1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
# Licensed under the Apache License: http://www.apache.org/licenses/LICENSE-2.0
# For details: https://github.com/nedbat/coveragepy/blob/master/NOTICE.txt
"""Results of coverage measurement."""
from __future__ import annotations
import collections
import dataclasses
from collections.abc import Container, Iterable
from typing import TYPE_CHECKING
from coverage.exceptions import ConfigError
from coverage.misc import nice_pair
from coverage.types import TArc, TLineNo
if TYPE_CHECKING:
from coverage.data import CoverageData
from coverage.plugin import FileReporter
def analysis_from_file_reporter(
data: CoverageData,
precision: int,
file_reporter: FileReporter,
filename: str,
) -> Analysis:
"""Create an Analysis from a FileReporter."""
has_arcs = data.has_arcs()
statements = file_reporter.lines()
excluded = file_reporter.excluded_lines()
executed = file_reporter.translate_lines(data.lines(filename) or [])
if has_arcs:
arc_possibilities_set = file_reporter.arcs()
arcs: Iterable[TArc] = data.arcs(filename) or []
arcs = file_reporter.translate_arcs(arcs)
# Reduce the set of arcs to the ones that could be branches.
dests = collections.defaultdict(set)
for fromno, tono in arc_possibilities_set:
dests[fromno].add(tono)
single_dests = {
fromno: list(tonos)[0]
for fromno, tonos in dests.items()
if len(tonos) == 1
}
new_arcs = set()
for fromno, tono in arcs:
if fromno != tono:
new_arcs.add((fromno, tono))
else:
if fromno in single_dests:
new_arcs.add((fromno, single_dests[fromno]))
arcs_executed_set = file_reporter.translate_arcs(new_arcs)
exit_counts = file_reporter.exit_counts()
no_branch = file_reporter.no_branch_lines()
else:
arc_possibilities_set = set()
arcs_executed_set = set()
exit_counts = {}
no_branch = set()
return Analysis(
precision=precision,
filename=filename,
has_arcs=has_arcs,
statements=statements,
excluded=excluded,
executed=executed,
arc_possibilities_set=arc_possibilities_set,
arcs_executed_set=arcs_executed_set,
exit_counts=exit_counts,
no_branch=no_branch,
)
@dataclasses.dataclass
class Analysis:
"""The results of analyzing a FileReporter."""
precision: int
filename: str
has_arcs: bool
statements: set[TLineNo]
excluded: set[TLineNo]
executed: set[TLineNo]
arc_possibilities_set: set[TArc]
arcs_executed_set: set[TArc]
exit_counts: dict[TLineNo, int]
no_branch: set[TLineNo]
def __post_init__(self) -> None:
self.arc_possibilities = sorted(self.arc_possibilities_set)
self.arcs_executed = sorted(self.arcs_executed_set)
self.missing = self.statements - self.executed
if self.has_arcs:
n_branches = self._total_branches()
mba = self.missing_branch_arcs()
n_partial_branches = sum(len(v) for k,v in mba.items() if k not in self.missing)
n_missing_branches = sum(len(v) for k,v in mba.items())
else:
n_branches = n_partial_branches = n_missing_branches = 0
self.numbers = Numbers(
precision=self.precision,
n_files=1,
n_statements=len(self.statements),
n_excluded=len(self.excluded),
n_missing=len(self.missing),
n_branches=n_branches,
n_partial_branches=n_partial_branches,
n_missing_branches=n_missing_branches,
)
def narrow(self, lines: Container[TLineNo]) -> Analysis:
"""Create a narrowed Analysis.
The current analysis is copied to make a new one that only considers
the lines in `lines`.
