File: __init__.py

package info (click to toggle)
python-csb 1.2.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 8,708 kB
  • ctags: 4,889
  • sloc: python: 24,180; xml: 812; makefile: 23; sh: 6
file content (2615 lines) | stat: -rw-r--r-- 86,747 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
"""
3D and secondary structure APIs.

This module defines some of the most fundamental abstractions in the library:
L{Structure}, L{Chain}, L{Residue} and L{Atom}. Instances of these objects may
exist independently and that is perfectly fine, but usually they are part of a
Composite aggregation. The root node in this Composite is a L{Structure} (or
L{Ensemble}). L{Structure}s are composed of L{Chain}s, and each L{Chain} is a
collection of L{Residue}s. The leaf node is L{Atom}. 

All of these objects implement the base L{AbstractEntity} interface. Therefore,
every node in the Composite can be transformed:
    
    >>> r, t = [rotation matrix], [translation vector]
    >>> entity.transform(r, t)
    
and it knows its immediate children:

    >>> entity.items
    <iterator>    # over all immediate child entities
    
If you want to traverse the complete Composite tree, starting at arbitrary level,
and down to the lowest level, use one of the L{CompositeEntityIterator}s. Or just
call L{AbstractEntity.components}:

    >>> entity.components()
    <iterator>   # over all descendants, of any type, at any level
    >>> entity.components(klass=Residue)
    <iterator>   # over all Residue descendants
    
Some of the inner objects in this hierarchy behave just like dictionaries
(but are not):

    >>> structure.chains['A']       # access chain A by ID
    <Chain A: Protein>
    >>> structure['A']              # the same
    <Chain A: Protein>
    >>> residue.atoms['CS']          
    <Atom: CA>                      # access an atom by its name
    >>> residue.atoms['CS']          
    <Atom: CA>                      # the same
        
Others behave like list collections:

    >>> chain.residues[10]               # 1-based access to the residues in the chain
    <ProteinResidue [10]: PRO 10>
    >>> chain[10]                        # 0-based, list-like access
    <ProteinResidue [11]: GLY 11>
    
Step-wise building of L{Ensemble}s, L{Chain}s and L{Residue}s is supported through
a number of C{append} methods, for example:

    >>> residue = ProteinResidue(401, ProteinAlphabet.ALA)
    >>> s.chains['A'].residues.append(residue)
    
See L{EnsembleModelsCollection}, L{StructureChainsTable}, L{ChainResiduesCollection}
and L{ResidueAtomsTable} for more details.

Some other objects in this module of potential interest are the self-explanatory
L{SecondaryStructure} and L{TorsionAngles}.     
"""

import os
import re
import copy
import math
import numpy

import csb.io
import csb.core
import csb.numeric
import csb.bio.utils

from abc import ABCMeta, abstractmethod, abstractproperty

from csb.bio.sequence import SequenceTypes, SequenceAlphabets, AlignmentTypes


class AngleUnits(csb.core.enum):
    """
    Torsion angle unit types
    """
    Degrees='deg'; Radians='rad'
    
class SecStructures(csb.core.enum):
    """
    Secondary structure types
    """
    Helix='H'; Strand='E'; Coil='C'; Turn='T'; Bend='S';
    Helix3='G'; PiHelix='I'; BetaBridge='B'; Gap='-'
    
class ChemElements(csb.core.enum):
    """
    Periodic table elements
    """
    H=1; He=2; Li=3; Be=4; B=5; C=6; N=7; O=8; F=9; Ne=10; Na=11; Mg=12; Al=13; Si=14; P=15; 
    S=16; Cl=17; Ar=18; K=19; Ca=20; Sc=21; Ti=22; V=23; Cr=24; Mn=25; Fe=26; Co=27; Ni=28; 
    Cu=29; Zn=30; Ga=31; Ge=32; As=33; Se=34; Br=35; Kr=36; Rb=37; Sr=38; Y=39; Zr=40; Nb=41; 
    Mo=42; Tc=43; Ru=44; Rh=45; Pd=46; Ag=47; Cd=48; In=49; Sn=50; Sb=51; Te=52; I=53; Xe=54;
    Cs=55; Ba=56; Hf=72; Ta=73; W=74; Re=75; Os=76; Ir=77; Pt=78; Au=79; Hg=80; Tl=81; Pb=82; 
    Bi=83; Po=84; At=85; Rn=86; Fr=87; Ra=88; Rf=104; Db=105; Sg=106; Bh=107; Hs=108; Mt=109; 
    Ds=110; Rg=111; La=57; Ce=58; Pr=59; Nd=60; Pm=61; Sm=62; Eu=63; Gd=64; Tb=65; Dy=66; 
    Ho=67; Er=68; Tm=69; Yb=70; Lu=71; Ac=89; Th=90; Pa=91; U=92; Np=93; Pu=94; Am=95; Cm=96; 
    Bk=97; Cf=98; Es=99; Fm=100; Md=101; No=102; Lr=103; x=-1 


class Broken3DStructureError(ValueError):
    pass

class Missing3DStructureError(Broken3DStructureError):
    pass   
    
class InvalidOperation(Exception):
    pass

class EntityNotFoundError(csb.core.ItemNotFoundError):
    pass

class ChainNotFoundError(EntityNotFoundError):
    pass

class AtomNotFoundError(EntityNotFoundError):
    pass

class EntityIndexError(csb.core.CollectionIndexError):
    pass

class DuplicateModelIDError(csb.core.DuplicateKeyError):
    pass

class DuplicateChainIDError(csb.core.DuplicateKeyError):
    pass

class DuplicateResidueIDError(csb.core.DuplicateKeyError):
    pass

class DuplicateAtomIDError(csb.core.DuplicateKeyError):
    pass

class AlignmentArgumentLengthError(ValueError):
    pass

class BrokenSecStructureError(ValueError):
    pass

class UnknownSecStructureError(BrokenSecStructureError):
    pass

class AbstractEntity(object):
    """
    Base class for all protein structure entities.
    
