File: connset.py

package info (click to toggle)
python-csa 0.1.12-1.1
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye
  • size: 224 kB
  • sloc: python: 2,300; makefile: 9
file content (1078 lines) | stat: -rw-r--r-- 36,189 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
#
#  This file is part of the Connection-Set Algebra (CSA).
#  Copyright (C) 2010,2011,2012,2020 Mikael Djurfeldt
#
#  CSA is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 3 of the License, or
#  (at your option) any later version.
#
#  CSA is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.
#

import copy

from . import intervalset
from . import valueset

from .csaobject import *

# This is the fundamental connection-set class
# which is also the base class for masks
#
class CSet (CSAObject):
    tag = 'cset'
    
    def __init__ (self, mask, *valueSets):
        CSAObject.__init__ (self, "icset");
        self._mask = mask
        self.valueSets = list (valueSets)
        self.arity = len (self.valueSets)

    def repr (self, name = None):
        if self.arity:
            if not name:
                name = self.name
            vreprs = []
            for k in range (self.arity):
                v = self.value (k)
                if isinstance (v, CSAObject):
                    vreprs += ", %s" % v.repr ()
                else:
                    vreprs += ", %s" % v
            return "%s (%s%s)" % (self.name, self.mask (), "".join (vreprs))
        else:
            if self.mask () == self:
                return self.name
            else:
                return "%s (%s)" % (self.name, self.mask ())

    def mask (self):
        #*fixme* remove this condition?
        if self._mask == None:
            self._mask = self.makeMask ()
        return self._mask

    def value (self, k):
        if self.valueSets[k] == None:
            self.valueSets[k] = self.makeValueSet (k)
        return self.valueSets[k]

    def makeValueSet (self, k):
        if isFinite (self.mask ()):
            return self.makeFiniteValueSet (k, self.mask ().bounds ())
        raise RuntimeError ("don't know how to return value set for this connection-set")

    def makeFiniteValueSet (self, k, bounds):
        raise RuntimeError ("don't know how to return value set for this connection-set")

    def __len__ (self):
        return len (self.mask ())

    def __iter__ (self):
        # this code is used for full connection sets
        if isFinite (self.mask ()):
            state = State ()
            obj = self.startIteration (state)
            (low0, high0, low1, high1) = self.bounds ()
            return obj.iterator (low0, high0, low1, high1, state)
        else:
            raise RuntimeError ('attempt to retrieve iterator over infinite connection-set')

    def bounds (self):
        return self.mask ().bounds ()

    def startIteration (self, state):
        obj = copy.copy (self)
        obj._mask = self.mask ().startIteration (state)
        return obj

    def iterator (self, low0, high0, low1, high1, state):
        for (i, j) in self._mask.iterator (low0, high0, low1, high1, state):
            yield (i, j, [ v (i, j) for v in self.valueSets ])

    def multisetSum (self, other):
        return CSetMultisetSum (self, other)

    def intersection (self, other):
        assert isinstance (other, Mask), 'expected Mask operand'
        return SubCSet (self,
                        self.mask ().intersection (other), *self.valueSets)

    def difference (self, other):
        assert isinstance (other, Mask), 'expected Mask operand'
        return SubCSet (self, self.mask ().difference (other), *self.valueSets)


# This is the connection-set wrapper class which has as its only purpose
# to wrap non mask connection-sets so that the same code can implement
# connection-sets of different arity.  Some type dispatch is also done here.
#
class ConnectionSet (CSAObject):
    def __init__ (self, c):
        CSAObject.__init__ (self, "cset")
        self.c = c

    def repr (self):
        return self.c.repr ()
        
    def __len__ (self):
        return len (self.c)

    def __iter__ (self):
        return ConnectionSet.iterators[self.c.arity] (self)

    def iter0 (self):
        assert False, 'Should not have executed ConnectionSet.iter0'

    def iter1 (self):
        for (i, j, vs) in iter (self.c):
            (v0,) = vs
            yield (i, j, v0)

    def iter2 (self):
        for (i, j, vs) in iter (self.c):
            (v0, v1) = vs
            yield (i, j, v0, v1)

