File: number.py

package info (click to toggle)
python-crypto 2.1.0-2%2Bsqueeze2
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 1,584 kB
  • ctags: 2,188
  • sloc: ansic: 10,073; python: 6,026; makefile: 32; sh: 10
file content (250 lines) | stat: -rw-r--r-- 7,256 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
#
#   number.py : Number-theoretic functions
#
#  Part of the Python Cryptography Toolkit
#
#  Written by Andrew M. Kuchling, Barry A. Warsaw, and others
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================
#

__revision__ = "$Id$"

bignum = long
try:
    from Crypto.PublicKey import _fastmath
except ImportError:
    _fastmath = None

# New functions
from _number_new import *

# Commented out and replaced with faster versions below
## def long2str(n):
##     s=''
##     while n>0:
##         s=chr(n & 255)+s
##         n=n>>8
##     return s

## import types
## def str2long(s):
##     if type(s)!=types.StringType: return s   # Integers will be left alone
##     return reduce(lambda x,y : x*256+ord(y), s, 0L)

def size (N):
    """size(N:long) : int
    Returns the size of the number N in bits.
    """
    bits, power = 0,1L
    while N >= power:
        bits += 1
        power = power << 1
    return bits

def getRandomNumber(N, randfunc=None):
    """getRandomNumber(N:int, randfunc:callable):long
    Return a random N-bit number.

    If randfunc is omitted, then Random.new().read is used.

    NOTE: Confusingly, this function does NOT return N random bits; It returns
    a random N-bit number, i.e. a random number between 2**(N-1) and (2**N)-1.

    This function is for internal use only and may be renamed or removed in
    the future.
    """
    if randfunc is None:
        _import_Random()
        randfunc = Random.new().read

    S = randfunc(N/8)
    odd_bits = N % 8
    if odd_bits != 0:
        char = ord(randfunc(1)) >> (8-odd_bits)
        S = chr(char) + S
    value = bytes_to_long(S)
    value |= 2L ** (N-1)                # Ensure high bit is set
    assert size(value) >= N
    return value

def GCD(x,y):
    """GCD(x:long, y:long): long
    Return the GCD of x and y.
    """
    x = abs(x) ; y = abs(y)
    while x > 0:
        x, y = y % x, x
    return y

def inverse(u, v):
    """inverse(u:long, u:long):long
    Return the inverse of u mod v.
    """
    u3, v3 = long(u), long(v)
    u1, v1 = 1L, 0L
    while v3 > 0:
        q=u3 / v3
        u1, v1 = v1, u1 - v1*q
        u3, v3 = v3, u3 - v3*q
    while u1<0:
        u1 = u1 + v
    return u1

# Given a number of bits to generate and a random generation function,
# find a prime number of the appropriate size.

def getPrime(N, randfunc=None):
    """getPrime(N:int, randfunc:callable):long
    Return a random N-bit prime number.

    If randfunc is omitted, then Random.new().read is used.
    """
    if randfunc is None:
        _import_Random()
        randfunc = Random.new().read

    number=getRandomNumber(N, randfunc) | 1
    while (not isPrime(number, randfunc=randfunc)):
        number=number+2
    return number

def isPrime(N, randfunc=None):
    """isPrime(N:long, randfunc:callable):bool
    Return true if N is prime.

    If randfunc is omitted, then Random.new().read is used.
    """
    _import_Random()
    if randfunc is None:
        randfunc = Random.new().read

    randint = StrongRandom(randfunc=randfunc).randint

    if N == 1:
        return 0
    if N in sieve:
        return 1
    for i in sieve:
        if (N % i)==0:
            return 0

    # Use the accelerator if available
    if _fastmath is not None:
        return _fastmath.isPrime(N)

    # Compute the highest bit that's set in N
    N1 = N - 1L
    n = 1L
    while (n<N):
        n=n<<1L
    n = n >> 1L

    # Rabin-Miller test
    for c in sieve[:7]:
        a=long(c) ; d=1L ; t=n
        while (t):  # Iterate over the bits in N1
            x=(d*d) % N
            if x==1L and d!=1L and d!=N1:
                return 0  # Square root of 1 found
            if N1 & t:
                d=(x*a) % N
            else:
                d=x
            t = t >> 1L
        if d!=1L:
            return 0
    return 1

# Small primes used for checking primality; these are all the primes
# less than 256.  This should be enough to eliminate most of the odd
# numbers before needing to do a Rabin-Miller test at all.

sieve=[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
       61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127,
       131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
       197, 199, 211, 223, 227, 229, 233, 239, 241, 251]

# Improved conversion functions contributed by Barry Warsaw, after
# careful benchmarking

import struct

def long_to_bytes(n, blocksize=0):
    """long_to_bytes(n:long, blocksize:int) : string
    Convert a long integer to a byte string.

    If optional blocksize is given and greater than zero, pad the front of the
    byte string with binary zeros so that the length is a multiple of
    blocksize.
    """
    # after much testing, this algorithm was deemed to be the fastest
    s = ''
    n = long(n)
    pack = struct.pack
    while n > 0:
        s = pack('>I', n & 0xffffffffL) + s
        n = n >> 32
    # strip off leading zeros
    for i in range(len(s)):
        if s[i] != '\000':
            break
    else:
        # only happens when n == 0
        s = '\000'
        i = 0
    s = s[i:]
    # add back some pad bytes.  this could be done more efficiently w.r.t. the
    # de-padding being done above, but sigh...
    if blocksize > 0 and len(s) % blocksize:
        s = (blocksize - len(s) % blocksize) * '\000' + s
    return s

def bytes_to_long(s):
    """bytes_to_long(string) : long
    Convert a byte string to a long integer.

    This is (essentially) the inverse of long_to_bytes().
    """
    acc = 0L
    unpack = struct.unpack
    length = len(s)
    if length % 4:
        extra = (4 - length % 4)
        s = '\000' * extra + s
        length = length + extra
    for i in range(0, length, 4):
        acc = (acc << 32) + unpack('>I', s[i:i+4])[0]
    return acc

# For backwards compatibility...
import warnings
def long2str(n, blocksize=0):
    warnings.warn("long2str() has been replaced by long_to_bytes()")
    return long_to_bytes(n, blocksize)
def str2long(s):
    warnings.warn("str2long() has been replaced by bytes_to_long()")
    return bytes_to_long(s)

def _import_Random():
    # This is called in a function instead of at the module level in order to avoid problems with recursive imports
    global Random, StrongRandom
    from Crypto import Random
    from Crypto.Random.random import StrongRandom