1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
# This file is automatically generated by pyo3_stub_gen
# ruff: noqa: E501, F401
import typing
def find_subgraphs(
inputs: typing.Sequence[typing.Sequence[str]],
output: typing.Sequence[str],
size_dict: typing.Mapping[str, float],
) -> list[list[int]]:
r"""
Find all disconnected subgraphs of a specified contraction.
"""
...
def optimize_greedy(
inputs: typing.Sequence[typing.Sequence[str]],
output: typing.Sequence[str],
size_dict: typing.Mapping[str, float],
costmod: typing.Optional[float] = None,
temperature: typing.Optional[float] = None,
seed: typing.Optional[int] = None,
simplify: typing.Optional[bool] = None,
use_ssa: typing.Optional[bool] = None,
) -> list[list[int]]:
r"""
Find a contraction path using a (randomizable) greedy algorithm.
Parameters
----------
inputs : Sequence[Sequence[str]]
The indices of each input tensor.
output : Sequence[str]
The indices of the output tensor.
size_dict : dict[str, int]
A dictionary mapping indices to their dimension.
costmod : float, optional
When assessing local greedy scores how much to weight the size of the
tensors removed compared to the size of the tensor added::
score = size_ab / costmod - (size_a + size_b) * costmod
This can be a useful hyper-parameter to tune.
temperature : float, optional
When asessing local greedy scores, how much to randomly perturb the
score. This is implemented as::
score -> sign(score) * log(|score|) - temperature * gumbel()
which implements boltzmann sampling.
simplify : bool, optional
Whether to perform simplifications before optimizing. These are:
- ignore any indices that appear in all terms
- combine any repeated indices within a single term
- reduce any non-output indices that only appear on a single term
- combine any scalar terms
- combine any tensors with matching indices (hadamard products)
Such simpifications may be required in the general case for the proper
functioning of the core optimization, but may be skipped if the input
indices are already in a simplified form.
use_ssa : bool, optional
Whether to return the contraction path in 'single static assignment'
(SSA) format (i.e. as if each intermediate is appended to the list of
inputs, without removals). This can be quicker and easier to work with
than the 'linear recycled' format that `numpy` and `opt_einsum` use.
Returns
-------
path : list[list[int]]
The contraction path, given as a sequence of pairs of node indices. It
may also have single term contractions if `simplify=True`.
"""
...
def optimize_optimal(
inputs: typing.Sequence[typing.Sequence[str]],
output: typing.Sequence[str],
size_dict: typing.Mapping[str, float],
minimize: typing.Optional[str] = None,
cost_cap: typing.Optional[float] = None,
search_outer: typing.Optional[bool] = None,
simplify: typing.Optional[bool] = None,
use_ssa: typing.Optional[bool] = None,
) -> list[list[int]]:
r"""
Find an optimal contraction ordering.
Parameters
----------
inputs : Sequence[Sequence[str]]
The indices of each input tensor.
output : Sequence[str]
The indices of the output tensor.
size_dict : dict[str, int]
The size of each index.
minimize : str, optional
The cost function to minimize. The options are:
- "flops": minimize with respect to total operation count only
(also known as contraction cost)
- "size": minimize with respect to maximum intermediate size only
(also known as contraction width)
- 'max': minimize the single most expensive contraction, i.e. the
asymptotic (in index size) scaling of the contraction
- 'write' : minimize the sum of all tensor sizes, i.e. memory written
- 'combo' or 'combo={factor}` : minimize the sum of
FLOPS + factor * WRITE, with a default factor of 64.
- 'limit' or 'limit={factor}` : minimize the sum of
MAX(FLOPS, alpha * WRITE) for each individual contraction, with a
default factor of 64.