    def iter3 (self):
        for (i, j, vs) in iter (self.c):
            (v0, v1, v2) = vs
            yield (i, j, v0, v1, v2)

    def __add__ (self, other):
        if isNumber (other):
            return ConnectionSet (self.c.addScalar (other))
        else:
            return ConnectionSet (self.c.multisetSum (coerceCSet (other)))

    def __radd__ (self, other):
        return self.__add__ (other)

    def __sub__ (self, other):
        if isNumber (other):
            return ConnectionSet (self.c.addScalar (- other))
        else:
            return ConnectionSet (self.c.difference (coerceCSet (other)))

    def __rsub__ (self, other):
        return ConnectionSet (self.c.__neg__ ().addScalar (other))
    
    def __mul__ (self, other):
        if isNumber (other):
            return ConnectionSet (self.c.mulScalar (other))
        else:
            return ConnectionSet (self.c.intersection (coerceCSet (other)))

    def __rmul__ (self, other):
        return self.__mul__ (other)

ConnectionSet.iterators = [ ConnectionSet.iter0, \
                            ConnectionSet.iter1, \
                            ConnectionSet.iter2, \
                            ConnectionSet.iter3 ]


# Some helper functions

def source (x):
    return x[0]

def target (x):
    return x[1]

def isNumber (x):
    return isinstance (x, (int, float, complex))

def coerceCSet (obj):
    if isinstance (obj, list):
        return ExplicitMask (obj)
    elif isinstance (obj, ConnectionSet):
        return obj.c
    assert isinstance (obj, Mask), 'expected connection-set'
    return obj

def valueSet (obj):
    return valueset.QuotedValueSet (obj)

def coerceValueSet (obj):
    if callable (obj):
        return obj
    else:
        return valueSet (obj)

def isFinite (x):
    return isinstance (x, Finite)

def isEmpty (x):
    iterator = iter (x.mask ())
    try:
        next (iterator)
        return False
    except StopIteration:
        return True

def transpose (obj):
    return obj.transpose ()


# This is the fundamental mask class
#
class Mask (CSet):
    def __init__ (self):
        CSet.__init__ (self, self)

    def __len__ (self):
        N = 0
        for c in self:
            N += 1
        return N

    def __iter__ (self):
        raise RuntimeError ('attempt to retrieve iterator over infinite mask')

    def __add__ (self, other):
        return self.multisetSum (other)

    def __sub__ (self, other):
        return self.difference (other)

    def __mul__ (self, other):
        if isinstance (other, Mask):
            return self.intersection (other)
        elif isinstance (other, list):
            return self.intersection (ExplicitMask (other))
        elif isinstance (other, ConnectionSet):
            return other.__mul__ (self)
        else:
            return NotImplemented

    def __rmul__ (self, other):
        if isinstance (other, list):
            return self.intersection (ExplicitMask (other))
        else:
            return NotImplemented

    def __invert__ (self):
        return self.complement ()

    def transpose (self):
        assert isFinite (self), \
               'transpose currently only supports finite masks'
        return TransposedMask (self)

    def shift (self, M, N):
        return shiftedMask (self, M, N)
    
    def startIteration (self, state):
        # default action:
        return self

    def iterator (self, low0, high0, low1, high1, state):
        return NotImplemented

    def multisetSum (self, other):
        if isFinite (self) and isFinite (other):
            return FiniteMaskMultisetSum (self, other)
        else:
            return MaskMultisetSum (self, other)

    def intersection (self, other):
        # IntervalSetMask implements a specialized version of intersection
        if isinstance (other, IntervalSetMask):
            return other.intersection (self)
        # Generate Finite instances if either operand is finite
        elif isFinite (self):
            return FiniteMaskIntersection (self, other)
        elif isFinite (other):
            return FiniteMaskIntersection (other, self)
        else:
            return MaskIntersection (self, other)

    def complement (self):
        return MaskComplement (self)

    def difference (self, other):
        return MaskDifference (self, other)


class Finite (object):
    def bounds (self):
        return NotImplemented

    def maxBounds (self, b1, b2):
        return (min (b1[0], b2[0]), max (b1[1], b2[1]),
                min (b1[2], b2[2]), max (b1[3], b2[3]))

