1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
|
\documentclass[a4paper,twoside]{report}
\usepackage{listings}
\usepackage{color}
\usepackage{graphicx}
\usepackage{makeidx}
% Use the head environment around method heads
\lstnewenvironment{head}[1]%
{\lstset{frame=topline,emph={#1},emphstyle=\color{blue}\textbf}}%
{}
% Use the parameters environment after heads
\newenvironment{parameters}%
{\begin{tabular}{@{\hspace{2em}}lp{0.6\textwidth}}}%
{\end{tabular}\par\vspace{1mm}\par\hrule\par\vspace{5mm}}
% Use the code environment around method code examples
\lstnewenvironment{code}[1]%
{\lstset{frame=single,caption={#1}}}%
{}
\renewcommand{\lstlistingname}{Example}
%\lstset{language=python,basicstyle=\ttfamily\small}
\lstset{language=python,identifierstyle=\ttfamily}
\newcommand{\cls}[1]{\lstinline|#1|}
\newcommand{\fa}[1]{\lstinline|#1|}
\newcommand{\expr}[1]{\lstinline|#1|}
\newcommand{\ret}{\emph{return value}}
\newcommand{\self}{\emph{self}}
\title{Python-csa tutorial v0.2}
\author{Mikael Djurfeldt}
\date{2011-01-17}
\makeindex
\begin{document}
\maketitle
\tableofcontents
\chapter{Purpose of this document}
This is a preliminary documentation and tutorial for the python-csa
demonstration implementation in Python of the Connection-Set Algebra
(Djurfeldt, 2011, submitted)
The CSA library provides elementary connection-sets and operators for
combining them. It also provides an iteration interface to such
connection-sets enabling efficient iteration over existing connections
with a small memory footprint also for very large networks. The CSA
can be used as a component of neuronal network simulators or other
tools.
Section \ref{sec:introduction} introduces some basic concepts while
section \ref{sec:tutorial} provides some \emph{hands-on} material for
getting started. Section \ref{sec:reference} contain a preliminary
reference documentation.
\chapter{Introduction}\label{sec:introduction}
When building a neuronal network model, we often want to connect one
set of neurons---the \emph{source} set---with another set---the
\emph{target} set. When applying the Connection-Set Algebra
(hereafter denoted \emph{CSA}), we start by \emph{enumerating} the
source and target sets, i.e. we assign arbitrary integer indices to
the neurons of each set. This allows us to represent a connection
between source neuron number 3 and target neuron number 17 as a pair
of integers (3, 17). More generally, the source and target sets do
not need to be neurons. For example, the target set might be a set of
synaptic sites. Also, source and target sets can be (and is often)
the same set. This is the case when using CSA to describe
connectivity within a neuronal population.
\begin{itemize}
\item A \emph{mask} contains information about which connections exist. It
is a set of (source, target) pairs, one pair for each existing
connection. It can also be regarded as a function mapping a pair of
arbitrary non-negative integers to a boolean value---\emph{true} for
each existing connection.
\item A \emph{value-set} is a function mapping each existing
connection to a value, such as a synaptic weight.
\item A \emph{connection-set} is a tuple of a mask and zero or more
value sets.
\end{itemize}
CSA connection sets are usually infinite. This is a simplification
compared to the common situation of finite source and target sets in
that the sizes of these sets do not need to be considered. Connection
sets can have arbitrary values associated with connections. Pure
connection sets without any values associated are called masks.
\chapter{Tutorial}\label{sec:tutorial}
\section{Basic concepts}
To get access to the CSA in Python, type:
\begin{code}{}
from csa import *
\end{code}
The mask representing all possible connections between an infinite
source and target set is:
\begin{code}{}
full
\end{code}
To display a finite portion of the corresponding connectivity matrix,
type:
\begin{code}{}
show (full)
\end{code}
One-to-one connectivity (where source node 0 is connected to target
node 0, source 1 to target 1 etc) is represented by the mask oneToOne (Figure \ref{fig:oneToOne}):
\begin{code}{}
show (oneToOne)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/oneToOne}
\caption[oneToOne mask]{\label{fig:oneToOne}
\expr{oneToOne}
}
\end{center}
\end{figure}
\pagebreak
The default portion displayed by "show" is (0, 29) x (0, 29).
