"])
return pd.Series(index=chroms, data=lengths)
def bedslice(grouped, chromsizes, region):
"""
Range query on a BED-like dataframe with non-overlapping intervals.
"""
chrom, start, end = parse_region(region, chromsizes)
result = grouped.get_group(chrom)
if start > 0 or end < chromsizes[chrom]:
lo = result["end"].values.searchsorted(start, side="right")
hi = lo + result["start"].values[lo:].searchsorted(end, side="left")
result = result.iloc[lo:hi]
return result
def asarray_or_dataset(x):
return x if isinstance(x, h5py.Dataset) else np.asarray(x)
def rlencode(array, chunksize=None):
"""
Run length encoding.
Based on http://stackoverflow.com/a/32681075, which is based on the rle
function from R.
Parameters
----------
x : 1D array_like
Input array to encode
dropna: bool, optional
Drop all runs of NaNs.
Returns
-------
start positions, run lengths, run values
"""
where = np.flatnonzero
array = asarray_or_dataset(array)
n = len(array)
if n == 0:
return (
np.array([], dtype=int),
np.array([], dtype=int),
np.array([], dtype=array.dtype),
)
if chunksize is None:
chunksize = n
starts, values = [], []
last_val = np.nan
for i in range(0, n, chunksize):
x = array[i : i + chunksize]
locs = where(x[1:] != x[:-1]) + 1
if x[0] != last_val:
locs = np.r_[0, locs]
starts.append(i + locs)
values.append(x[locs])
last_val = x[-1]
starts = np.concatenate(starts)
lengths = np.diff(np.r_[starts, n])
values = np.concatenate(values)
return starts, lengths, values
def cmd_exists(cmd):
return any(
os.access(os.path.join(path, cmd), os.X_OK)
for path in os.environ["PATH"].split(os.pathsep)
)
def mad(data, axis=None):
return np.median(np.abs(data - np.median(data, axis)), axis)
@contextmanager
def open_hdf5(fp, mode="r", *args, **kwargs):
"""
Context manager like ``h5py.File`` but accepts already open HDF5 file
handles which do not get closed on teardown.
Parameters
----------
fp : str or ``h5py.File`` object
If an open file object is provided, it passes through unchanged,
provided that the requested mode is compatible.
If a filepath is passed, the context manager will close the file on
tear down.
mode : str
* r Readonly, file must exist
* r+ Read/write, file must exist
* a Read/write if exists, create otherwise
* w Truncate if exists, create otherwise
* w- or x Fail if exists, create otherwise
"""
if isinstance(fp, str):
own_fh = True
fh = h5py.File(fp, mode, *args, **kwargs)
else:
own_fh = False
if mode == "r" and fp.file.mode == "r+":
# warnings.warn("File object provided is writeable but intent is read-only")
pass
elif mode in ("r+", "a") and fp.file.mode == "r":
raise ValueError("File object provided is not writeable")
elif mode == "w":
raise ValueError("Cannot truncate open file")
elif mode in ("w-", "x"):
raise ValueError("File exists")
fh = fp
try:
yield fh
finally:
if own_fh:
fh.close()
class closing_hdf5(h5py.Group):
def __init__(self, grp):
super().__init__(grp.id)
def __enter__(self):
return self
def __exit__(self, *exc_info):
return self.file.close()
def close(self):
self.file.close()
def attrs_to_jsonable(attrs):
out = dict(attrs)
for k, v in attrs.items():
try:
out[k] = v.item()
except ValueError:
out[k] = v.tolist()
except AttributeError:
out[k] = v
return out
def infer_meta(x, index=None): # pragma: no cover
"""
Extracted and modified from dask/dataframe/utils.py :
make_meta (BSD licensed)
Create an empty pandas object containing the desired metadata.
