1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
# -*- coding: utf-8 -*-
from collections import OrderedDict
import numpy as np
import pytest
from matplotlib import pyplot as pl
from matplotlib.testing.decorators import image_comparison
import corner
def _run_corner(
pandas=False,
arviz=False,
N=10000,
seed=1234,
ndim=3,
factor=None,
exp_data=False,
**kwargs,
):
np.random.seed(seed)
data1 = np.random.randn(ndim * 4 * N // 5).reshape([4 * N // 5, ndim])
data2 = 5 * np.random.rand(ndim)[None, :] + np.random.randn(
ndim * N // 5
).reshape([N // 5, ndim])
data = np.vstack([data1, data2])
if factor is not None:
data[:, 0] *= factor
data[:, 1] /= factor
if exp_data:
data = 10**data
if pandas:
pd = pytest.importorskip("pandas")
data = pd.DataFrame.from_dict(
OrderedDict(zip(map("d{0}".format, range(ndim)), data.T))
)
elif arviz:
az = pytest.importorskip("arviz")
data = az.from_dict(
posterior={"x": data[None]},
sample_stats={"diverging": data[None, :, 0] < 0.0},
)
kwargs["truths"] = {"x": np.random.randn(ndim)}
fig = corner.corner(data, **kwargs)
return fig
@image_comparison(
baseline_images=["basic"], remove_text=True, extensions=["png"]
)
def test_basic():
_run_corner()
@image_comparison(
baseline_images=["basic_log"], remove_text=True, extensions=["png"]
)
def test_basic_log():
_run_corner(exp_data=True, axes_scale="log")
@image_comparison(
baseline_images=["basic_log_x2_only"], remove_text=True, extensions=["png"]
)
def test_basic_log_x2_only():
_run_corner(exp_data=True, axes_scale=["linear", "log", "linear"])
@image_comparison(baseline_images=["labels"], extensions=["png"])
def test_labels():
_run_corner(labels=["a", "b", "c"])
@image_comparison(
baseline_images=["quantiles"], remove_text=True, extensions=["png"]
)
def test_quantiles():
_run_corner(quantiles=[0.16, 0.5, 0.84])
@image_comparison(
baseline_images=["quantiles_log"], remove_text=True, extensions=["png"]
)
def test_quantiles_log():
_run_corner(exp_data=True, axes_scale="log", quantiles=[0.16, 0.5, 0.84])
@image_comparison(
baseline_images=["title_quantiles"], remove_text=False, extensions=["png"]
)
def test_title_quantiles():
_run_corner(
quantiles=[0.16, 0.5, 0.84],
title_quantiles=[0.05, 0.5, 0.95],
show_titles=True,
)
@image_comparison(
baseline_images=["title_quantiles_default"],
remove_text=False,
extensions=["png"],
)
def test_title_quantiles_default():
_run_corner(quantiles=[0.16, 0.5, 0.84], show_titles=True)
@image_comparison(
baseline_images=["title_quantiles_raises"],
remove_text=False,
extensions=["png"],
)
def test_title_quantiles_raises():
with pytest.raises(ValueError):
_run_corner(quantiles=[0.05, 0.16, 0.5, 0.84, 0.95], show_titles=True)
# This one shouldn't raise since show_titles isn't provided
_run_corner(quantiles=[0.05, 0.16, 0.5, 0.84, 0.95])
@image_comparison(
baseline_images=["color"], remove_text=True, extensions=["png"]
)
def test_color():
_run_corner(color="g")
@image_comparison(
baseline_images=["color_filled"], remove_text=True, extensions=["png"]
)
def test_color_filled():
_run_corner(color="g", fill_contours=True)
@image_comparison(
baseline_images=["overplot"], remove_text=True, extensions=["png"]
)
def test_overplot():
fig = _run_corner(N=15000, color="g", fill_contours=True)
_run_corner(
N=5000, factor=0.5, seed=15, color="b", fig=fig, fill_contours=True
)
@image_comparison(
baseline_images=["overplot_log"], remove_text=True, extensions=["png"]
)
def test_overplot_log():
fig = _run_corner(
N=15000,
exp_data=True,
axes_scale="log",
color="g",
fill_contours=True,
)
_run_corner(
N=5000,
factor=0.5,
seed=15,
exp_data=True,
axes_scale="log",
color="b",
fig=fig,
fill_contours=True,
)
@image_comparison(
baseline_images=["bins"], remove_text=True, extensions=["png"]
)
def test_bins():
_run_corner(bins=25)
@image_comparison(
baseline_images=["bins_log"], remove_text=True, extensions=["png"]
)
def test_bins_log():
_run_corner(exp_data=True, axes_scale="log", bins=25)
@image_comparison(
baseline_images=["smooth"], remove_text=True, extensions=["png"]
)
def test_smooth():
pytest.importorskip("scipy")
_run_corner(bins=50, smooth=1.0)
@image_comparison(
baseline_images=["smooth_log"], remove_text=True, extensions=["png"]
)
def test_smooth_log():
pytest.importorskip("scipy")
_run_corner(exp_data=True, axes_scale="log", bins=50, smooth=1.0)