(0, 99) x (0, 99) can be displayed using:
\begin{code}{}
show (oneToOne, 100, 100)
\end{code}
If source and target set is the same, oneToOne describes
self-connections. We can use CSA to compute the set of connections
consisting of all possible connections except for self-connections
using the set difference operator "-" (Figure \ref{fig:setDifference}):
\begin{code}{}
show (full - oneToOne)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/setDifference}
\caption[Set difference]{\label{fig:setDifference}
\expr{full - oneToOne}
}
\end{center}
\end{figure}
Finite connection sets can be represented using either lists of
connections, with connections represented as tuples (Figure
\ref{fig:twoPoints}):
\begin{code}{}
show ([(22, 7), (8, 23)])
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/twoPoints}
\caption[Mask with two connections]{\label{fig:twoPoints}
\expr{[(22, 7), (8, 23)]}
}
\end{center}
\end{figure}
or using the Cartesian product of intervals (Figure \ref{fig:cartesian}):
\begin{code}{}
show (cross (xrange (10), xrange (20)))
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/cartesian}
\caption[Cartesian mask]{\label{fig:cartesian}
\expr{xrange (10), xrange (20)}
}
\end{center}
\end{figure}
\pagebreak
We can form a finite version of the infinite oneToOne by taking the
intersection "*" with a finite connection set (Figure \ref{fig:intersection}):
\begin{code}{}
c = cross (xrange (10), xrange (10)) * oneToOne
show (c)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/intersection}
\caption[Finite part of infinite set]{\label{fig:intersection}
\expr{cross (xrange (10), xrange (10)) * oneToOne}
}
\end{center}
\end{figure}
Finite connection sets can be tabulated:
\begin{code}{}
>>> tabulate(c)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
\end{code}
\pagebreak
In Python, finite connection sets provide an iterator interface:
\begin{code}{}
>>> for x in cross (xrange (4), xrange (4)) * oneToOne:
... print x
...
(0, 0)
(1, 1)
(2, 2)
(3, 3)
\end{code}
\section{Random connectivity}
Connectivity where the existence of each possible connection is
determined by a Bernoulli trial with probability p is expressed with
the random mask random (p), e.g. (Figure \ref{fig:random}):
\begin{code}{}
show (random (0.5))
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/random}
\caption[Random mask]{\label{fig:random}
\expr{random (0.5)}
}
\end{center}
\end{figure}
\section{The block operator}
The block operator expands each connection in the operand into a
rectangular block in the resulting connection matrix, e.g. (Figure \ref{fig:blockRandom}):
\begin{code}{}
show (block (5,3) * random (0.5))
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/blockRandom}
\caption[Block expanded random mask]{\label{fig:blockRandom}
\expr{block (5,3) * random (0.5)}
}
\end{center}
\end{figure}
Note that "*" here means operator application (see section
\ref{sec:opap}). There is also a quadratic version of the operator:
\begin{code}{}
show (block (10) * random (0.7))
\end{code}
Using intersection and set difference, we can now formulate a more
complex mask:
\begin{code}{}
show (block (10) * random (0.7) * random (0.5) - oneToOne)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/brro}
\caption[Random mask]{\label{fig:brro}
\expr{block (10) * random (0.7) * random (0.5) - oneToOne}
}
\end{center}
\end{figure}
The block operator is especially useful when creating connectivity
with hierarchical substructure, such as a set of cortical columns.