    This class defines uniform interface of all entities (e.g. L{Structure},
    L{Chain}, L{Residue}) according to the Composite pattern. 
    """
    
    __metaclass__ = ABCMeta

    @abstractproperty
    def items(self):
        """
        Iterator over all immediate children of the entity
        @rtype: iterator of L{AbstractEntity}
        """
        pass

    def components(self, klass=None):
        """
        Return an iterator over all descendants of the entity.
        
        @param klass: return entities of the specified L{AbstractEntity} subclass
                      only. If None, traverse the hierarchy down to the lowest level.
        @param klass: class
        """
        for entity in CompositeEntityIterator.create(self, klass):
            if klass is None or isinstance(entity, klass):
                yield entity
        
    def transform(self, rotation, translation):
        """
        Apply in place RotationMatrix and translation Vector to all atoms.
        
        @type rotation: numpy array
        @type translation: numpy array 
        """
        for node in self.items:
            node.transform(rotation, translation)
    
    def get_coordinates(self, what=None, skip=False):
        """
        Extract the coordinates of the specified kind(s) of atoms and return 
        them as a list.
        
        @param what: a list of atom kinds, e.g. ['N', 'CA', 'C']
        @type what: list or None
        
        @return: a list of lists, each internal list corresponding to the coordinates 
                 of a 3D vector
        @rtype: list
        
        @raise Broken3DStructureError: if a specific atom kind cannot be retrieved from a residue
        """
        coords = [ ]
        
        for residue in self.components(klass=Residue):
            for atom_kind in (what or residue.atoms):
                try:
                    coords.append(residue.atoms[atom_kind].vector)
                except csb.core.ItemNotFoundError:
                    if skip:
                        continue
                    raise Broken3DStructureError('Could not retrieve {0} atom from the structure'.format(atom_kind))
            
        return numpy.array(coords)
    
class CompositeEntityIterator(object):
    """
    Iterates over composite L{AbstractEntity} hierarchies.
    
    @param node: root entity to traverse
    @type node: L{AbstractEntity}
    """
    
    def __init__(self, node):
            
        if not isinstance(node, AbstractEntity):
            raise TypeError(node)
            
        self._node = node
        self._stack = csb.core.Stack()
        
        self._inspect(node)
                
    def __iter__(self):
        return self

    def __next__(self):
        return self.next()      
        
    def next(self):

        while True:
            if self._stack.empty():
                raise StopIteration()
            
            try:
                current = self._stack.peek()
                node = next(current)
                self._inspect(node)
                return node
            
            except StopIteration:
                self._stack.pop()
                
    def _inspect(self, node):
        """
        Push C{node}'s children to the stack.
        """
        self._stack.push(node.items)
        
    @staticmethod
    def create(node, leaf=None):
        """
        Create a new composite iterator.
        
        @param leaf: if not None, return a L{ConfinedEntityIterator}
        @type leaf: class
        @rtype: L{CompositeEntityIterator} 
        """
        if leaf is None:
            return CompositeEntityIterator(node)
        else:
            return ConfinedEntityIterator(node, leaf)
                
class ConfinedEntityIterator(CompositeEntityIterator):
    """
    Iterates over composite L{AbstractEntity} hierarchies, but terminates
    the traversal of a branch once a specific node type is encountered.
    
    @param node: root entity to traverse
    @type node: L{AbstractEntity}
    @param leaf: traverse the hierarchy down to the specified L{AbstractEntity}
    @type leaf: class
    """
    def __init__(self, node, leaf):
        
        if not issubclass(leaf, AbstractEntity):
            raise TypeError(leaf)
        
        self._leaf = leaf
        super(ConfinedEntityIterator, self).__init__(node)              
    
    def _inspect(self, node):
        
        if not isinstance(node, self._leaf):
            self._stack.push(node.items)
            
class Ensemble(csb.core.AbstractNIContainer, AbstractEntity):
    """
    Represents an ensemble of multiple L{Structure} models.
    Provides a list-like access to these models:
    
        >>> ensemble[0]
        <Structure Model 1: accn, x chains>
        >>> ensemble.models[1]
        <Structure Model 1: accn, x chains>
    """
    
    def __init__(self):
        self._models = EnsembleModelsCollection()
        
    def __repr__(self):
        return "<Ensemble: {0} models>".format(self.models.length)        
        
    @property
    def _children(self):
        return self._models
    
    @property
    def models(self):
        """
        Access Ensembles's models by model ID
        @rtype: L{EnsembleModelsCollection}
        """
        return self._models
    
    @property
    def items(self):
        return iter(self._models)
        
    @property
    def first_model(self):
        """
        The first L{Structure} in the ensemble (if available)
        @rtype: L{Structure} or None
        """
        if len(self._models) > 0:
            return self[0]
        return None
    
    def to_pdb(self, output_file=None):
        """
        Dump the ensemble in PDB format.
        
        @param output_file: output file name or open stream
        @type output_file: str or stream
        """
        from csb.bio.io.wwpdb import PDBEnsembleFileBuilder
        
        if self.models.length < 1:
            raise InvalidOperation("Can't dump an empty ensemble")
        
        temp = csb.io.MemoryStream()

        builder = PDBEnsembleFileBuilder(temp)        
        builder.add_header(self.first_model)

        for model in self.models:
            builder.add_structure(model)

        builder.finalize()
        
        data = temp.getvalue()        
        temp.close()
        
        if not output_file:
            return data
        else:
            with csb.io.EntryWriter(output_file, close=False) as out:
                out.write(data)  
        
class EnsembleModelsCollection(csb.core.CollectionContainer):
    
    def __init__(self):
        
        super(EnsembleModelsCollection, self).__init__(type=Structure, start_index=1)
        self._models = set()
        
    def append(self, structure):
        """
        Add a new model
        
        @param structure: model to append
        @type structure: L{Structure}
        """
        
        if not structure.model_id or not str(structure.model_id).strip():
            raise ValueError("Invalid model identifier: '{0.model_id}'".format(structure))
        if structure.model_id in self._models:
            raise DuplicateModelIDError(structure.model_id) 
        else:
            return super(EnsembleModelsCollection, self).append(structure)
        