    def __iter__ (self):
        state = State ()
        obj = self.startIteration (state)
        (low0, high0, low1, high1) = self.bounds ()
        return obj.iterator (low0, high0, low1, high1, state)


class FiniteMask (Finite, Mask):
    def __init__ (self):
        Mask.__init__ (self)
        self.low0 = 0
        self.high0 = 0
        self.low1 = 0
        self.high1 = 0

    def bounds (self):
        return (self.low0, self.high0, self.low1, self.high1)

    def isBoundedBy (self, low0, high0, low1, high1):
        return low0 > self.low0 or high0 < self.high0 \
               or low1 > self.low1 or high1 < self.high1

# not used
class NoParIterator ():
    def __init__ (self):
        self.subIterator = False

    def iterator (self, low0, high0, low1, high1, state):
        try:
            print(low0, high0, low1, high1)
            if not self.subIterator:
                self.subIterator = self.noParIterator (state)
                self.lastC = next (self.subIterator)
            c = self.lastC
            while c[1] < low1:
                c = next (self.subIterator)
            while c[1] < high1:
                j = c[1]
                while c[1] == j and c[0] < low0:
                    c = next (self.subIterator)
                while c[1] == j and c[0] < high0:
                    yield c
                    c = next (self.subIterator)
                while c[1] == j:
                    c = next (self.subIterator)
            self.lastC = c
        except StopIteration:
            return


class BinaryMask (BinaryCSAObject, Mask):
    def __init__ (self, operator, op1, op2, precedence):
        Mask.__init__ (self)
        BinaryCSAObject.__init__ (self, operator, op1, op2, precedence)

    def startIteration (self, state):
        obj = copy.copy (self)
        obj.op1 = self.op1.startIteration (state)
        obj.op2 = self.op2.startIteration (state)
        return obj


class MaskIntersection (BinaryMask):
    def __init__ (self, op1, op2):
        BinaryMask.__init__ (self, '*', op1, op2, 1)

    def iterator (self, low0, high0, low1, high1, state):
        try:
            iter1 = self.op1.iterator (low0, high0, low1, high1, state)
            iter2 = self.op2.iterator (low0, high0, low1, high1, state)
            (i1, j1) = next (iter1)
            (i2, j2) = next (iter2)
            while True:
                if (j1, i1) < (j2, i2):
                    (i1, j1) = next (iter1)
                elif (j2, i2) < (j1, i1):
                    (i2, j2) = next (iter2)
                else:
                    yield (i1, j1)
                    (i1, j1) = next (iter1)
                    (i2, j2) = next (iter2)
        except StopIteration:
            return


class FiniteMaskIntersection (Finite, MaskIntersection):
    def __init__ (self, op1, op2):
        assert isFinite (op1)
        MaskIntersection.__init__ (self, op1, op2)

    def bounds (self):
        return self.op1.bounds ()


class MaskMultisetSum (BinaryMask):
    def __init__ (self, op1, op2):
        BinaryMask.__init__ (self, "+", op1, op2, 0)

    def iterator (self, low0, high0, low1, high1, state):
        try:
            iter1 = self.op1.iterator (low0, high0, low1, high1, state)
            iter2 = self.op2.iterator (low0, high0, low1, high1, state)
            try:
                (i1, j1) = next (iter1)
            except StopIteration:
                (i2, j2) = next (iter2)
                while True:
                    yield (i2, j2)
                    (i2, j2) = next (iter2)
            try:
                (i2, j2) = next (iter2)
            except StopIteration:
                while True:
                    yield (i1, j1)
                    (i1, j1) = next (iter1)
            while True:
                i1s = i1
                j1s = j1
                while (j1, i1) <= (j2, i2):
                    yield (i1, j1)
                    try:
                        (i1, j1) = next (iter1)
                    except StopIteration:
                        while True:
                            yield (i2, j2)
                            (i2, j2) = next (iter2)
                while (j2, i2) <= (j1s, i1s):
                    yield (i2, j2)
                    try:
                        (i2, j2) = next (iter2)
                    except StopIteration:
                        while True:
                            yield (i1, j1)
                            (i1, j1) = next (iter1)
        except StopIteration:
            return