\section{Geometry}
In CSA, the basic tool to handle distance dependent connectivity is
metrics. Metrics are value sets d (i, j). Metrics can be defined
through geometry functions. A geometry function maps an index to a
position. We can, for example, assign a random position in the unit
square to each index:
\begin{code}{}
g = random2d (900)
\end{code}
The positions of the grid described by g have indices from 0 to 899
and can be displayed like this:
\begin{code}{}
gplot2d (g, 900)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/random2d}
\caption[Random geometry]{\label{fig:random2d}
\expr{gplot2d (random2d (900), 900)}
}
\end{center}
\end{figure}
Alternatively, we can arrange indices in a 30 x 30 grid within the
unit square:
\begin{code}{}
g = grid2d (30)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/grid2d}
\caption[Random geometry]{\label{fig:grid2d}
\expr{gplot2d (grid2d (30), 900)}
}
\end{center}
\end{figure}
We can now define the euclidean metric on this grid:
\begin{code}{}
d = euclidMetric2d (g)
\end{code}
An example of a distance dependent connection set is the disc mask
Disc (r) * d which connects each index i to all indices j within a
distance d (i, j) < r:
\begin{code}{}
c = disc (r) * d
\end{code}
To examine the result we can employ the function gplotsel2d (g, c, i)
which displays the targets g (j) of i in the connection set c (Figure
\ref{fig:disc}):
\begin{code}{}
gplotsel2d (g, c, 434)
\end{code}
\noindent [A known bug in the current implementation makes the above
expression crash. This only happens for infinite sets like \expr{c}
and can be amended by intersecting it with a finite set: \expr{cross
(xrange (900), xrange (900)) * c}.]
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/disc}
\caption[Disc geometry]{\label{fig:disc}
Projection from source neuron \#434 in \expr{disc (0.3) * d}.
}
\end{center}
\end{figure}
In the case where the connection set represents a projection between
two different coordinate systems, we define one geometry function for
each. In the following example \expr{g1} is direction in visual space
in arc minutes while \expr{g2} is position in the cortical
representation of the Macaque fovea in mm:
\begin{code}{}
g1 = grid2d (30)
g2 = grid2d (30, x0 = -7.0, xScale = 8.0, yScale = 8.0)
\end{code}
We now define a projection operator which takes visual coordinates
into cortical (Dow et al. 1985):
\begin{code}{}
import cmath
@ProjectionOperator
def GvspaceToCx (p):
w = 7.7 * cmath.log (complex (p[0] + 0.33, p[1]))
return (w.real, w.imag)
\end{code}
To see how the grid g1 is transformed into cortical space, we type:
\begin{code}{}
gplot2d (GvspaceToCx * g1, 900)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/projection}
\caption[Logarithmic projection]{\label{fig:projection}
\expr{gplot2d (GvspaceToCx * g1, 900)}
}
\end{center}
\end{figure}
The inverse projection is defined:
\begin{code}{}
@ProjectionOperator
def GcxToVspace (p):
c = cmath.exp (complex (p[0], p[1]) / 7.7) - 0.33
return (c.real, c.imag)
\end{code}
Real receptive field sizes vary with eccentricity. Assume, for now,
that we want to connect each target index to sources within a disc of
constant radius. We then need to project back into visual space and
use the disc operator:
\begin{code}{}
c = disc (0.1) * euclidMetric2d (g1, GcxToVspace * g2)
\end{code}
Again, we use gplotsel2d to check the result (Figure \ref{fig:visualDisc}):
\begin{code}{}
gplotsel2d (g2, c, 282)
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.5\textwidth]{figures/visualDisc}
\caption[Random geometry]{\label{fig:visualDisc}
\expr{disc (0.1) * euclidMetric2d (g1, GcxToVspace * g2)}
}
\end{center}
\end{figure}
\clearpage
\pagebreak
\section{A network with gaussian connectivity}
In the following example we represent the connectivity of a network
with excitatory and inhibitory neurons and gaussian connectivity in a
random geometry using a single connection-set (Figure \ref{fig:gaussnet}).