    @property
    def _exception(self):
        return EntityIndexError
    

class Structure(csb.core.AbstractNIContainer, AbstractEntity):
    """
    Represents a single model of a PDB 3-Dimensional molecular structure.
    Provides access to the L{Chain} objects, contained in the model:
    
        >>> structure['A']
        <Chain A: Protein>
        >>> structure.chains['A']
        <Chain A: Protein>
        >>> structure.items
        <iterator of Chain-s>    
    
    @param accession: accession number of the structure
    @type accession: str
    """
    def __init__(self, accession):
                        
        self._accession = None
        self._chains = StructureChainsTable(self)
        self._model_id = None
        self._resolution = None
        
        self.accession = accession

    def __repr__(self):
        return "<Structure Model {0.model_id}: {0.accession}, {1} chains>".format(self, self.chains.length)

    @property
    def _children(self):
        return self._chains
    
    @property
    def chains(self):
        """
        Access chains by their chain identifiers
        @rtype: L{StructureChainsTable}
        """
        return self._chains
    
    @property
    def items(self):
        for chain in self._chains:
            yield self._chains[chain]
                
    @property
    def first_chain(self):
        """
        The first L{Chain} in the structure (if available)
        @rtype: L{Chain} or None
        """        
        if len(self._chains) > 0:
            return next(self.items)
        return None
        
    @property
    def accession(self):
        """
        Accession number
        @rtype: str
        """        
        return self._accession
    @accession.setter
    def accession(self, accession):
        if accession is None:
            raise ValueError(accession)
        self._accession = str(accession).strip().lower()
        for c in self.chains:
            self.chains[c]._accession = self._accession
            
    @property
    def model_id(self):
        """
        Model ID
        @rtype: int
        """        
        return self._model_id
    @model_id.setter
    def model_id(self, value):
        self._model_id = value
        
    @property
    def resolution(self):
        """
        Resolution in Angstroms
        """
        return self._resolution
    @resolution.setter
    def resolution(self, value):
        if value is not None:
            value = float(value)
        self._resolution = value
                    
    def to_fasta(self):
        """
        Dump the structure in FASTA format. 
        
        @return: FASTA-formatted string with all chains in the structure
        @rtype: str
        
        @deprecated: this method will be removed soon. Use
                     L{csb.bio.sequence.ChainSequence.create} instead
        """
        fasta = []
        
        for chain in self.items:

            if chain.length > 0:
                fasta.append('>{0}'.format(chain.header))
                fasta.append(chain.sequence)
        
        return os.linesep.join(fasta)

    def to_pdb(self, output_file=None):
        """
        Dump the whole structure in PDB format.
        
        @param output_file: output file name or open stream
        @type output_file: str or stream
        """
        from csb.bio.io.wwpdb import PDBFileBuilder
                
        temp = csb.io.MemoryStream()
        builder = PDBFileBuilder(temp)
        
        builder.add_header(self)
        builder.add_structure(self)
        builder.finalize()
        
        data = temp.getvalue()        
        temp.close()
        
        if not output_file:
            return data
        else:
            with csb.io.EntryWriter(output_file, close=False) as out:
                out.write(data)

    @staticmethod
    def from_chain(chain):
        """
        A Structure factory, which instantiates and returns a new Structure with 
        chain as deep cpoy of chain

        @param chain: the chain which will comprise the new structure
        @type chain: L{Chain}

        @rtype: L{Structure}
        """
        structure = Structure("NONE")
        structure.chains.append(chain.clone())

        return structure


class StructureChainsTable(csb.core.DictionaryContainer):
    
    def __init__(self, structure=None, chains=None):
        self.__container = structure
        super(StructureChainsTable, self).__init__()
        
        if chains is not None:
            for chain in chains:
                self.append(chain)
        
    def __repr__(self):
        if len(self) > 0:
            return "<StructureChains: {0}>".format(', '.join(self))
        else:
            return "<StructureChains: empty>"
        
    @property
    def _exception(self):
        return ChainNotFoundError        
    
    def append(self, chain):
        """
        Add a new Chain to the structure.
        
        @param chain: the new chain to be appended
        @type chain: L{Chain}
        
        @raise DuplicateChainIDError: if a chain with same ID is already defined
        @raise InvalidOperation: if the chain is already associated with a structure
        """
        
        if chain._structure and chain._structure is not self.__container:
            raise InvalidOperation('This chain is already part of another structure')
        if chain.id in self:
            raise DuplicateChainIDError('A chain with ID {0} is already defined'.format(chain.id))
            
        super(StructureChainsTable, self).append(chain.id, chain)
        
        if self.__container:
            chain._accession = self.__container.accession
            chain._structure = self.__container

    def remove(self, id):
        """
        Remove a chain from the structure.

        @param id: ID of the chain to be detached
        @type id: str
        @raise ChainNotFoundError: if C{id} is not a valid chain ID 
        """
        chain = self[id]
        self._remove(id)
        chain._structure = None   
    
    def _update_chain_id(self, chain, new_id):
        
        if chain.id not in self or self[chain.id] is not chain:
            raise InvalidOperation(chain)
        
        self._remove(chain.id)
        
        if new_id in self:
            raise DuplicateChainIDError('Chain ID {0} is already defined'.format(id))
        
        super(StructureChainsTable, self).append(new_id, chain)
        
class Chain(csb.core.AbstractNIContainer, AbstractEntity):
    """
    Represents a polymeric chain. Provides list-like and rank-based access to
    the residues in the chain:
    
        >>> chain[0]
        <ProteinResidue [1]: SER None>
        >>> chain.residues[1]
        <ProteinResidue [1]: SER None>
    
    You can also access residues by their PDB sequence number:
    
        >>> chain.find(sequence_number=5, insertion_code='A')
        <ProteinResidue [1]: SER 5A>
    
    @param chain_id: ID of the new chain
    @type chain_id: str
    @param type: sequence type (a member of the L{SequenceTypes} enum)
    @type type: L{csb.core.EnumItem}
    @param name: name of the chain
    @type name: str
    @param residues: initialization list of L{Residue}-s
    @type residues: list
    @param accession: accession number of the chain
    @type accession: str
    @param molecule_id: MOL ID of the chain, if part of a polymer
    
    """
    def __init__(self, chain_id, type=SequenceTypes.Protein, name='',           
                 residues=None, accession=None, molecule_id=None):       

        self._id = str(chain_id).strip()
        self._accession = None
        self._type = None
        self._residues = ChainResiduesCollection(self, residues)
        self._secondary_structure = None
        self._molecule_id = molecule_id
        self._torsion_computed = False
        self._name = str(name).strip()
        
        self._structure = None
        
        self.type = type
        if accession is not None:
            self.accession = accession
            
    @staticmethod
    def from_sequence(sequence, id="_"):
        """
        Create a new chain from an existing sequence.
        