class FiniteMaskMultisetSum (Finite, MaskMultisetSum):
    def __init__ (self, op1, op2):
        assert isFinite (op1) and isFinite (op2)
        MaskMultisetSum.__init__ (self, op1, op2)

    def bounds (self):
        return self.maxBounds (self.op1.bounds (), self.op2.bounds ())


class MaskDifference (BinaryMask):
    def __init__ (self, op1, op2):
        BinaryMask.__init__ (self, "-", op1, op2, 0)

    def iterator (self, low0, high0, low1, high1, state):
        iter1 = self.op1.iterator (low0, high0, low1, high1, state)
        iter2 = self.op2.iterator (low0, high0, low1, high1, state)
        try:
            (i1, j1) = next (iter1)
            (i2, j2) = next (iter2)
            while True:
                if (j1, i1) < (j2, i2):
                    yield (i1, j1)
                    (i1, j1) = next (iter1)
                    continue
                elif (i1, j1) == (i2, j2):
                    (i1, j1) = next (iter1)
                try:
                    (i2, j2) = next (iter2)
                except StopIteration:
                    while True:
                        yield (i1, j1)
                        (i1, j1) = next (iter1)
        except StopIteration:
            return


def cmpPostOrder (c0, op1):
    return  ((c0[1], c0[0]) > (op1[1], op1[0])) -  ((c0[1], c0[0]) < (op1[1], op1[0]))


def cmp_to_key(mycmp):
    'Convert a cmp= function into a key= function'
    class K:
        def __init__(self, obj, *args):
            self.obj = obj
        def __lt__(self, other):
            return mycmp(self.obj, other.obj) < 0
        def __gt__(self, other):
            return mycmp(self.obj, other.obj) > 0
        def __eq__(self, other):
            return mycmp(self.obj, other.obj) == 0
        def __le__(self, other):
            return mycmp(self.obj, other.obj) <= 0
        def __ge__(self, other):
            return mycmp(self.obj, other.obj) >= 0
        def __ne__(self, other):
            return mycmp(self.obj, other.obj) != 0
    return K


class ExplicitMask (FiniteMask):
    def __init__ (self, connections):
        FiniteMask.__init__ (self)
        self.connections = list (connections)
        self.connections.sort (key=cmp_to_key(cmpPostOrder))
        if connections:
            self.low0 = min ((i for (i, j) in self.connections))
            self.high0 = max ((i for (i, j) in self.connections)) + 1
            self.low1 = self.connections[0][1]
            self.high1 = self.connections[-1][1] + 1

    def __len__ (self):
        return len (self.connections)

    def iterator (self, low0, high0, low1, high1, state):
        if not self.isBoundedBy (low0, high0, low1, high1):
            return iter (self.connections)
        else:
            return self.boundedIterator (low0, high0, low1, high1, state)

    def boundedIterator (self, low0, high0, low1, high1, state):
        iterator = iter (self.connections)
        try:
            (i, j) = next (iterator)
            while j < low1:
                (i, j) = next (iterator)
            while j < high1:
                if low0 <= i and i < high0:
                    yield (i, j)
                (i, j) = next (iterator)
        except StopIteration:
            return


class IntervalSetMask (Mask):
    tag = 'cross'
    
    def __init__ (self, set0, set1):
        Mask.__init__ (self)
        self.set0 = set0
        self.set1 = set1

    @staticmethod
    def _sets_to_repr (set0, set1):
        return 'cross(%s, %s)' % (set0.repr (), set1.repr ())
    
    def repr (self):
        return self._sets_to_repr (self.set0, self.set1)

    def __contains__ (self, c):
        return c[0] in self.set0 and c[1] in self.set1

    def transpose (self):
        return IntervalSetMask (self.set1, self.set0)

    def shift (self, M, N):
        return IntervalSetMask (self.set0.shift (M), self.set1.shift (N))