\begin{code}{Network with gaussian geometry-dependent connectivity}
from csa import *
# Create index intervals for excitatory, inhibitory
# and all cells
e = ival (0, 599)
i = ival (600, 899)
a = e + i
# Create geometry function g and metric d
g = random2d (900)
d = euclidMetric2d (g)
# Excitatory and inhibitory conductances, computed as
# gaussian value sets (provides the gaussian of the
# distance for every index pair)
g_e = gaussian (0.1, 0.3) * d
g_i = gaussian (0.2, 0.3) * d
# Create connection-sets with gaussian dependent random
# masks, gaussian dependent conductance and distance
# dependent delay: (mask, conductance, delay)
c_e = cset (random * g_e, g_e, d)
c_i = cset (random * g_i, -g_i, d)
# Combine excitatory and inhibitory connectivity into one
# network using intersection (*) and multiset sum (+)
# operators
c = cross (e, a) * c_e + cross (i, a) * c_i
# We may also plot the outgoing connections from one
# excitatory neuron around coordinate (0.33, 0.5) and one
# inhibitory neuron around coordinate (0.67, 0.5)
sources = [g.inverse(0.33,0.5,e), g.inverse(0.67,0.5,i)]
gplotsel2d (g, c, sources, value=0, range=[-1,1])
\end{code}
\begin{figure}
\begin{center}
\includegraphics[width=0.9\textwidth]{figures/gaussnet}
\caption[Projections of an excitatory and an inhibitory neuron]{\label{fig:gaussnet}
Projections of an excitatory (warm colors) and an inhibitory
(cold colors).
}
\end{center}
\end{figure}
\chapter{Reference}\label{sec:reference}
%\begin{head}{}
%\end{head}
%\begin{parameters}
% \lstinline|| &%
% \\
% \lstinline|| &%
% \\
% \ret &%
% \\
%\end{parameters}
This section documents how to use existing python-csa classes.
\section{Classes}
This section briefly documents some important classes in the
python-csa implementation and their public API. The examples use many
elements which are defined in later sections. It is suggested to use
the index on page \pageref{sec:index} to find the reference
documentation for these elements.
\subsection{ConnectionSet}\index{ConnectionSet}
A connection-set can be regarded as a set of connections, represented
by their source and target indices, with zero or more associated
values. In the CSA, a connection-set with no associated values is a
mask. Thus, in the python-csa implementation, in all cases where an
instance of the class \cls{ConnectionSet} is expected, it is OK to
pass an instance of \cls{Mask}.
\begin{head}{__len__}
__len__ (self)
\end{head}
\begin{parameters}
\ret &%
the number of connections in this connection-set\\
\end{parameters}
This method returns the number of connections in this connection-set.
An error is reported if this connection-set isn't finite.
\begin{code}{Obtaining the number of connections in a connection-set}
>>> len (cross ((0, 1), (0, 1)))
4
\end{code}
\begin{head}{__iter__}
__iter__ (self)
\end{head}
\begin{parameters}
\ret &%
iterator over the connections represented by this instance\\
\end{parameters}
This method returns an iterator over the connections represented by
this instance. Each item generated by the iterator is a tuple
\[ (i, j, v_0, ..., v_{n-1}) \]
\begin{code}{Iterating over a connection-set}
>>> m = cross ((0, 1), (2, 3))
>>> v = vset (lambda i, j: i + j)
>>> c = cset (m, v, v * v)
>>> for x in c:
... print x
...
(0, 2, 2, 4)
(1, 2, 3, 9)
(0, 3, 3, 9)
(1, 3, 4, 16)
\end{code}
\subsection{Mask}\index{Mask}
A mask gives information about which connections exist. It can be
regarded as a set of connections, represented by their source and
target indices. In the CSA, a connection-set with no associated
values is a mask. In the python-csa implementation, an attempt to
construct a connection-set with zero associated values, yields an
instance of the class \cls{Mask}. In cases where a mask is expected,
a python list of (source, target) tuples can also be passed.
The class \cls{Mask} has the same public methods (\expr{__len__},
\expr{__iter__}) as the class \cls{ConnectionSet}.
\subsection{ValueSet}\index{ValueSet}
To be documented.
\subsection{IntervalSet}\index{IntervalSet}\label{sec:intervalset}
To be documented.
\section{Constructor and selectors}
\subsection{cset}\index{cset}
\begin{head}{cset}
cset (mask, valueSet, ...)
\end{head}
\begin{parameters}
\lstinline|mask| &%
a \lstinline|Mask| \\
\lstinline|valueSet| &%
zero or more \lstinline|ValueSet|:s \\
\end{parameters}
This function constructs and returns a connection-set from a
\lstinline|Mask| and zero or more \lstinline|ValueSet|:s. [Note: In
the current implementation, \lstinline|mask| is returned if no
value-sets are given. This should probably change so that a new
object is returned.]