Parameters
----------
x : dict, tuple, list, pd.Series, pd.DataFrame, pd.Index, dtype, scalar
To create a DataFrame, provide a `dict` mapping of `{name: dtype}`, or
an iterable of `(name, dtype)` tuples. To create a `Series`, provide a
tuple of `(name, dtype)`. If a pandas object, names, dtypes, and index
should match the desired output. If a dtype or scalar, a scalar of the
same dtype is returned.
index : pd.Index, optional
Any pandas index to use in the metadata. If none provided, a
`RangeIndex` will be used.
Examples
--------
>>> make_meta([('a', 'i8'), ('b', 'O')])
Empty DataFrame
Columns: [a, b]
Index: []
>>> make_meta(('a', 'f8'))
Series([], Name: a, dtype: float64)
>>> make_meta('i8')
1
"""
_simple_fake_mapping = {
"b": np.bool_(True),
"V": np.void(b" "),
"M": np.datetime64("1970-01-01"),
"m": np.timedelta64(1),
"S": np.str_("foo"),
"a": np.str_("foo"),
"U": np.unicode_("foo"),
"O": "foo",
}
UNKNOWN_CATEGORIES = "__UNKNOWN_CATEGORIES__"
def _scalar_from_dtype(dtype):
if dtype.kind in ("i", "f", "u"):
return dtype.type(1)
elif dtype.kind == "c":
return dtype.type(complex(1, 0))
elif dtype.kind in _simple_fake_mapping:
o = _simple_fake_mapping[dtype.kind]
return o.astype(dtype) if dtype.kind in ("m", "M") else o
else:
raise TypeError(f"Can't handle dtype: {dtype}")
def _nonempty_scalar(x):
if isinstance(x, (pd.Timestamp, pd.Timedelta, pd.Period)):
return x
elif np.isscalar(x):
dtype = x.dtype if hasattr(x, "dtype") else np.dtype(type(x))
return _scalar_from_dtype(dtype)
else:
raise TypeError(
"Can't handle meta of type " "'{}'".format(type(x).__name__)
)
def _empty_series(name, dtype, index=None):
if isinstance(dtype, str) and dtype == "category":
return pd.Series(
pd.Categorical([UNKNOWN_CATEGORIES]), name=name, index=index
).iloc[:0]
return pd.Series([], dtype=dtype, name=name, index=index)
if hasattr(x, "_meta"):
return x._meta
if isinstance(x, (pd.Series, pd.DataFrame)):
return x.iloc[0:0]
elif isinstance(x, pd.Index):
return x[0:0]
index = index if index is None else index[0:0]
if isinstance(x, dict):
return pd.DataFrame(
{c: _empty_series(c, d, index=index) for (c, d) in x.items()}, index=index
)
if isinstance(x, tuple) and len(x) == 2:
return _empty_series(x[0], x[1], index=index)
elif isinstance(x, (list, tuple)):
if not all(isinstance(i, tuple) and len(i) == 2 for i in x):
raise ValueError(
"Expected iterable of tuples of (name, dtype), " "got {}".format(x)
)
return pd.DataFrame(
{c: _empty_series(c, d, index=index) for (c, d) in x},
columns=[c for c, d in x],
index=index,
)
elif not hasattr(x, "dtype") and x is not None:
# could be a string, a dtype object, or a python type. Skip `None`,
# because it is implictly converted to `dtype('f8')`, which we don't
# want here.
try:
dtype = np.dtype(x)
return _scalar_from_dtype(dtype)
except: # noqa
# Continue on to next check
pass
if is_scalar(x):
return _nonempty_scalar(x)
raise TypeError(f"Don't know how to create metadata from {x}")
def get_meta(
columns, dtype=None, index_columns=None, index_names=None, default_dtype=np.object_
): # pragma: no cover
"""
Extracted and modified from pandas/io/parsers.py :
_get_empty_meta (BSD licensed).