    def iterator (self, low0, high0, low1, high1, state):
        iterator1 = self.set1.intervalIterator ()
        try:
            i1 = next (iterator1)
            while i1[1] < low1:
                i1 = next (iterator1)
            while i1[0] < high1:
                for j in range (max (i1[0], low1), min (i1[1] + 1, high1)):
                    iterator0 = self.set0.intervalIterator ()
                    try:
                        i0 = next (iterator0)
                        while i0[1] < low0:
                            i0 = next (iterator0)
                        if i0[1] < high0:
                            for i in range (max (i0[0], low0), i0[1] + 1):
                                yield (i, j)
                            i0 = next (iterator0)
                            while i0[1] < high0:
                                for i in range (i0[0], i0[1] + 1):
                                    yield (i, j)
                                i0 = next (iterator0)
                            for i in range (i0[0], min (i0[1] + 1, high0)):
                                yield (i, j)
                        else:
                            for i in range (max (i0[0], low0), min (i0[1] + 1, high0)):
                                yield (i, j)
                    except StopIteration:
                        pass
                i1 = next (iterator1)
        except StopIteration:
            return

    def intersection (self, other):
        if isinstance (other, IntervalSetMask):
            set0 = self.set0.intersection (other.set0)
            set1 = self.set1.intersection (other.set1)
            return intervalSetMask (set0, set1)
        else:
            return ISetBoundedMask (self.set0, self.set1, other)

    def multisetSum (self, other):
        if isinstance (other, IntervalSetMask):
            if not self.set0.intersection (other.set0) \
               or not self.set1.intersection (other.set1):
                set0 = self.set0.union (other.set0)
                set1 = self.set1.union (other.set1)
                return intervalSetMask (set0, set1)
            else:
                raise RuntimeError ('sums of overlapping IntervalSetMask:s not yet supported')
        else:
            return FiniteMask.multisetSum (self, other)

    @staticmethod
    def _sets_to_xml (set0, set1):
        return CSAObject.apply (IntervalSetMask.tag, set0, set1)

    def _to_xml (self):
        return self._sets_to_xml (self.set0, self.set1)


class FiniteISetMask (FiniteMask, IntervalSetMask):
    def __init__ (self, set0, set1):
        FiniteMask.__init__ (self)
        IntervalSetMask.__init__ (self, set0, set1)
        if self.set0 and self.set1:
            self.low0 = self.set0.min ()
            self.high0 = self.set0.max () + 1
            self.low1 = self.set1.min ()
            self.high1 = self.set1.max () + 1

    def __len__ (self):
        return len (self.set0) * len (self.set1)

    def transpose (self):
        return FiniteISetMask (self.set1, self.set0)

    def shift (self, M, N):
        return FiniteISetMask (self.set0.shift (M), self.set1.shift (N))

    def iterator (self, low0, high0, low1, high1, state):
        if not self.isBoundedBy (low0, high0, low1, high1):
            return self.simpleIterator ()
        else:
            return IntervalSetMask.iterator (self, low0, high0, low1, high1, state)

    def simpleIterator (self):
        for j in self.set1:
            for i in self.set0:
                yield (i, j)


class FiniteSourcesISetMask (IntervalSetMask):
    def __init__ (self, set0, set1):
        IntervalSetMask.__init__ (self, set0, set1)

    def transpose (self):
        return FiniteTargetsISetMask (self.set1, self.set0)

    def shift (self, M, N):
        return FiniteSourcesISetMask (self.set0.shift (M), \
                                      self.set1.shift (N))


class FiniteTargetsISetMask (IntervalSetMask):
    def __init__ (self, set0, set1):
        IntervalSetMask.__init__ (self, set0, set1)

    def transpose (self):
        return FiniteSourcesISetMask (self.set1, self.set0)

    def shift (self, M, N):
        return FiniteTargetsISetMask (self.set0.shift (M), \
                                      self.set1.shift (N))


def intervalSetMask (set0, set1):
    set0 = set0 if isinstance (set0, intervalset.IntervalSet) \
           else intervalset.IntervalSet (set0)
    set1 = set1 if isinstance (set1, intervalset.IntervalSet) \
           else intervalset.IntervalSet (set1)
    if set0.finite ():
        if set1.finite ():
            return FiniteISetMask (set0, set1)
        else:
            return FiniteSourcesISetMask (set0, set1)
    else:
        if set1.finite ():
            return FiniteTargetsISetMask (set0, set1)
        else:
            return IntervalSetMask (set0, set1)