\subsection{mask}\index{mask}
\begin{head}{mask}
mask (cset)
\end{head}
\begin{parameters}
\lstinline|cset| &%
a \lstinline|ConnectionSet|\\
\emph{return value} &%
the \lstinline|Mask| of \lstinline|cset|\\
\end{parameters}
This function returns the \lstinline|Mask| of the
\lstinline|ConnectionSet| \lstinline|cset|.
\subsection{value}\index{value}
\begin{head}{value}
value (cset, k)
\end{head}
\begin{parameters}
\lstinline|cset| &%
a \lstinline|ConnectionSet|\\
\lstinline|k| &%
index of the value-set to return\\
\emph{return value} &%
the \lstinline|k|:th \lstinline|ValueSet| of \lstinline|cset|\\
\end{parameters}
This function returns the \lstinline|k|:th \lstinline|ValueSet| of the
\lstinline|ConnectionSet| \lstinline|cset|.
\subsection{arity}\index{arity}
\begin{head}{arity}
arity (cset)
\end{head}
\begin{parameters}
\lstinline|cset| &%
a \lstinline|ConnectionSet|\\
\emph{return value} &%
the \emph{arity} of \lstinline|cset|\\
\end{parameters}
This function returns the \emph{arity} of the
\lstinline|ConnectionSet| \lstinline|cset|. The arity of a
connection-set is the number of value-sets of the connection-set.
\subsection{vset}\index{vset}
\begin{head}{vset}
vset (x)
vset (callable)
\end{head}
\begin{parameters}
\lstinline|x| &%
a value\\
\lstinline|callable| &%
a callable taking two arguments\\
\end{parameters}
This function constructs and returns a value-set. In the first form,
the number \fa{x} is taken as the value of each of all existing
connections. In the second form, the value of each existing
connection is the one returned by applying \fa{callable} to the source
and target indices of the connection.
\section{Integer sets}
In the current python-csa implementation, integer sets are usually
represented using the class \cls{IntervalSet} (see section
\ref{sec:intervalset}). Functions that take integer sets as arguments
generally coerce \cls{tuple}:s of two non-negative integers into
\cls{IntervalSet}:s:
\begin{code}{}
(1, 2) --> IntervalSet ([(1,2)])
\end{code}
\subsection{ival}\index{ival}
\begin{head}{ival}
ival (beginning, end)
\end{head}
\begin{parameters}
\lstinline|beginning| &%
start of interval\\
\lstinline|end| &%
end of interval (inclusive)\\
\emph{return value} &%
the interval \lstinline|(beginning, end)|\\
\end{parameters}
This function returns the interval \lstinline|(beginning, end)|
represented as a set of non-negative integers. The underlying
representation is space-efficient.
\subsection{N}\index{N}
\begin{head}{N}
N
\end{head}
\begin{parameters}
\end{parameters}
This constant represents the set of all non-negative integers.
\subsection{cross}\index{cross}
\begin{head}{cross}
cross (set0, set1)
\end{head}
\begin{parameters}
\lstinline|set0| &%
a set of non-negative integers\\
\lstinline|set1| &%
a set of non-negative integers\\
\emph{return value} &%
the Cartesian cross product of \fa{set0} and \fa{set1}\\
\end{parameters}
This function returns the Cartesian cross product of \fa{set0} and
\fa{set1} represented as a \cls{Mask}.
\begin{code}{The Cartesian product of (1,2) and (3,4)}
>>> tabulate (cross ((1,2), (3,4)))
1 3
2 3
1 4
2 4
\end{code}
\section{Utilities}
\begin{head}{tabulate}
tabulate (cset)
\end{head}
\begin{parameters}
\lstinline|cset| &%
a \cls{ConnectionSet}\\
\end{parameters}
This procedure tabulates the connection-set \fa{cset}. An iteration
over the connections in \fa{cset} is performed. The source and target
indices are tabulated in the first and second columns with value-sets
tabulated in columns three and upwards.
Tabulate can be used to print connection-sets during development.
