1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#
# This file is part of the Connection-Set Algebra (CSA).
# Copyright (C) 2010,2011,2012,2019 Mikael Djurfeldt
#
# CSA is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# CSA is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
import math as _math
import random as _random
import numpy as _numpy
from . import intervalset as _iset
def grid2d (width, xScale = 1.0, yScale = 1.0, x0 = 0.0, y0 = 0.0):
xScale /= width
yScale /= width
g = lambda i: \
(x0 + xScale * (i % width), y0 + yScale * (i // width))
g.type = 'grid'
g.width = width
g.xScale = xScale
g.yScale = yScale
g.x0 = x0
g.y0 = y0
g.inverse = lambda x, y: \
int (round (x / xScale - x0)) \
+ width * int (round (y / yScale - y0))
return g
def random2d (N, xScale = 1.0, yScale = 1.0):
coords = [(xScale * _random.random (), yScale * _random.random ())
for i in range (0, N)]
g = lambda i: coords[i]
g.type = 'ramdom'
g.N = N
g.xScale = xScale
g.yScale = yScale
# We should use a KD-tree here
g.inverse = lambda x, y, domain=_iset.IntervalSet ((0, N - 1)): \
_numpy.array ([euclidDistance2d ((x, y), g(i)) \
for i in domain]).argmin () \
+ domain.min ()
return g
class ProjectionOperator (object):
def __init__ (self, projection):
self.projection = projection
def __mul__ (self, g):
projection = self.projection
return lambda i: projection (g (i))
def euclidDistance2d (p1, p2):
dx = p1[0] - p2[0]
dy = p1[1] - p2[1]
return _math.sqrt (dx * dx + dy * dy)
def euclidMetric2d (g1, g2 = None):
g2 = g1 if g2 == None else g2
return lambda i, j: euclidDistance2d (g1 (i), g2 (j))
# These functions were contributed by Dr. Birgit Kriener
def euclidToroidDistance2d (p1, p2, xScale=1.0, yScale=1.0):
ddx, ddy = abs (p1[0] - p2[0]), abs (p1[1] - p2[1])
dx = ddx if ddx < xScale/2. else xScale - ddx
dy = ddy if ddy < yScale/2. else yScale - ddy
return _math.sqrt (dx * dx + dy * dy)
def euclidToroidMetric2d (g1, g2 = None, xScale=1.0, yScale=1.0):
g2 = g1 if g2 == None else g2
return lambda i, j: euclidToroidDistance2d (g1 (i), g2 (j), xScale, yScale)
# 3D functions
def grid3d(width, xScale = 1.0, yScale = 1.0, zScale = 1.0, x0 = 0.0, y0 = 0.0, z0 = 0.0):
"""Returns a 3D grid between (0, 0, 0) and (1, 1, 1)
:param width: The number of rows/columns the grid has
:type width: int
:param xScale: Scales the grid along the x axis
:type xScale: float
:param yScale: Scales the grid along the y axis
:type yScale: float
:param zScale: Scales the grid along the z axis
:type zScale: float
:param x0: Translates the grid along the x axis
:type xScale: float
:param y0: Translates the grid along the y axis
:type yScale: float
:param z0: Translates the grid along the z axis
:type zScale: float
:return: A callable grid that returns 3d positions when given an index"""
xScale /= width
yScale /= width
zScale /= width
g = lambda i: \
(x0 + xScale * (i % width), y0 + yScale * ((i % (width*width)) / width), z0 + zScale * (i / (width*width)))
g.type = 'grid3d'
g.width = width
g.xScale = xScale
g.yScale = yScale
g.zScale = zScale
g.x0 = x0
g.y0 = y0
g.z0 = z0
g.inverse = lambda x, y, z: \
int (round (x / xScale - x0)) \
+ width * (int (round (y / yScale - y0)
+ width * int (round (z / zScale - z0))))
return g
def random3d(N, xScale = 1.0, yScale = 1.0, zScale = 1.0):
"""Creates a set of points scattered uniformly inside a 3D box
:param N: Number of 3D points
:type N: int
:param xScale: The scale of the box on the x axis
:type xScale: float
:param yScale: The scale of the box on the y axis
:type yScale: float
:param zScale: The scale of the box on the z axis
:type zScale: float
"""
coords = _numpy.random.random((N, 3))
coords[...,0] *= xScale
coords[...,1] *= yScale
coords[...,2] *= zScale
g = lambda i: coords[i]
g.type = 'random'
g.N = N
g.xScale = xScale
g.yScale = yScale
g.zScale = zScale
g.inverse = lambda x, y, z, domain=_iset.IntervalSet ((0, N - 1)): \
_numpy.array ([euclidDistance3d (_numpy.array((x, y, z)), g(i)) \
for i in domain]).argmin () \
+ domain.min ()
return g
def euclidDistance3d(p1, p2):
"""Returns the euclidean distance in 3D between two points
:param p1: The first point
:type p1: numpy.array((3))
:param p2: The second point
:type p2: numpy.array((3))
:return: The euclidean distance
:rtype: float
"""
return _numpy.linalg.norm(p2 - p1)
def euclidMetric3d (g1, g2 = None):
"""Returns an euclidean metric for 3D points
:param g1: The first group of points
:type g1: callable
:param g2: The second group of points. If None, the first group of points is used
:type g2: callable
:return: A 3D euclidean metric function
:rtype: function
"""
g2 = g1 if g2 == None else g2
return lambda i, j: euclidDistance3d (g1 (i), g2 (j))
|