CSAObject.tag_map[CSA + IntervalSetMask.tag] = (intervalSetMask, 2)


class ISetBoundedMask (FiniteMask):
    def __init__ (self, set0, set1, mask):
        FiniteMask.__init__ (self)
        self.precedence = 1
        self.set0 = set0
        self.set1 = set1
        self.subMask = mask
        inf = intervalset.infinity
        if isFinite (mask):
            (low0, high0, low1, high1) = mask.bounds ()
        else:
            (low0, high0, low1, high1) = (0, inf, 0, inf)
        if self.set0 and self.set1:
            self.low0 = max (self.set0.min (), low0)
            if self.set0.finite ():
                self.high0 = min (self.set0.max () + 1, high0)
            else:
                self.high0 = high0
            self.low1 = max (self.set1.min (), low1)
            if self.set1.finite ():
                self.high1 = min (self.set1.max () + 1, high1)
            else:
                self.high1 = high1
        assert self.high0 != inf and self.high1 != inf, 'infinite ISetBoundedMask:s currently not supported'

    def startIteration (self, state):
        obj = copy.copy (self)
        obj.subMask = self.subMask.startIteration (state)
        return obj

    def iterator (self, low0, high0, low1, high1, state):
        if not self.isBoundedBy (low0, high0, low1, high1):
            return self.simpleIterator (state)
        else:
            return self.boundedIterator (low0, high0, low1, high1, state)

    def simpleIterator (self, state):
        for i1 in self.set1.intervalIterator ():
            for i0 in self.set0.intervalIterator ():
                for e in self.subMask.iterator (i0[0], i0[1] + 1,
                                                i1[0], i1[1] + 1,
                                                state):
                    yield e

    def boundedIterator (self, low0, high0, low1, high1, state):
        iterator1 = self.set1.intervalIterator ()
        try:
            i1 = next (iterator1)
            while i1[1] < low1:
                i1 = next (iterator1)
            while i1[0] < high1:
                i1 = (max (i1[0], low1), min (i1[1], high1 - 1))
                iterator0 = self.set0.intervalIterator ()
                try:
                    i0 = next (iterator0)
                    while i0[1] < low0:
                        i0 = next (iterator0)
                    if i0[1] < high0:
                        for e in self.subMask.iterator (max (i0[0], low0),
                                                        i0[1] + 1,
                                                        i1[0], i1[1] + 1,
                                                        state):
                            yield e
                        i0 = next (iterator0)
                        while i0[1] < high0:
                            for e in self.subMask.iterator (i0[0], i0[1] + 1,
                                                            i1[0], i1[1] + 1,
                                                            state):
                                yield e
                            i0 = next (iterator0)
                            for e in self.subMask.iterator (i0[0],
                                                            min (i0[1] + 1, high0),
                                                            i1[0], i1[1] + 1,
                                                            state):
                                yield e
                    else:
                            for e in self.subMask.iterator (max (i0[0], low0),
                                                            min (i0[1] + 1, high0),
                                                            i1[0], i1[1] + 1,
                                                            state):
                                yield e
                except StopIteration:
                    pass
                i1 = next (iterator1)
        except StopIteration:
            return

    def repr (self):
        return '%s*%s' % (IntervalSetMask._sets_to_repr (self.set0, self.set1),
                          self.subMask._repr_as_op2 (self.precedence))

    def _to_xml (self):
        return E ('apply',
                  E ('times'),
                  IntervalSetMask._sets_to_xml (self.set0, self.set1),
                  self.subMask._to_xml ())

# The ExplicitCSet captures the original value sets before coercion.
# It is used in the implementation of the "cset" constructor.
#
class ExplicitCSet (CSet):
    def __init__ (self, mask, *valueSets):
        if isinstance (mask, list):
            mask = ExplicitMask (mask)
        self.originalValueSets = valueSets
        CSet.__init__ (self, mask, *list (map (coerceValueSet, valueSets)))

    def value (self, k):
        return self.originalValueSets[k]


