File: cotengrust.pyi

package info (click to toggle)
python-cotengrust 0.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 348 kB
  • sloc: python: 195; makefile: 17
file content (260 lines) | stat: -rw-r--r-- 10,483 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# This file is automatically generated by pyo3_stub_gen
# ruff: noqa: E501, F401

import typing

def find_subgraphs(
    inputs: typing.Sequence[typing.Sequence[str]],
    output: typing.Sequence[str],
    size_dict: typing.Mapping[str, float],
) -> list[list[int]]:
    r"""
    Find all disconnected subgraphs of a specified contraction.
    """
    ...

def optimize_greedy(
    inputs: typing.Sequence[typing.Sequence[str]],
    output: typing.Sequence[str],
    size_dict: typing.Mapping[str, float],
    costmod: typing.Optional[float] = None,
    temperature: typing.Optional[float] = None,
    seed: typing.Optional[int] = None,
    simplify: typing.Optional[bool] = None,
    use_ssa: typing.Optional[bool] = None,
) -> list[list[int]]:
    r"""
    Find a contraction path using a (randomizable) greedy algorithm.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    costmod : float, optional
        When assessing local greedy scores how much to weight the size of the
        tensors removed compared to the size of the tensor added::

            score = size_ab / costmod - (size_a + size_b) * costmod

        This can be a useful hyper-parameter to tune.
    temperature : float, optional
        When asessing local greedy scores, how much to randomly perturb the
        score. This is implemented as::

            score -> sign(score) * log(|score|) - temperature * gumbel()

        which implements boltzmann sampling.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

        - ignore any indices that appear in all terms
        - combine any repeated indices within a single term
        - reduce any non-output indices that only appear on a single term
        - combine any scalar terms
        - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions if `simplify=True`.
    """
    ...

def optimize_optimal(
    inputs: typing.Sequence[typing.Sequence[str]],
    output: typing.Sequence[str],
    size_dict: typing.Mapping[str, float],
    minimize: typing.Optional[str] = None,
    cost_cap: typing.Optional[float] = None,
    search_outer: typing.Optional[bool] = None,
    simplify: typing.Optional[bool] = None,
    use_ssa: typing.Optional[bool] = None,
) -> list[list[int]]:
    r"""
    Find an optimal contraction ordering.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        The size of each index.
    minimize : str, optional
        The cost function to minimize. The options are:

        - "flops": minimize with respect to total operation count only
          (also known as contraction cost)
        - "size": minimize with respect to maximum intermediate size only
          (also known as contraction width)
        - 'max': minimize the single most expensive contraction, i.e. the
          asymptotic (in index size) scaling of the contraction
        - 'write' : minimize the sum of all tensor sizes, i.e. memory written
        - 'combo' or 'combo={factor}` : minimize the sum of
          FLOPS + factor * WRITE, with a default factor of 64.
        - 'limit' or 'limit={factor}` : minimize the sum of
          MAX(FLOPS, alpha * WRITE) for each individual contraction, with a
          default factor of 64.

        'combo' is generally a good default in term of practical hardware
        performance, where both memory bandwidth and compute are limited.
    cost_cap : float, optional
        The maximum cost of a contraction to initially consider. This acts like
        a sieve and is doubled at each iteration until the optimal path can
        be found, but supplying an accurate guess can speed up the algorithm.
    search_outer : bool, optional
        If True, consider outer product contractions. This is much slower but
        theoretically might be required to find the true optimal 'flops'
        ordering. In practical settings (i.e. with minimize='combo'), outer
        products should not be required.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

        - ignore any indices that appear in all terms
        - combine any repeated indices within a single term
        - reduce any non-output indices that only appear on a single term
        - combine any scalar terms
        - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
         The contraction path, given as a sequence of pairs of node indices. It
         may also have single term contractions if `simplify=True`.
    """
    ...

def optimize_random_greedy_track_flops(
    inputs: typing.Sequence[typing.Sequence[str]],
    output: typing.Sequence[str],
    size_dict: typing.Mapping[str, float],
    ntrials: int,
    costmod: typing.Optional[tuple[float, float]] = None,
    temperature: typing.Optional[tuple[float, float]] = None,
    seed: typing.Optional[int] = None,
    simplify: typing.Optional[bool] = None,
    use_ssa: typing.Optional[bool] = None,
) -> tuple[list[list[int]], float]:
    r"""
    Perform a batch of random greedy optimizations, simulteneously tracking
    the best contraction path in terms of flops, so as to avoid constructing a
    separate contraction tree.

    Parameters
    ----------
    inputs : tuple[tuple[str]]
        The indices of each input tensor.
    output : tuple[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    ntrials : int, optional
        The number of random greedy trials to perform. The default is 1.
    costmod : (float, float), optional
        When assessing local greedy scores how much to weight the size of the
        tensors removed compared to the size of the tensor added::

            score = size_ab / costmod - (size_a + size_b) * costmod

        It is sampled uniformly from the given range.
    temperature : (float, float), optional
        When asessing local greedy scores, how much to randomly perturb the
        score. This is implemented as::

            score -> sign(score) * log(|score|) - temperature * gumbel()

        which implements boltzmann sampling. It is sampled log-uniformly from
        the given range.
    seed : int, optional
        The seed for the random number generator.
    simplify : bool, optional
        Whether to perform simplifications before optimizing. These are:

        - ignore any indices that appear in all terms
        - combine any repeated indices within a single term
        - reduce any non-output indices that only appear on a single term
        - combine any scalar terms
        - combine any tensors with matching indices (hadamard products)

        Such simpifications may be required in the general case for the proper
        functioning of the core optimization, but may be skipped if the input
        indices are already in a simplified form.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The best contraction path, given as a sequence of pairs of node
        indices.
    flops : float
        The flops (/ contraction cost / number of multiplications), of the best
        contraction path, given log10.
    """
    ...

def optimize_simplify(
    inputs: typing.Sequence[typing.Sequence[str]],
    output: typing.Sequence[str],
    size_dict: typing.Mapping[str, float],
    use_ssa: typing.Optional[bool] = None,
) -> list[list[int]]:
    r"""
    Find the (partial) contracton path for simplifiactions only.

    Parameters
    ----------
    inputs : Sequence[Sequence[str]]
        The indices of each input tensor.
    output : Sequence[str]
        The indices of the output tensor.
    size_dict : dict[str, int]
        A dictionary mapping indices to their dimension.
    use_ssa : bool, optional
        Whether to return the contraction path in 'single static assignment'
        (SSA) format (i.e. as if each intermediate is appended to the list of
        inputs, without removals). This can be quicker and easier to work with
        than the 'linear recycled' format that `numpy` and `opt_einsum` use.

    Returns
    -------
    path : list[list[int]]
        The contraction path, given as a sequence of pairs of node indices. It
        may also have single term contractions.
    """
    ...

def ssa_to_linear(
    ssa_path: typing.Sequence[typing.Sequence[int]], n: typing.Optional[int] = None
) -> list[list[int]]:
    r"""
    Convert a SSA path to linear format.
    """
    ...