        @param sequence: source sequence
        @type sequence: L{csb.bio.sequence.AbstractSequence}
        
        @rtype: L{Chain}
        """
        
        chain = Chain(id, type=sequence.type)
        
        for ri in sequence.residues:
            residue = Residue.create(sequence.type, ri.rank, ri.type, sequence_number=ri.rank)
            chain.residues.append(residue)
            
        return chain
            
    @property
    def _children(self):
        return self._residues

    def __repr__(self):
        return "<Chain {0.id}: {0.type!r}>".format(self)        

    def __len__(self):
        return self._residues.length

    @property
    def id(self):
        """
        Chain's ID
        @rtype: str
        """
        return self._id
    @id.setter
    def id(self, id):
        if not isinstance(id, csb.core.string):
            raise ValueError(id)
        id = id.strip()
        if self._structure:
            self._structure.chains._update_chain_id(self, id)
        self._id = id
    
    @property
    def accession(self):
        """
        Accession number
        @rtype: str
        """        
        return self._accession
    @accession.setter
    def accession(self, accession):
        if self._structure:
            raise InvalidOperation("Only the accession of the parent structure can be altered")
        if accession is None:
            raise ValueError(accession)
        self._accession = str(accession).strip()
        
    @property
    def type(self):
        """
        Chain type - any member of L{SequenceTypes}
        @rtype: enum item
        """
        return self._type
    @type.setter
    def type(self, type):
        if type.enum is not SequenceTypes:
            raise TypeError(type)
        self._type = type

    @property
    def residues(self):
        """
        Rank-based access to Chain's L{Residue}s
        @rtype: L{ChainResiduesCollection}
        """
        return self._residues
    
    @property
    def items(self):
        return iter(self._residues)
    
    @property
    def torsion(self):
        """
        Torsion angles
        @rtype: L{TorsionAnglesCollection}
        """
        if not self._torsion_computed:
            raise InvalidOperation('The correctness of the data is not guaranteed '
                                   'until chain.compute_torsion() is invoked.')
            
        torsion = TorsionAnglesCollection()
        
        for r in self.residues:
            if r.torsion is None:
                torsion.append(TorsionAngles(None, None, None))
            else:
                torsion.append(r.torsion)
                
        return torsion
    
    @property
    def has_torsion(self):
        """
        True if C{Chain.compute_torsion} had been invoked
        @rtype: bool
        """
        return self._torsion_computed

    @property
    def length(self):
        """
        Number of residues
        @rtype: int
        """
        return self._residues.length
    
    @property
    def entry_id(self):
        """
        Accession number + chain ID
        @rtype: str
        """
        if self._accession and self._id:
            return self._accession + self._id
        else:
            return None
    
    @property
    def name(self):
        """
        Chain name
        @rtype: str
        """
        return self._name
    @name.setter
    def name(self, value):
        if value is not None:
            value = str(value).strip()
        self._name = value

    @property
    def molecule_id(self):
        """
        PDB MOL ID of this chain
        @rtype: int
        """
        return self._molecule_id
    @molecule_id.setter
    def molecule_id(self, value):
        self._molecule_id = value
                
    @property
    def header(self):
        """
        FASTA header in PDB format
        @rtype: str
        """
        header = "{0._accession}_{0._id} mol:{1} length:{0.length} {0.name}"
        return header.format(self, str(self.type).lower())

    @property
    def sequence(self):
        """
        Chain sequence
        @rtype: str
        """    
        sequence = []
        gap = str(self.alphabet.GAP)
        
        for residue in self.residues:
            if residue and residue.type:
                sequence.append(str(residue.type))
            else:
                sequence.append(gap)
                
        return ''.join(sequence)
    
    @property
    def alphabet(self):
        """
        Sequence alphabet corresponding to the current chain type
        @rtype: L{csb.core.enum}
        """
        return SequenceAlphabets.get(self.type)
        
    @property
    def secondary_structure(self):
        """
        Secondary structure (if available)
        @rtype: L{SecondaryStructure}
        """
        return self._secondary_structure
    @secondary_structure.setter
    def secondary_structure(self, ss):
        if not isinstance(ss, SecondaryStructure):
            raise TypeError(ss)
        if len(ss) > 0:
            if (ss[ss.last_index].end > self._residues.last_index):
                raise ValueError('Secondary structure out of range')
        self._secondary_structure = ss        
        
    def clone(self):
        """
        Make a deep copy of the chain. If this chain is part of a structure, 
        detach from it.
        
        @return: a deep copy of self
        @rtype: L{Chain}
        """
        start, end = self.residues.start_index, self.residues.last_index
        return self.subregion(start, end, clone=True)
        
    def subregion(self, start, end, clone=False):
        """
        Extract a subchain defined by [start, end]. If clone is True, this
        is a deep copy of the chain. Otherwise same as:
        
            >>> chain.residues[start : end + 1]
        
        but coordinates are checked and a Chain instance is returned.
        