# SubCSet is used in the cases where a new CSet can be created by
# an operation on the mask.
#
class SubCSet (CSet):
    def __init__ (self, cset, mask, *valueSets):
        CSet.__init__ (self, mask, *valueSets)
        self.subCSet = cset

    def value (self, k):
        if self.valueSets[k] == None:
            self.valueSets[k] = self.makeValueSet (k)
        # defer to subCSet in case it is an ExplicitCSet
        return self.subCSet.value (k)

    def makeValueSet (self, k):
        if isFinite (self.mask ()):
            bounds = self.mask ().bounds ()
            return self.subCSet.makeFiniteValueSet (k, bounds)
        else:
            return self.subCSet.makeValueSet (k)


class BinaryCSet (BinaryCSAObject, CSet):
    def __init__ (self, operator, op1, op2):
        CSet.__init__ (self, None, *[ None for v in op1.valueSets ])
        self.name = operator
        self.op1 = op1
        self.op2 = op2
        self.valueSetMap = None

    def makeFiniteValueSet (self, k, bounds):
        if self.valueSetMap == None:
            self.valueSetMap = self.makeValueSetMap (bounds)
        return lambda i, j: self.valueSetMap[(i, j)][k]

    def makeValueSetMap (self, bounds):
        m = {}
        state = State ()
        obj = self.startIteration (state)
        (low0, high0, low1, high1) = bounds
        for (i, j, v) in obj.iterator (low0, high0, low1, high1, state):
            m[(i, j)] = v
        return m


class BinaryCSets (BinaryCSet):
    def __init__ (self, operator, op1, op2):
        assert op1.arity == op2.arity, 'binary operation on connection-sets with different arity'
        BinaryCSet.__init__ (self, operator, op1, op2)


class CSetIntersection (BinaryCSet):
    def __init__ (self, op1, op2):
        assert isinstance (op2, Mask), 'expected Mask operand'
        BinaryCSet.__init__ (self, "*", op1, op2)
        self._mask = op1.mask ().intersection (op2)

    def iterator (self, low0, high0, low1, high1, state):
        iter1 = self.op1.iterator (low0, high0, low1, high1, state)
        iter2 = self.op2.iterator (low0, high0, low1, high1, state)
        try:
            (i1, j1, v1) = next (iter1)
            (i2, j2) = next (iter2)
            while True:
                if (j1, i1) < (j2, i2):
                    (i1, j1, v1) = next (iter1)
                elif (j2, i2) < (j1, i1):
                    (i2, j2) = next (iter2)
                else:
                    yield (i1, j1, v1)
                    (i1, j1, v1) = next (iter1)
                    (i2, j2) = next (iter2)
        except StopIteration:
            return        


class CSetMultisetSum (BinaryCSets):
    def __init__ (self, op1, op2):
        BinaryCSet.__init__ (self, "+", op1, op2)
        self._mask = op1.mask ().multisetSum (op2.mask ())
        
    def iterator (self, low0, high0, low1, high1, state):
        iter1 = self.op1.iterator (low0, high0, low1, high1, state)
        iter2 = self.op2.iterator (low0, high0, low1, high1, state)
        try:
            try:
                (i1, j1, v1) = next (iter1)
            except StopIteration:
                (i2, j2, v2) = next (iter2)
                while True:
                    yield (i2, j2, v2)
                    (i2, j2, v2) = next (iter2)
            try:
                (i2, j2, v2) = next (iter2)
            except StopIteration:
                while True:
                    yield (i1, j1, v1)
                    (i1, j1, v1) = next (iter1)
            while True:
                i1s = i1
                j1s = j1
                while (j1, i1) <= (j2, i2):
                    yield (i1, j1, v1)
                    try:
                        (i1, j1, v1) = next (iter1)
                    except StopIteration:
                        while True:
                            yield (i2, j2, v2)
                            (i2, j2, v2) = next (iter2)
                while (j2, i2) <= (j1s, i1s):
                    yield (i2, j2, v2)
                    try:
                        (i2, j2, v2) = next (iter2)
                    except StopIteration:
                        while True:
                            yield (i1, j1, v1)
                            (i1, j1, v1) = next (iter1)
        except StopIteration:
            return

