1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
# -*- coding: utf-8 -*-
#
# RIPEMD160.py : RIPEMD-160 implementation
#
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
#
# ===================================================================
# The contents of this file are dedicated to the public domain. To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
# This implementation was written with reference to the RIPEMD-160
# specification, which is available at:
# http://homes.esat.kuleuven.be/~cosicart/pdf/AB-9601/
# It is also documented in the _Handbook of Applied Cryptography_, as
# Algorithm 9.55. It's on page 30 of the following PDF file:
# http://www.cacr.math.uwaterloo.ca/hac/about/chap9.pdf
# The RIPEMD-160 specification doesn't really tell us how to do padding, but
# since RIPEMD-160 is inspired by MD4, you can use the padding algorithm from
# RFC 1320.
# According to http://www.users.zetnet.co.uk/hopwood/crypto/scan/md.html:
# RIPEMD-160 is big-bit-endian, little-byte-endian, and left-justified. (Note
# the opposite bit and byte order.) SCAN 1.0.16 incorrectly stated
# "little-bit-endian, little-byte-endian, and right-justified".
"""RIPEMD-160 hash module"""
__all__ = ['new', 'digest_size']
__revision__ = "$Id$"
import struct
# Rather than writing & 0xffffffffL every time (and risking typographical
# errors each time), we use this function.
# Thanks to Thomas Dixon for the idea.
def u32(n):
return n & 0xFFFFffffL
#
# Ordering of the message words
#
# The permutation ρ
rho = [7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8]
# The permutation π(i) = 9i + 5 (mod 16)
pi = [(9*i + 5) & 15 for i in range(16)]
# Round permutation r (left line)
rl = [range(16)] # id
rl += [[rho[j] for j in rl[-1]]] # ρ
rl += [[rho[j] for j in rl[-1]]] # ρ^2
rl += [[rho[j] for j in rl[-1]]] # ρ^3
rl += [[rho[j] for j in rl[-1]]] # ρ^4
# r' (right line)
rr = [list(pi)] # π
rr += [[rho[j] for j in rr[-1]]] # ρπ
rr += [[rho[j] for j in rr[-1]]] # ρ^2 π
rr += [[rho[j] for j in rr[-1]]] # ρ^3 π
rr += [[rho[j] for j in rr[-1]]] # ρ^4 π
#
# Boolean functions
#
# f₁ (x, y, z) = x ⊕ y ⊕ z
f1 = lambda x, y, z: x ^ y ^ z
# f₂ (x, y, z) = (x ∧ y) ∨ (¬x ∧ z)
f2 = lambda x, y, z: (x & y) | (~x & z)
# f₃ (x, y, z) = (x ∨ ¬y) ⊕ z
f3 = lambda x, y, z: (x | ~y) ^ z
# f₄ (x, y, z) = (x ∧ z) ∨ (y ∧ ¬z)
f4 = lambda x, y, z: (x & z) | (y & ~z)
# f₅ (x, y, z) = x ⊕ (y ∨ ¬z)
f5 = lambda x, y, z: x ^ (y | ~z)
# boolean functions (left line)
fl = [f1, f2, f3, f4, f5]
# boolean functions (right line)
fr = [f5, f4, f3, f2, f1]