        @param start: start position of the sub-region
        @type start: int
        @param end: end position
        @type end: int
        @param clone: if True, a deep copy of the sub-region is returned, 
                      otherwise - a shallow one
        @type clone: bool
        
        
        @return: a new chain, made from the residues of the extracted region
        @rtype: L{Chain}
        
        @raise IndexError: if start/end positions are out of range
        """
        if start < self.residues.start_index or start > self.residues.last_index:
            raise IndexError('The start position is out of range {0.start_index} .. {0.last_index}'.format(self.residues))
        if end < self.residues.start_index or end > self.residues.last_index:
            raise IndexError('The end position is out of range {0.start_index} .. {0.last_index}'.format(self.residues))
                
        residues = self.residues[start : end + 1]
        
        if clone:
            residues = [r.clone() for r in residues]
        
        chain = Chain(self.id, accession=self.accession, name=self.name, 
                      type=self.type, residues=residues, molecule_id=self.molecule_id)
        if chain.secondary_structure:
            chain.secondary_structure = self.secondary_structure.subregion(start, end)
        chain._torsion_computed = self._torsion_computed
        
        return chain  
        
    def find(self, sequence_number, insertion_code=None):
        """
        Get a residue by its original Residue Sequence Number and Insertion Code.
        
        @param sequence_number: PDB sequence number of the residue
        @type sequence_number: str
        @param insertion_code: PDB insertion code of the residue (if any)
        @type insertion_code: str
        
        @return: the residue object with such an ID
        @rtype: L{Residue}
        
        @raise EntityNotFoundError: if no residue with that ID exists
        """
        res_id = str(sequence_number).strip()
        
        if insertion_code is not None:
            insertion_code = str(insertion_code).strip()
            res_id += insertion_code

        return self.residues._get_residue(res_id)
    
    def compute_torsion(self):
        """
        Iterate over all residues in the chain, compute and set their torsion property.
        
        @raise Missing3DStructureError: when a 3D structure is absent
        @raise Broken3DStructureError: when a given atom cannot be retrieved from any residue
        """
        if self.type != SequenceTypes.Protein:                          
            raise NotImplementedError()
               
        for i, residue in enumerate(self.residues, start=self.residues.start_index):
            
            prev_residue, next_residue = None, None            
            
            if i > self.residues.start_index:
                prev_residue = self.residues[i - 1]         
            if i < self.residues.last_index:
                next_residue = self.residues[i + 1] 
                
            residue.torsion = residue.compute_torsion(prev_residue, next_residue, strict=False)
            
        self._torsion_computed = True
    
    def superimpose(self, other, what=['CA'], how=AlignmentTypes.Global):                       
        """
        Find the optimal fit between C{self} and C{other}. Return L{SuperimposeInfo}
        (RotationMatrix, translation Vector and RMSD), such that:
        
            >>> other.transform(rotation_matrix, translation_vector)
            
        will result in C{other}'s coordinates superimposed over C{self}.
        
        @param other: the subject (movable) chain
        @type other: L{Chain}
        @param what: a list of atom kinds, e.g. ['CA']
        @type what: list
        @param how: fitting method (global or local) - a member of the L{AlignmentTypes} enum
        @type how: L{csb.core.EnumItem}
        
        @return: superimposition info object, containing rotation matrix, translation 
                 vector and computed RMSD
        @rtype: L{SuperimposeInfo}
        
        @raise AlignmentArgumentLengthError: when the lengths of the argument chains differ 
        """ 
        if self.length != other.length or self.length < 1:
            raise AlignmentArgumentLengthError('Both chains must be of the same and positive length')
        
        x = self.get_coordinates(what)
        y = other.get_coordinates(what) 
        assert len(x) == len(y)

        if how == AlignmentTypes.Global:                                    
            r, t = csb.bio.utils.fit(x, y)
        else:
            r, t = csb.bio.utils.fit_wellordered(x, y)
            
        rmsd = csb.bio.utils.rmsd(x, y) 
        
        return SuperimposeInfo(r, t, rmsd=rmsd)
                              
    def align(self, other, what=['CA'], how=AlignmentTypes.Global):         
        """
        Align C{other}'s alpha carbons over self in space and return L{SuperimposeInfo}. 
        Coordinates of C{other} are overwritten in place using the rotation matrix
        and translation vector in L{SuperimposeInfo}. Alias for::
        
            R, t = self.superimpose(other, what=['CA'])
            other.transform(R, t)
            
        @param other: the subject (movable) chain
        @type other: L{Chain}
        @param what: a list of atom kinds, e.g. ['CA']
        @type what: list
        @param how: fitting method (global or local) - a member of the L{AlignmentTypes} enum
        @type how: L{csb.core.EnumItem}
        
        @return: superimposition info object, containing rotation matrix, translation 
                 vector and computed RMSD
        @rtype: L{SuperimposeInfo}        
        """
        result = self.superimpose(other, what=what, how=how)
        other.transform(result.rotation, result.translation)
        
        return result
    
    def rmsd(self, other, what=['CA']):
        """
        Compute the C-alpha RMSD against another chain (assuming equal length).
        Chains are superimposed with Least Squares Fit / Singular Value Decomposition.
        
        @param other: the subject (movable) chain
        @type other: L{Chain}
        @param what: a list of atom kinds, e.g. ['CA']
        @type what: list
        
        @return: computed RMSD over the specified atom kinds
        @rtype: float
        """
        
        if self.length != other.length or self.length < 1:
            raise ValueError('Both chains must be of the same and positive length '
                             '(got {0} and {1})'.format(self.length, other.length))
        
        x = self.get_coordinates(what)
        y = other.get_coordinates(what)
        assert len(x) == len(y)

        return csb.bio.utils.rmsd(x, y) 
    
    def tm_superimpose(self, other, what=['CA'], how=AlignmentTypes.Global):                    
        """
        Find the optimal fit between C{self} and C{other}. Return L{SuperimposeInfo}
        (RotationMatrix, translation Vector and TM-score), such that:
        
            >>> other.transform(rotation_matrix, translation_vector)
            
        will result in C{other}'s coordinates superimposed over C{self}.
        