@image_comparison(
baseline_images=["smooth1d"], remove_text=True, extensions=["png"]
)
def test_smooth1d():
pytest.importorskip("scipy")
_run_corner(bins=50, smooth=1.0, smooth1d=1.0)
@image_comparison(
baseline_images=["smooth1d_log"], remove_text=True, extensions=["png"]
)
def test_smooth1d_log():
pytest.importorskip("scipy")
_run_corner(
exp_data=True, axes_scale="log", bins=50, smooth=1.0, smooth1d=1.0
)
@image_comparison(baseline_images=["titles1"], extensions=["png"])
def test_titles1():
_run_corner(show_titles=True)
@image_comparison(baseline_images=["titles2"], extensions=["png"])
def test_titles2():
_run_corner(show_titles=True, title_fmt=None, labels=["a", "b", "c"])
@image_comparison(
baseline_images=["top_ticks"], remove_text=True, extensions=["png"]
)
def test_top_ticks():
_run_corner(top_ticks=True)
@image_comparison(baseline_images=["pandas"], extensions=["png"])
def test_pandas():
_run_corner(pandas=True)
@image_comparison(
baseline_images=["truths"], remove_text=True, extensions=["png"]
)
def test_truths():
_run_corner(truths=[0.0, None, 0.15])
@image_comparison(
baseline_images=["reverse_truths"], remove_text=True, extensions=["png"]
)
def test_reverse_truths():
_run_corner(truths=[0.0, None, 0.15], reverse=True)
@image_comparison(
baseline_images=["no_fill_contours"], remove_text=True, extensions=["png"]
)
def test_no_fill_contours():
_run_corner(no_fill_contours=True)
@image_comparison(
baseline_images=["tight"], remove_text=True, extensions=["png"]
)
def test_tight():
_run_corner(ret=True)
pl.tight_layout()
@image_comparison(
baseline_images=["reverse"], remove_text=True, extensions=["png"]
)
def test_reverse():
_run_corner(ndim=2, range=[(4, -4), (-5, 5)])
@image_comparison(
baseline_images=["reverse_log"], remove_text=True, extensions=["png"]
)
def test_reverse_log():
_run_corner(
ndim=2,
exp_data=True,
axes_scale="log",
range=[(1e4, 1e-4), (1e-5, 1e5)],
)
@image_comparison(
baseline_images=["extended_overplotting"],
remove_text=True,
extensions=["png"],
)
def test_extended_overplotting():
# Test overplotting a more complex plot
labels = [r"$\theta_1$", r"$\theta_2$", r"$\theta_3$", r"$\theta_4$"]
figure = _run_corner(ndim=4, reverse=False, labels=labels)
# Set same results:
ndim, nsamples = 4, 10000
np.random.seed(1234)
data1 = np.random.randn(ndim * 4 * nsamples // 5).reshape(
[4 * nsamples // 5, ndim]
)
mean = 4 * np.random.rand(ndim)
value1 = mean
# This is the empirical mean of the sample:
value2 = np.mean(data1, axis=0)
corner.overplot_lines(figure, value1, color="C1", reverse=False)
corner.overplot_points(
figure, value1[None], marker="s", color="C1", reverse=False
)
corner.overplot_lines(figure, value2, color="C2", reverse=False)
corner.overplot_points(
figure, value2[None], marker="s", color="C2", reverse=False
)
@image_comparison(
baseline_images=["reverse_overplotting"],
remove_text=True,
extensions=["png"],
)
def test_reverse_overplotting():
# Test overplotting with a reversed plot
labels = [r"$\theta_1$", r"$\theta_2$", r"$\theta_3$", r"$\theta_4$"]
figure = _run_corner(ndim=4, reverse=True, labels=labels)
# Set same results:
ndim, nsamples = 4, 10000
np.random.seed(1234)
data1 = np.random.randn(ndim * 4 * nsamples // 5).reshape(
[4 * nsamples // 5, ndim]
)
mean = 4 * np.random.rand(ndim)
value1 = mean
value2 = np.mean(data1, axis=0)
corner.overplot_lines(figure, value1, color="C1", reverse=True)
corner.overplot_points(
figure, value1[None], marker="s", color="C1", reverse=True
)
corner.overplot_lines(figure, value2, color="C2", reverse=True)
corner.overplot_points(
figure, value2[None], marker="s", color="C2", reverse=True
)
@image_comparison(
baseline_images=["hist_bin_factor"], remove_text=True, extensions=["png"]
)
def test_hist_bin_factor():
_run_corner(hist_bin_factor=4)
@image_comparison(
baseline_images=["hist_bin_factor_log"],
remove_text=True,
extensions=["png"],
)
def test_hist_bin_factor_log():
_run_corner(exp_data=True, axes_scale="log", hist_bin_factor=4)
@image_comparison(baseline_images=["arviz"], extensions=["png"])
def test_arviz():
_run_corner(arviz=True)
@image_comparison(
baseline_images=["range_fig_arg"], remove_text=True, extensions=["png"]
)
def test_range_fig_arg():
fig = pl.figure()
ranges = [(-1.1, 1), 0.8, (-1, 1)]
_run_corner(N=100_000, range=ranges, fig=fig)
|