\section{Elementary masks}
\subsection{empty}\index{empty}
\begin{head}{empty}
empty
\end{head}
\begin{parameters}
\end{parameters}
This constant \cls{Mask} represents the set of no connection.
Iterating results in nothing, no matter how hard you try.
\subsection{full}\index{full}
\begin{head}{full}
full
\end{head}
\begin{parameters}
\end{parameters}
This constant \cls{Mask} represents the (infinite) set of all
connections.
\begin{code}{Finite portion of the \expr{full} mask}
>>> tabulate (cross ((0, 1), (0, 1)) * full)
0 0
1 0
0 1
1 1
\end{code}
\subsection{oneToOne}\index{oneToOne}
\begin{head}{oneToOne}
oneToOne
\end{head}
\begin{parameters}
\end{parameters}
This constant \cls{Mask} represents the (infinite) set of one-to-one
connections. It resembles Kronecker's delta or an infinite identity
matrix.
\begin{code}{Finite portion of the \expr{oneToOne} mask}
>>> tabulate (cross ((0, 3), (0, 3)) * oneToOne)
0 0
1 1
2 2
3 3
\end{code}
\subsection{random}\index{random}
\begin{head}{random}
random (p)
\end{head}
\begin{parameters}
\lstinline|p| &%
the probability for a potential connection to exist\\
\ret &%
an infinite \cls{Mask} where the existence of each connection is
determined by a Bernoulli trial with probability \fa{p}.\\
\end{parameters}
This function returns a random mask where a connection between given
source and target indices exists with probability \fa{p}.
See also section \ref{sec:randomop} for the set of functions returning
random \emph{operators}. These support sampling a given number of
connections from a finite mask or random sampling with constraints on
\fa{fanIn} or \fa{fanOut}.
\section{Set operators}
The following binary operators can be applied to integer sets,
masks and connection-sets:
\par\vspace{4mm}\hrule\par\vspace{1mm}
\begin{tabular}{@{\hspace{2em}}lp{0.6\textwidth}}
\expr{A + B} & the \emph{multiset sum} of A and B\\
\expr{A - B} & the \emph{set difference} between A and B\\
\expr{A * B} & the \emph{intersection} of A and B\\
\end{tabular}\par\vspace{1mm}\par\hrule\par\vspace{5mm}
In addition, the following unary operator applies to integer sets and masks:
\par\vspace{4mm}\hrule\par\vspace{1mm}
\begin{tabular}{@{\hspace{2em}}lp{0.6\textwidth}}
\expr{\~A} & the \emph{complement} of A\\
\end{tabular}\par\vspace{1mm}\par\hrule\par\vspace{5mm}
\section{Arithmetic operators}
The arithmetic operators on connection-sets which are defined in the
connection-set algebra are not yet implemented in the python-csa demo
implementation.
\section{Operator application}\label{sec:opap}
The operator application operator is used to apply unary
connection-set algebra operators to their operand:
\par\vspace{4mm}\hrule\par\vspace{1mm}
\begin{tabular}{@{\hspace{2em}}lp{0.6\textwidth}}
\expr{operator * operand} & apply \fa{operator} to \fa{operand}\\
\end{tabular}\par\vspace{1mm}\par\hrule\par\vspace{5mm}
The operator application operator is overloaded with the arithmetic
multiplication and set intersection operators.