        @param other: the subject (movable) chain
        @type other: L{Chain}
        @param what: a list of atom kinds, e.g. ['CA']
        @type what: list
        @param how: fitting method (global or local) - a member of the L{AlignmentTypes} enum
        @type how: L{csb.core.EnumItem}
        
        @return: superimposition info object, containing rotation matrix, translation 
                 vector and computed TM-score
        @rtype: L{SuperimposeInfo}
        
        @raise AlignmentArgumentLengthError: when the lengths of the argument chains differ         
        """
        
        if self.length != other.length or self.length < 1:
            raise ValueError('Both chains must be of the same and positive length')
        
        x = self.get_coordinates(what)
        y = other.get_coordinates(what)
        assert len(x) == len(y)
        
        L_ini_min = 0
        if how == AlignmentTypes.Global:                                            
            fit = csb.bio.utils.fit
        elif how == AlignmentTypes.Local:
            fit = csb.bio.utils.fit_wellordered
        else:
            # TMscore.f like search (slow)
            fit = csb.bio.utils.fit
            L_ini_min = 4
                
        r, t, tm = csb.bio.utils.tm_superimpose(x, y, fit, None, None, L_ini_min)
        
        return SuperimposeInfo(r,t, tm_score=tm)         
    
    def tm_score(self, other, what=['CA']):
        """
        Compute the C-alpha TM-Score against another chain (assuming equal chain length
        and optimal configuration - no fitting is done).        
        
        @param other: the subject (movable) chain
        @type other: L{Chain}
        @param what: a list of atom kinds, e.g. ['CA']
        @type what: list
                
        @return: computed TM-Score over the specified atom kinds
        @rtype: float        
        """

        if self.length != other.length or self.length < 1:
            raise ValueError('Both chains must be of the same and positive length')
        
        x = self.get_coordinates(what)
        y = other.get_coordinates(what)
        assert len(x) == len(y)

        return csb.bio.utils.tm_score(x, y)             

class ChainResiduesCollection(csb.core.CollectionContainer):
    
    def __init__(self, chain, residues):
        super(ChainResiduesCollection, self).__init__(type=Residue, start_index=1)
        self.__container = chain
        self.__lookup = { }
        
        if residues is not None:
            for residue in residues:
                self.append(residue)        
        
    def __repr__(self):
        if len(self) > 0:
            return "<ChainResidues: {0} ... {1}>".format(self[self.start_index], self[self.last_index])
        else:
            return "<ChainResidues: empty>"
        
    @property
    def _exception(self):
        return EntityIndexError    
        
    def append(self, residue):
        """
        Append a new residue to the chain.
        
        @param residue: the new residue
        @type residue: L{Residue}
        
        @raise DuplicateResidueIDError: if a residue with the same ID already exists
        """
        if residue.id and residue.id in self.__lookup:
            raise DuplicateResidueIDError('A residue with ID {0} is already defined within the chain'.format(residue.id))
        index = super(ChainResiduesCollection, self).append(residue)
        residue._container = self
        self.__container._torsion_computed = False
        self._add(residue)        
        return index
        
    def _contains(self, id):
        return id in self.__lookup
    
    def _remove(self, id):
        if id in self.__lookup:
            del self.__lookup[id]

    def _add(self, residue):
        self.__lookup[residue.id] = residue
            
    def _get_residue(self, id):
        try:
            return self.__lookup[id]
        except KeyError:
            raise EntityNotFoundError(id)            
        
class Residue(csb.core.AbstractNIContainer, AbstractEntity):
    """
    Base class representing a single residue. Provides a dictionary-like
    access to the atoms contained in the residue:
    
        >>> residue['CA']
        <Atom [3048]: CA>
        >>> residue.atoms['CA']
        <Atom [3048]: CA>
        >>> residue.items
        <iterator of Atom-s>
    
    @param rank: rank of the residue with respect to the chain
    @type rank: int
    @param type: residue type - a member of any L{SequenceAlphabets}
    @type type: L{csb.core.EnumItem}
    @param sequence_number: PDB sequence number of the residue
    @type sequence_number: str
    @param insertion_code: PDB insertion code, if any
    @type insertion_code: str
    """            
    def __init__(self, rank, type, sequence_number=None, insertion_code=None):
        
        self._type = None    
        self._label = None
        self._rank = int(rank)
        self._atoms = ResidueAtomsTable(self) 
        self._secondary_structure = None
        self._torsion = None
        self._sequence_number = None
        self._insertion_code = None
        self._container = None
        
        self.type = type
        self.id = sequence_number, insertion_code
        self.label = repr(type)
        
    @property
    def _children(self):
        return self._atoms
        
    def __repr__(self):
        return '<{1} [{0.rank}]: {0.type!r} {0.id}>'.format(self, self.__class__.__name__)
    
    @property
    def label(self):
        """
        Original residue label (different from C{Residue.type} for modified
        residues)
        @rtype: str        
        """
        return self._label
    @label.setter
    def label(self, value):
        self._label = str(value)
        
    @property
    def is_modified(self):
        """
        Return True id this is a modified residue
        @rtype: bool        
        """        
        return self.label != repr(self.type)
        
    @property
    def type(self):
        """
        Residue type - a member of any sequence alphabet
        @rtype: enum item
        """
        return self._type
    @type.setter
    def type(self, type):
        if type.enum not in (SequenceAlphabets.Protein, SequenceAlphabets.Nucleic, SequenceAlphabets.Unknown):
            raise TypeError(type)
        self._type = type
        
    @property
    def rank(self):
        """
        Residue's position in the sequence (1-based)
        @rtype: int
        """
        return self._rank
    
    @property
    def secondary_structure(self):
        """
        Secondary structure element this residue is part of
        @rtype: L{SecondaryStructureElement}        
        """
        return self._secondary_structure
    @secondary_structure.setter
    def secondary_structure(self, structure):
        if not isinstance(structure, SecondaryStructureElement):
            raise TypeError(structure)
        self._secondary_structure = structure
        
    @property
    def torsion(self):
        """
        Torsion angles
        @rtype: L{TorsionAngles}
        """
        return self._torsion
    @torsion.setter
    def torsion(self, torsion):
        if not isinstance(torsion, TorsionAngles):
            raise TypeError(torsion)
        self._torsion = torsion
    
    @property
    def atoms(self):
        """
        Access residue's atoms by atom name
        @rtype: L{ResidueAtomsTable}
        """
        return self._atoms
    
    @property
    def items(self):
        for atom in self._atoms:
            yield self._atoms[atom]        