#
# Shifts
#
# round X0 X1 X2 X3 ...
_shift1 = [11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8]
_shift2 = [12, 13, 11, 15, 6, 9, 9, 7, 12, 15, 11, 13, 7, 8, 7, 7]
_shift3 = [13, 15, 14, 11, 7, 7, 6, 8, 13, 14, 13, 12, 5, 5, 6, 9]
_shift4 = [14, 11, 12, 14, 8, 6, 5, 5, 15, 12, 15, 14, 9, 9, 8, 6]
_shift5 = [15, 12, 13, 13, 9, 5, 8, 6, 14, 11, 12, 11, 8, 6, 5, 5]
# shifts (left line)
sl = [[_shift1[rl[0][i]] for i in range(16)]]
sl.append([_shift2[rl[1][i]] for i in range(16)])
sl.append([_shift3[rl[2][i]] for i in range(16)])
sl.append([_shift4[rl[3][i]] for i in range(16)])
sl.append([_shift5[rl[4][i]] for i in range(16)])
# shifts (right line)
sr = [[_shift1[rr[0][i]] for i in range(16)]]
sr.append([_shift2[rr[1][i]] for i in range(16)])
sr.append([_shift3[rr[2][i]] for i in range(16)])
sr.append([_shift4[rr[3][i]] for i in range(16)])
sr.append([_shift5[rr[4][i]] for i in range(16)])
#
# Constants
#
_kg = lambda x, y: int(2**30 * (y ** (1.0 / x)))
# constants (left line)
KL = [
0, # Round 1: 0
_kg(2, 2), # Round 2: 2**30 * sqrt(2)
_kg(2, 3), # Round 3: 2**30 * sqrt(3)
_kg(2, 5), # Round 4: 2**30 * sqrt(5)
_kg(2, 7), # Round 5: 2**30 * sqrt(7)
]
# constants (right line)
KR = [
_kg(3, 2), # Round 1: 2**30 * cubert(2)
_kg(3, 3), # Round 2: 2**30 * cubert(3)
_kg(3, 5), # Round 3: 2**30 * cubert(5)
_kg(3, 7), # Round 4: 2**30 * cubert(7)
0, # Round 5: 0
]
# cyclic rotate
def rol(s, n):
assert 0 <= s <= 31
assert 0 <= n <= 0xFFFFffffL
return u32((n << s) | (n >> (32-s)))
# Initial value
initial_h = tuple(struct.unpack("<5L", "0123456789ABCDEFFEDCBA9876543210F0E1D2C3".decode('hex')))
def box(h, f, k, x, r, s):
assert len(s) == 16
assert len(x) == 16
assert len(r) == 16
(a, b, c, d, e) = h
for word in range(16):
T = u32(a + f(b, c, d) + x[r[word]] + k)
T = u32(rol(s[word], T) + e)
(b, c, d, e, a) = (T, b, rol(10, c), d, e)
return (a, b, c, d, e)
def _compress(h, x): # x is a list of 16 x 32-bit words
hl = hr = h
# Iterate through all 5 rounds of the compression function for each parallel pipeline
for round in range(5):
# left line
hl = box(hl, fl[round], KL[round], x, rl[round], sl[round])
# right line
hr = box(hr, fr[round], KR[round], x, rr[round], sr[round])
# Mix the two pipelines together
h = (u32(h[1] + hl[2] + hr[3]),
u32(h[2] + hl[3] + hr[4]),
u32(h[3] + hl[4] + hr[0]),
u32(h[4] + hl[0] + hr[1]),
u32(h[0] + hl[1] + hr[2]))
return h
def compress(h, s):
"""The RIPEMD-160 compression function"""
assert len(s) % 64 == 0
p = 0
while p < len(s):
h = _compress(h, struct.unpack("<16L", s[p:p+64]))
p += 64
assert p == len(s)
return h
class RIPEMD160(object):
digest_size = 20
def __init__(self, data=""):
self.h = initial_h
self.bytes = 0 # input size (in bytes)
self.buf = ""
self.update(data)
def update(self, data):
self.buf += data
self.bytes += len(data)
p = len(self.buf) & ~63 # p = floor(len(self.buf) / 64) * 64
if p > 0:
self.h = compress(self.h, self.buf[:p])
self.buf = self.buf[p:]
assert len(self.buf) < 64
def digest(self):
# Merkle-Damgård strengthening, per RFC 1320
# We pad the input with a 1, followed by zeros, followed by the 64-bit
# length of the message in bits, modulo 2**64.
length = (self.bytes << 3) & (2**64-1) # The total length of the message in bits, modulo 2**64
assert len(self.buf) < 64
data = self.buf + "\x80"
if len(data) <= 56:
# one final block
assert len(data) <= 56
data = struct.pack("<56sQ", data, length)
else:
assert len(data) <= 120
data = struct.pack("<120sQ", data, length)
h = compress(self.h, data)
return struct.pack("<5L", *h)
def hexdigest(self):
return self.digest().encode('hex')
def copy(self):
obj = self.__class__()
obj.h = self.h
obj.bytes = self.bytes
obj.buf = self.buf
return obj
def new(data=""):
return RIPEMD160(data)
digest_size = 20
# vim:set ts=4 sw=4 sts=4 expandtab:
|