\section{Miscellaneous connection-set operators}\label{sec:miscop}
\subsection{random}\index{random}\label{sec:randomop}
\begin{head}{random}
random (N = n) * cset
\end{head}
\begin{parameters}
\lstinline|n| &%
the number of connections to sample (keyword arg named \fa{N})\\
\fa{cset} &%
any \emph{finite} connection-set\\
\ret &%
a connection-set containing \fa{n} randomly sampled connections from
\fa{cset}\\
\end{parameters}
\begin{head}{random}
random (fanIn = n) * cset
\end{head}
\begin{parameters}
\lstinline|n| &%
the number of sources sampled for each target (keyword arg named \fa{fanIn})\\
\fa{cset} &%
any \emph{finite} connection-set\\
\ret &%
a connection-set randomly sampled from \fa{cset} with fanIn \fa{n}\\
\end{parameters}
\begin{head}{random}
random (fanOut = n) * cset
\end{head}
\begin{parameters}
\lstinline|n| &%
the number of targets sampled for each source (keyword arg named \fa{fanOut})\\
\fa{cset} &%
any \emph{finite} connection-set\\
\ret &%
a connection-set randomly sampled from \fa{cset} with fanOut \fa{n}\\
\end{parameters}
\subsection{disc}\index{disc}
\begin{head}{disc}
disc (r) * metric
\end{head}
\begin{parameters}
\fa{r} & radius \\
\ret & a mask of all connections for which
\expr{metric (source, target) < r} \\
\end{parameters}
\subsection{gaussian}\index{gaussian}
\begin{head}{gaussian}
gaussian (sigma, cutoff) * metric
\end{head}
\begin{parameters}
\lstinline|sigma| &%
\\
\lstinline|cutoff| &%
\\
\ret & a value set associating the result of applying the normalized
gaussian function with standard deviation \fa{sigma} and cutoff
\fa{cutoff} to \expr{metric (source, target)} to each connection\\
\end{parameters}
\subsection{block}\index{block}
\begin{head}{block}
block (M, N)
block (M)
\end{head}
\begin{parameters}
\fa{M} & \\
\fa{N} & \\
\end{parameters}
\subsection{block1}\index{block1}
\begin{head}{block1}
block1 (N)
\end{head}
\begin{parameters}
\end{parameters}
\subsection{transpose}\index{transpose}
\begin{head}{}
transpose
\end{head}
\begin{parameters}
\end{parameters}
\subsection{shift}\index{shift}
\begin{head}{shift}
shift (M, N)
\end{head}
\begin{parameters}
\lstinline|M| &%
\\
\lstinline|N| &%
\\
\end{parameters}
\subsection{fix}\index{fix}
\begin{head}{fix}
fix
\end{head}
\begin{parameters}
\end{parameters}
\section{Geometry}
\subsection{grid2d}\index{grid2d}
\begin{head}{grid2d}
grid2d (width, xScale = 1.0, yScale = 1.0, x0 = 0.0, y0 = 0.0)
\end{head}
\begin{parameters}
\lstinline|width| &%
\\
\lstinline|xScale| &%
\\
\emph{return value} &%
\\
\end{parameters}
\subsection{random2d}\index{random2d}
\begin{head}{random2d}
random2d (N, xScale = 1.0, yScale = 1.0)
\end{head}
\begin{parameters}
\lstinline|| &%
\\
\lstinline|| &%
\\
\emph{return value} &%
\\
\end{parameters}
\subsection{euclidMetric2d}\index{euclidMetric2d}
\begin{head}{}
euclidMetric2d (g1, [g2])
\end{head}
\begin{parameters}
\lstinline|g1| &%
\\
\lstinline|g2| optional &%
\\
\emph{return value} &%
\\
\end{parameters}
\subsection{ProjectionOperator}\index{ProjectionOperator}
\begin{head}{ProjectionOperator}
@ProjectionOperator
def fname (p):
...
return q
\end{head}
\begin{parameters}
\lstinline|fname| &%
\\
\lstinline|p| &%
\\
\end{parameters}
\section{Plotting}
\subsection{show}\index{show}
\begin{head}{show}
show (cset, N0 = 30, [N1])
\end{head}
\begin{parameters}
\lstinline|cset| &%
\\
\lstinline|N0| &%
\\
\end{parameters}
\subsection{gplotsel2d}\index{gplotsel2d}
\begin{head}{gplotsel2d}
gplotsel2d (g, cset, source = N, target = N,
N0 = 900, [N1], [value], range=[], lines = True)
\end{head}
\begin{parameters}
\lstinline|| &%
\\
\lstinline|| &%
\\
\end{parameters}
\begin{head}{gplot2d}
gplot2d (g, N, [color], show = True)
\end{head}
\begin{parameters}
\lstinline|| &%
\\
\lstinline|| &%
\\
\end{parameters}
\label{sec:index}
\printindex
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: t
%%% eval: (flyspell-mode 1)
%%% eval: (ispell-change-dictionary "american")
%%% eval: (flyspell-buffer)
%%% End:
|