    @property
    def sequence_number(self):
        """
        PDB sequence number (if residue.has_structure is True)
        @rtype: int
        """
        return self._sequence_number

    @property
    def insertion_code(self):
        """
        PDB insertion code (if defined)
        @rtype: str
        """
        return self._insertion_code
    
    @property
    def id(self):
        """
        PDB sequence number [+ insertion code]
        @rtype: str
        """
        if self._sequence_number is None:
            return None
        elif self._insertion_code is not None:
            return str(self._sequence_number) + self._insertion_code
        else:
            return str(self._sequence_number)
    @id.setter
    def id(self, value):
        sequence_number, insertion_code = value
        old_id = self.id
        id = ''
        if sequence_number is not None:
            sequence_number = int(sequence_number)
            id = str(sequence_number)
        if insertion_code is not None:
            insertion_code = str(insertion_code).strip()
            id += insertion_code
            if sequence_number is None:
                raise InvalidOperation('sequence_number must be defined when an insertion_code is specified.')
        if old_id != id:
            if self._container:
                if self._container._contains(id):
                    raise DuplicateResidueIDError('A residue with ID {0} is already defined within the chain'.format(id))
                self._container._remove(old_id)
            self._sequence_number = sequence_number
            self._insertion_code = insertion_code
            if self._container:
                self._container._add(self)
    
    @property
    def has_structure(self):
        """
        True if this residue has any atoms
        @rtype: bool
        """
        return len(self.atoms) > 0
        
    def get_coordinates(self, what=None, skip=False):
        
        coords = []
        
        if not self.has_structure:
            if skip:
                return numpy.array([])
            raise Missing3DStructureError(self)
        
        for atom_kind in (what or self.atoms):
            if atom_kind in self.atoms:
                coords.append(self.atoms[atom_kind].vector)                 
            else:
                if skip:
                    continue
                raise Broken3DStructureError('Could not retrieve {0} atom'.format(atom_kind))

        return numpy.array(coords)
                    
    def clone(self):
        
        container = self._container
        self._container = None
        clone = copy.deepcopy(self)
        self._container = container
        
        return clone
        
    @staticmethod
    def create(sequence_type, *a, **k):
        """
        Residue factory method, which returns the proper L{Residue} instance based on 
        the specified C{sequence_type}. All additional arguments are used to initialize
        the subclass by passing them automatically to the underlying constructor. 
        
        @param sequence_type: create a Residue of that SequenceType 
        @type sequence_type: L{csb.core.EnumItem}
        
        @return: a new residue of the proper subclass
        @rtype: L{Residue} subclass
        
        @raise ValueError: if the sequence type is not known
        """        
        if sequence_type == SequenceTypes.Protein:                                      
            return ProteinResidue(*a, **k)
        elif sequence_type == SequenceTypes.NucleicAcid:                                
            return NucleicResidue(*a, **k)
        elif sequence_type == SequenceTypes.Unknown:
            return UnknownResidue(*a, **k)
        else:
            raise ValueError(sequence_type)        
           
class ProteinResidue(Residue):
    """
    Represents a single amino acid residue.
    
    @param rank: rank of the residue with respect to the chain
    @type rank: int
    @param type: residue type - a member of 
                 L{csb.bio.sequence.SequenceAlphabets.Protein}
    @type type: L{csb.core.EnumItem}
    @param sequence_number: PDB sequence number of the residue
    @type sequence_number: str
    @param insertion_code: PDB insertion code, if any
    @type insertion_code: str    
    """
    
    def __init__(self, rank, type, sequence_number=None, insertion_code=None):
          
        if isinstance(type, csb.core.string):
            try:
                if len(type) == 3:
                    type = csb.core.Enum.parsename(SequenceAlphabets.Protein, type)
                else:    
                    type = csb.core.Enum.parse(SequenceAlphabets.Protein, type)          
            except (csb.core.EnumMemberError, csb.core.EnumValueError):
                raise ValueError("'{0}' is not a valid amino acid".format(type))
        elif type.enum is not SequenceAlphabets.Protein:
            raise TypeError(type)
            
        super(ProteinResidue, self).__init__(rank, type, sequence_number, insertion_code)  
         
    def compute_torsion(self, prev_residue, next_residue, strict=True):
        """
        Compute the torsion angles of the current residue with neighboring residues
        C{prev_residue} and C{next_residue}. 
        
        @param prev_residue: the previous residue in the chain
        @type prev_residue: L{Residue}
        @param next_residue: the next residue in the chain
        @type next_residue: L{Residue}
        @param strict: if True, L{Broken3DStructureError} is raised if either C{prev_residue} 
                       or C{next_residue} has a broken structure, else the error is silently
                       ignored and an empty L{TorsionAngles} instance is created
        @type strict: bool
                        
        @return: a L{TorsionAngles} object, holding the phi, psi and omega values
        @rtype: L{TorsionAngles}
        
        @raise Broken3DStructureError: when a specific atom cannot be found 
        """       
        if prev_residue is None and next_residue is None:
            raise ValueError('At least one neighboring residue is required to compute the torsion.')
   
        angles = TorsionAngles(None, None, None, units=AngleUnits.Degrees)
        
        for residue in (self, prev_residue, next_residue):
            if residue is not None and not residue.has_structure:
                if strict:
                    raise Missing3DStructureError(repr(residue))
                elif residue is self:
                    return angles
        
        try:
            n = self._atoms['N'].vector
            ca = self._atoms['CA'].vector
            c = self._atoms['C'].vector
        except csb.core.ItemNotFoundError as missing_atom:
            if strict:
                raise Broken3DStructureError('Could not retrieve {0} atom from the current residue {1!r}.'.format(
                                                                                                missing_atom, self))
            else:
                return angles
        
        try:
            if prev_residue is not None and prev_residue.has_structure:
                prev_c = prev_residue._atoms['C'].vector
                angles.phi = csb.numeric.dihedral_angle(prev_c, n, ca, c)
        except csb.core.ItemNotFoundError as missing_prevatom:
            if strict:
                raise Broken3DStructureError('Could not retrieve {0} atom from the i-1 residue {1!r}.'.format(
                                                                                    missing_prevatom, prev_residue))    
        try:
            if next_residue is not None and next_residue.has_structure:    
                next_n = next_residue._atoms['N'].vector
                angles.psi = csb.numeric.dihedral_angle(n, ca, c, next_n)
                next_ca = next_residue._atoms['CA'].vector
                angles.omega = csb.numeric.dihedral_angle(ca, c, next_n, next_ca)
        except csb.core.ItemNotFoundError as missing_nextatom:
            if strict:
                raise Broken3DStructureError('Could not retrieve {0} atom from the i+1 residue {1!r}.'.format(
                                                                                    missing_nextatom, next_residue))              
                                
        return angles

class NucleicResidue(Residue):
    """
    Represents a single nucleotide residue.
    