"""
statements = {lno for lno in self.statements if lno in lines}
excluded = {lno for lno in self.excluded if lno in lines}
executed = {lno for lno in self.executed if lno in lines}
if self.has_arcs:
arc_possibilities_set = {
(a, b) for a, b in self.arc_possibilities_set
if a in lines or b in lines
}
arcs_executed_set = {
(a, b) for a, b in self.arcs_executed_set
if a in lines or b in lines
}
exit_counts = {
lno: num for lno, num in self.exit_counts.items()
if lno in lines
}
no_branch = {lno for lno in self.no_branch if lno in lines}
else:
arc_possibilities_set = set()
arcs_executed_set = set()
exit_counts = {}
no_branch = set()
return Analysis(
precision=self.precision,
filename=self.filename,
has_arcs=self.has_arcs,
statements=statements,
excluded=excluded,
executed=executed,
arc_possibilities_set=arc_possibilities_set,
arcs_executed_set=arcs_executed_set,
exit_counts=exit_counts,
no_branch=no_branch,
)
def missing_formatted(self, branches: bool = False) -> str:
"""The missing line numbers, formatted nicely.
Returns a string like "1-2, 5-11, 13-14".
If `branches` is true, includes the missing branch arcs also.
"""
if branches and self.has_arcs:
arcs = self.missing_branch_arcs().items()
else:
arcs = None
return format_lines(self.statements, self.missing, arcs=arcs)
def arcs_missing(self) -> list[TArc]:
"""Returns a sorted list of the un-executed arcs in the code."""
missing = (
p for p in self.arc_possibilities
if p not in self.arcs_executed_set
and p[0] not in self.no_branch
and p[1] not in self.excluded
)
return sorted(missing)
def _branch_lines(self) -> list[TLineNo]:
"""Returns a list of line numbers that have more than one exit."""
return [l1 for l1,count in self.exit_counts.items() if count > 1]
def _total_branches(self) -> int:
"""How many total branches are there?"""
return sum(count for count in self.exit_counts.values() if count > 1)
def missing_branch_arcs(self) -> dict[TLineNo, list[TLineNo]]:
"""Return arcs that weren't executed from branch lines.
Returns {l1:[l2a,l2b,...], ...}
"""
missing = self.arcs_missing()
branch_lines = set(self._branch_lines())
mba = collections.defaultdict(list)
for l1, l2 in missing:
assert l1 != l2, f"In {self.filename}, didn't expect {l1} == {l2}"
if l1 in branch_lines:
mba[l1].append(l2)
return mba
def executed_branch_arcs(self) -> dict[TLineNo, list[TLineNo]]:
"""Return arcs that were executed from branch lines.
Only include ones that we considered possible.
Returns {l1:[l2a,l2b,...], ...}
"""
branch_lines = set(self._branch_lines())
eba = collections.defaultdict(list)
for l1, l2 in self.arcs_executed:
assert l1 != l2, f"Oops: Didn't think this could happen: {l1 = }, {l2 = }"
if (l1, l2) not in self.arc_possibilities_set:
continue
if l1 in branch_lines:
eba[l1].append(l2)
return eba
def branch_stats(self) -> dict[TLineNo, tuple[int, int]]:
"""Get stats about branches.
Returns a dict mapping line numbers to a tuple:
(total_exits, taken_exits).
"""
missing_arcs = self.missing_branch_arcs()
stats = {}
for lnum in self._branch_lines():
exits = self.exit_counts[lnum]
missing = len(missing_arcs[lnum])
stats[lnum] = (exits, exits - missing)
return stats
@dataclasses.dataclass
class Numbers:
"""The numerical results of measuring coverage.
This holds the basic statistics from `Analysis`, and is used to roll
up statistics across files.
"""
precision: int = 0
n_files: int = 0
n_statements: int = 0
n_excluded: int = 0
n_missing: int = 0
n_branches: int = 0
n_partial_branches: int = 0
n_missing_branches: int = 0
@property
def n_executed(self) -> int:
"""Returns the number of executed statements."""
return self.n_statements - self.n_missing
@property
def n_executed_branches(self) -> int:
"""Returns the number of executed branches."""
return self.n_branches - self.n_missing_branches
@property
def pc_covered(self) -> float:
"""Returns a single percentage value for coverage."""
if self.n_statements > 0:
numerator, denominator = self.ratio_covered
pc_cov = (100.0 * numerator) / denominator
else:
pc_cov = 100.0
return pc_cov
@property
def pc_covered_str(self) -> str:
"""Returns the percent covered, as a string, without a percent sign.