"""
columns = list(columns)
# Convert `dtype` to a defaultdict of some kind.
# This will enable us to write `dtype[col_name]`
# without worrying about KeyError issues later on.
if not isinstance(dtype, dict):
# if dtype == None, default will be default_dtype.
dtype = defaultdict(lambda: dtype or default_dtype)
else:
# Save a copy of the dictionary.
_dtype = dtype.copy()
dtype = defaultdict(lambda: default_dtype)
# Convert column indexes to column names.
for k, v in _dtype.items():
col = columns[k] if is_integer(k) else k
dtype[col] = v
if index_columns is None or index_columns is False:
index = pd.Index([])
else:
data = [pd.Series([], dtype=dtype[name]) for name in index_names]
if len(data) == 1:
index = pd.Index(data[0], name=index_names[0])
else:
index = pd.MultiIndex.from_arrays(data, names=index_names)
index_columns.sort()
for i, n in enumerate(index_columns):
columns.pop(n - i)
col_dict = {col_name: pd.Series([], dtype=dtype[col_name]) for col_name in columns}
return pd.DataFrame(col_dict, columns=columns, index=index)
def check_bins(bins, chromsizes):
is_cat = pd.api.types.is_categorical_dtype(bins["chrom"])
bins = bins.copy()
if not is_cat:
bins["chrom"] = pd.Categorical(
bins.chrom, categories=list(chromsizes.index), ordered=True
)
else:
assert (bins["chrom"].cat.categories == chromsizes.index).all()
return bins
def balanced_partition(gs, n_chunk_max, file_contigs, loadings=None):
# n_bins = len(gs.bins)
grouped = gs._bins_grouped
chrom_nbins = grouped.size()
if loadings is None:
loadings = chrom_nbins
chrmax = loadings.idxmax()
loadings = loadings / loadings.loc[chrmax]
const = chrom_nbins.loc[chrmax] / n_chunk_max
granges = []
for chrom, group in grouped:
if chrom not in file_contigs:
continue
clen = gs.chromsizes[chrom]
step = int(np.ceil(const / loadings.loc[chrom]))
anchors = group.start.values[::step]
if anchors[-1] != clen:
anchors = np.r_[anchors, clen]
granges.extend(
(chrom, start, end) for start, end in zip(anchors[:-1], anchors[1:])
)
return granges
class GenomeSegmentation:
def __init__(self, chromsizes, bins):
bins = check_bins(bins, chromsizes)
self._bins_grouped = bins.groupby("chrom", sort=False)
nbins_per_chrom = self._bins_grouped.size().values
self.chromsizes = chromsizes
self.binsize = get_binsize(bins)
self.contigs = list(chromsizes.keys())
self.bins = bins
self.idmap = pd.Series(index=chromsizes.keys(), data=range(len(chromsizes)))
self.chrom_binoffset = np.r_[0, np.cumsum(nbins_per_chrom)]
self.chrom_abspos = np.r_[0, np.cumsum(chromsizes.values)]
self.start_abspos = (
self.chrom_abspos[bins["chrom"].cat.codes] + bins["start"].values
)
def fetch(self, region):
chrom, start, end = parse_region(region, self.chromsizes)
result = self._bins_grouped.get_group(chrom)
if start > 0 or end < self.chromsizes[chrom]:
lo = result["end"].values.searchsorted(start, side="right")
hi = lo + result["start"].values[lo:].searchsorted(end, side="left")
result = result.iloc[lo:hi]
return result
def buffered(chunks, size=10000000):
"""
Take an incoming iterator of small data frame chunks and buffer them into
an outgoing iterator of larger chunks.
Parameters
----------
chunks : iterator of :py:class:`pandas.DataFrame`
Each chunk should have the same column names.
size : int
Minimum length of output chunks.
Yields
------
Larger outgoing :py:class:`pandas.DataFrame` chunks made from concatenating
the incoming ones.
"""
buf = []
n = 0
for chunk in chunks:
n += len(chunk)
buf.append(chunk)
if n > size:
yield pd.concat(buf, axis=0)
buf = []
n = 0
if len(buf):
yield pd.concat(buf, axis=0)
|