    def intersection (self, other):
        assert isinstance (other, Mask), 'expected Mask operand'
        if isFinite (self) or isFinite (other):
            # since operands are finite we are allowed to use isEmpty
            if isEmpty (self.op2.mask ().intersection (other)):
                return self.op1.intersection (other)
            if isEmpty (self.op1.mask ().intersection (other)):
                return self.op2.intersection (other)
        return CSetIntersection (self, other)


class TransposedMask (Finite, Mask):
    def __init__ (self, mask):
        self.subMask = mask

    def transpose (self):
        return self.subMask

    def bounds (self):
        (low0, high0, low1, high1) = self.subMask.bounds ()
        return (low1, high1, low0, high0)

    def startIteration (self, state):
        obj = copy.copy (self)
        obj.transposedState = state.transpose ()
        obj.subMask = self.subMask.startIteration (obj.transposedState)
        return obj

    def iterator (self, low0, high0, low1, high1, state):
        ls = []
        for c in self.subMask.iterator (low1, high1, low0, high0, \
                                        self.transposedState):
            ls.append ((c[1], c[0]))
        ls.sort (key=cmp_to_key(cmpPostOrder))
        return iter (ls)


class ShiftedMask (Mask):
    def __init__ (self, mask, M, N):
        self.subMask = mask
        self.M = M
        self.N = N

    def startIteration (self, state):
        obj = copy.copy (self)
        obj.subMask = self.subMask.startIteration (state)
        return obj

    def iterator (self, low0, high0, low1, high1, state):
        low0 -= self.M
        high0 -= self.M
        low1 -= self.N
        high1 -= self.N
        for (i, j) in self.subMask.iterator (max (low0, 0), high0, \
                                             max (low1, 0), high1, \
                                             state):
            (i1, j1) = (i + self.M, j + self.N)
            if i1 >= 0 and j1 >= 0:
                yield (i1, j1)


class FiniteShiftedMask (Finite, ShiftedMask):
    def bounds (self):
        (low0, high0, low1, high1) = self.subMask.bounds ()
        low0 += self.M
        high0 += self.M
        low1 += self.N
        high1 += self.N
        return (max (low0, 0), high0, max (low1, 0), high1)


def shiftedMask (mask, M, N):
    if isFinite (mask):
        return FiniteShiftedMask (mask, M, N)
    else:
        return ShiftedMask (mask, M, N)


class State (dict):
    def transpose (self):
        if 'partitions' in self:
            s = State (self)
            s['partitions'] = list (map (transpose, s['partitions']))
            return s
        else:
            return self


class MaskPartition (Finite, Mask):
    def __init__ (self, mask, partitions, selected, seed):
        Mask.__init__ (self)

        #*fixme* How can we know when this is not necessary?
        self.subMask = partitions[selected] * mask

        #domain = IntervalSetMask ([], [])
        #for m in partitions:
        #    assert isFinite (m), 'partitions must be finite'
        #    domain = domain.multisetSum (m)
        
        self.state = { #'domain' : domain,
                       'partitions' : partitions,
                       'selected' : selected }
        if seed != None:
            self.state['seed'] = seed

    def bounds (self):
        return self.subMask.bounds ()

    def startIteration (self, state):
        for key in self.state:
            state[key] = self.state[key]
        return self.subMask.startIteration (state)

    def iterator (self, low0, high0, low1, high1, state):
        raise RuntimeError ('iterator called on wrong object')


class CSetPartition (CSet):
    def __init__ (self, c, partitions, selected, seed):
        #*fixme* How can we know when this is not necessary?
        
        self.subCSet = (partitions[selected] * c).c
        CSet.__init__ (self, self.subCSet.mask (), *self.subCSet.valueSets)

        self.state = { #'domain' : domain,
                       'partitions' : partitions,
                       'selected' : selected }
        if seed != None:
            self.state['seed'] = seed

    def makeFiniteValueSet (self, k, bounds):
        return self.subCSet.makeFiniteValueSet (k, bounds);

    def bounds (self):
        return self.subCSet.bounds ()

    def startIteration (self, state):
        for key in self.state:
            state[key] = self.state[key]
        return self.subCSet.startIteration (state)

    def iterator (self, low0, high0, low1, high1, state):
        raise RuntimeError ('iterator called on wrong object')