Note that "0" is only returned when the value is truly zero, and "100"
is only returned when the value is truly 100. Rounding can never
result in either "0" or "100".
"""
return display_covered(self.pc_covered, self.precision)
@property
def ratio_covered(self) -> tuple[int, int]:
"""Return a numerator and denominator for the coverage ratio."""
numerator = self.n_executed + self.n_executed_branches
denominator = self.n_statements + self.n_branches
return numerator, denominator
def __add__(self, other: Numbers) -> Numbers:
return Numbers(
self.precision,
self.n_files + other.n_files,
self.n_statements + other.n_statements,
self.n_excluded + other.n_excluded,
self.n_missing + other.n_missing,
self.n_branches + other.n_branches,
self.n_partial_branches + other.n_partial_branches,
self.n_missing_branches + other.n_missing_branches,
)
def __radd__(self, other: int) -> Numbers:
# Implementing 0+Numbers allows us to sum() a list of Numbers.
assert other == 0 # we only ever call it this way.
return self
def display_covered(pc: float, precision: int) -> str:
"""Return a displayable total percentage, as a string.
Note that "0" is only returned when the value is truly zero, and "100"
is only returned when the value is truly 100. Rounding can never
result in either "0" or "100".
"""
near0 = 1.0 / 10 ** precision
if 0 < pc < near0:
pc = near0
elif (100.0 - near0) < pc < 100:
pc = 100.0 - near0
else:
pc = round(pc, precision)
return "%.*f" % (precision, pc)
def _line_ranges(
statements: Iterable[TLineNo],
lines: Iterable[TLineNo],
) -> list[tuple[TLineNo, TLineNo]]:
"""Produce a list of ranges for `format_lines`."""
statements = sorted(statements)
lines = sorted(lines)
pairs = []
start: TLineNo | None = None
lidx = 0
for stmt in statements:
if lidx >= len(lines):
break
if stmt == lines[lidx]:
lidx += 1
if not start:
start = stmt
end = stmt
elif start:
pairs.append((start, end))
start = None
if start:
pairs.append((start, end))
return pairs
def format_lines(
statements: Iterable[TLineNo],
lines: Iterable[TLineNo],
arcs: Iterable[tuple[TLineNo, list[TLineNo]]] | None = None,
) -> str:
"""Nicely format a list of line numbers.
Format a list of line numbers for printing by coalescing groups of lines as
long as the lines represent consecutive statements. This will coalesce
even if there are gaps between statements.
For example, if `statements` is [1,2,3,4,5,10,11,12,13,14] and
`lines` is [1,2,5,10,11,13,14] then the result will be "1-2, 5-11, 13-14".
Both `lines` and `statements` can be any iterable. All of the elements of
`lines` must be in `statements`, and all of the values must be positive
integers.
If `arcs` is provided, they are (start,[end,end,end]) pairs that will be
included in the output as long as start isn't in `lines`.
"""
line_items = [(pair[0], nice_pair(pair)) for pair in _line_ranges(statements, lines)]
if arcs is not None:
line_exits = sorted(arcs)
for line, exits in line_exits:
for ex in sorted(exits):
if line not in lines and ex not in lines:
dest = (ex if ex > 0 else "exit")
line_items.append((line, f"{line}->{dest}"))
ret = ", ".join(t[-1] for t in sorted(line_items))
return ret
def should_fail_under(total: float, fail_under: float, precision: int) -> bool:
"""Determine if a total should fail due to fail-under.
`total` is a float, the coverage measurement total. `fail_under` is the
fail_under setting to compare with. `precision` is the number of digits
to consider after the decimal point.
Returns True if the total should fail.
"""
# We can never achieve higher than 100% coverage, or less than zero.
if not (0 <= fail_under <= 100.0):
msg = f"fail_under={fail_under} is invalid. Must be between 0 and 100."
raise ConfigError(msg)
# Special case for fail_under=100, it must really be 100.
if fail_under == 100.0 and total != 100.0:
return True
return round(total, precision) < fail_under
|