'combo' is generally a good default in term of practical hardware
performance, where both memory bandwidth and compute are limited.
cost_cap : float, optional
The maximum cost of a contraction to initially consider. This acts like
a sieve and is doubled at each iteration until the optimal path can
be found, but supplying an accurate guess can speed up the algorithm.
search_outer : bool, optional
If True, consider outer product contractions. This is much slower but
theoretically might be required to find the true optimal 'flops'
ordering. In practical settings (i.e. with minimize='combo'), outer
products should not be required.
simplify : bool, optional
Whether to perform simplifications before optimizing. These are:
- ignore any indices that appear in all terms
- combine any repeated indices within a single term
- reduce any non-output indices that only appear on a single term
- combine any scalar terms
- combine any tensors with matching indices (hadamard products)
Such simpifications may be required in the general case for the proper
functioning of the core optimization, but may be skipped if the input
indices are already in a simplified form.
use_ssa : bool, optional
Whether to return the contraction path in 'single static assignment'
(SSA) format (i.e. as if each intermediate is appended to the list of
inputs, without removals). This can be quicker and easier to work with
than the 'linear recycled' format that `numpy` and `opt_einsum` use.
Returns
-------
path : list[list[int]]
The contraction path, given as a sequence of pairs of node indices. It
may also have single term contractions if `simplify=True`.
"""
...
def optimize_random_greedy_track_flops(
inputs: typing.Sequence[typing.Sequence[str]],
output: typing.Sequence[str],
size_dict: typing.Mapping[str, float],
ntrials: int,
costmod: typing.Optional[tuple[float, float]] = None,
temperature: typing.Optional[tuple[float, float]] = None,
seed: typing.Optional[int] = None,
simplify: typing.Optional[bool] = None,
use_ssa: typing.Optional[bool] = None,
) -> tuple[list[list[int]], float]:
r"""
Perform a batch of random greedy optimizations, simulteneously tracking
the best contraction path in terms of flops, so as to avoid constructing a
separate contraction tree.
Parameters
----------
inputs : tuple[tuple[str]]
The indices of each input tensor.
output : tuple[str]
The indices of the output tensor.
size_dict : dict[str, int]
A dictionary mapping indices to their dimension.
ntrials : int, optional
The number of random greedy trials to perform. The default is 1.
costmod : (float, float), optional
When assessing local greedy scores how much to weight the size of the
tensors removed compared to the size of the tensor added::
score = size_ab / costmod - (size_a + size_b) * costmod
It is sampled uniformly from the given range.
temperature : (float, float), optional
When asessing local greedy scores, how much to randomly perturb the
score. This is implemented as::
score -> sign(score) * log(|score|) - temperature * gumbel()
which implements boltzmann sampling. It is sampled log-uniformly from
the given range.
seed : int, optional
The seed for the random number generator.
simplify : bool, optional
Whether to perform simplifications before optimizing. These are:
- ignore any indices that appear in all terms
- combine any repeated indices within a single term
- reduce any non-output indices that only appear on a single term
- combine any scalar terms
- combine any tensors with matching indices (hadamard products)
Such simpifications may be required in the general case for the proper
functioning of the core optimization, but may be skipped if the input
indices are already in a simplified form.
use_ssa : bool, optional
Whether to return the contraction path in 'single static assignment'
(SSA) format (i.e. as if each intermediate is appended to the list of
inputs, without removals). This can be quicker and easier to work with
than the 'linear recycled' format that `numpy` and `opt_einsum` use.
Returns
-------
path : list[list[int]]
The best contraction path, given as a sequence of pairs of node
indices.
flops : float
The flops (/ contraction cost / number of multiplications), of the best
contraction path, given log10.
"""
...
def optimize_simplify(
inputs: typing.Sequence[typing.Sequence[str]],
output: typing.Sequence[str],
size_dict: typing.Mapping[str, float],
use_ssa: typing.Optional[bool] = None,
) -> list[list[int]]:
r"""
Find the (partial) contracton path for simplifiactions only.
Parameters
----------
inputs : Sequence[Sequence[str]]
The indices of each input tensor.
output : Sequence[str]
The indices of the output tensor.
size_dict : dict[str, int]
A dictionary mapping indices to their dimension.
use_ssa : bool, optional
Whether to return the contraction path in 'single static assignment'
(SSA) format (i.e. as if each intermediate is appended to the list of
inputs, without removals). This can be quicker and easier to work with
than the 'linear recycled' format that `numpy` and `opt_einsum` use.
Returns
-------
path : list[list[int]]
The contraction path, given as a sequence of pairs of node indices. It
may also have single term contractions.
"""
...
def ssa_to_linear(
ssa_path: typing.Sequence[typing.Sequence[int]], n: typing.Optional[int] = None
) -> list[list[int]]:
r"""
Convert a SSA path to linear format.
"""
...
|