    @param rank: rank of the residue with respect to the chain
    @type rank: int
    @param type: residue type - a member of 
                 L{csb.bio.sequence.SequenceAlphabets.Nucleic}
    @type type: L{csb.core.EnumItem}
    @param sequence_number: PDB sequence number of the residue
    @type sequence_number: str
    @param insertion_code: PDB insertion code, if any
    @type insertion_code: str        
    """
    
    def __init__(self, rank, type, sequence_number=None, insertion_code=None):
        
        if isinstance(type, csb.core.string):
            try:
                if len(type) > 1:
                    type = csb.core.Enum.parsename(SequenceAlphabets.Nucleic, type)
                else:    
                    type = csb.core.Enum.parse(SequenceAlphabets.Nucleic, type)
            except (csb.core.EnumMemberError, csb.core.EnumValueError):
                raise ValueError("'{0}' is not a valid nucleotide".format(type))
        elif type.enum is not SequenceAlphabets.Nucleic:
            raise TypeError(type)
            
        super(NucleicResidue, self).__init__(rank, type, sequence_number, insertion_code)  
        self.label = str(type)
        
    @property
    def is_modified(self):
        return self.label != str(self.type)        

class UnknownResidue(Residue):
    
    def __init__(self, rank, type, sequence_number=None, insertion_code=None):

        super(UnknownResidue, self).__init__(rank, SequenceAlphabets.Unknown.UNK,
                                             sequence_number, insertion_code)
            
class ResidueAtomsTable(csb.core.DictionaryContainer):
    """ 
    Represents a collection of atoms. Provides dictionary-like access,
    where PDB atom names are used for lookup.
    """
    def __init__(self, residue, atoms=None):
        
        self.__residue = residue
        super(ResidueAtomsTable, self).__init__()
        
        if atoms is not None:
            for atom in atoms:
                self.append(atom)
        
    def __repr__(self):
        if len(self) > 0:
            return "<ResidueAtoms: {0}>".format(', '.join(self.keys()))
        else:
            return "<ResidueAtoms: empty>"
        
    @property
    def _exception(self):
        return AtomNotFoundError
    
    def append(self, atom):
        """
        Append a new Atom to the catalog.
        
        If the atom has an alternate position, a disordered proxy will be created instead and the 
        atom will be appended to the L{DisorderedAtom}'s list of children. If a disordered atom 
        with that name already exists, the atom will be appended to its children only.
        If an atom with the same name exists, but it was erroneously not marked as disordered,
        that terrible condition will be fixed too.
        
        @param atom: the new atom to append
        @type atom: L{Atom}
        
        @raise DuplicateAtomIDError: if an atom with the same sequence number and 
                                     insertion code already exists in that residue
        """
        if atom.residue and atom.residue is not self.__residue:
            raise InvalidOperation('This atom is part of another residue')
        if atom.alternate or (atom.name in self and isinstance(self[atom.name], DisorderedAtom)):
            if atom.name not in self:
                atom._residue = self.__residue
                dis_atom = DisorderedAtom(atom)
                super(ResidueAtomsTable, self).append(dis_atom.name, dis_atom)
            else:
                if not isinstance(self[atom.name], DisorderedAtom):
                    buggy_atom = self[atom.name]
                    assert buggy_atom.alternate in (None, False)
                    buggy_atom.alternate = True
                    self.update(atom.name, DisorderedAtom(buggy_atom))
                if not atom.alternate:
                    atom.alternate = True 
                atom._residue = self.__residue
                self[atom.name].append(atom)          
        else:
            if atom.name in self:
                raise DuplicateAtomIDError('Atom {0} is already defined for {1}'.format(
                                                                        atom.name, self.__residue))
            else:                   
                super(ResidueAtomsTable, self).append(atom.name, atom)
                atom._residue = self.__residue
        
    def update(self, atom_name, atom):
        """ 
        Update the atom with the specified name.
        
        @param atom_name: update key
        @type atom_name: str
        @param atom: new value for this key
        @type atom: L{Atom}
        
        @raise ValueError: if C{atom} has a different name than C{atom_name}
        """
        if atom.name != atom_name:
            raise ValueError("Atom's name differs from the specified key.")
        if atom.residue is not self.__residue:
            atom._residue = self.__residue
        
        super(ResidueAtomsTable, self)._update({atom_name: atom})  
    
class Atom(AbstractEntity):
    """
    Represents a single atom in space.
    
    @param serial_number: atom's UID
    @type serial_number: int
    @param name: atom's name
    @type name: str
    @param element: corresponding L{ChemElements}
    @type element: L{csb.core.EnumItem}
    @param vector: atom's coordinates
    @type vector: numpy array
    @param alternate: if True, means that this is a wobbling atom with multiple alternative 
                      locations
    @type alternate: bool
    """        
    def __init__(self, serial_number, name, element, vector, alternate=False):
        
        self._serial_number = None
        self._name = None
        self._element = None
        self._residue = None
        self._vector = None
        self._alternate = False        
        self._bfactor = None
        self._occupancy = None
        self._charge = None

        if not isinstance(name, csb.core.string):
            raise TypeError(name)
        name_compact = name.strip()
        if len(name_compact) < 1:
            raise ValueError(name)
        self._name = name_compact
        self._full_name = name
            
        if isinstance(element, csb.core.string):
            element = csb.core.Enum.parsename(ChemElements, element)
        elif element is None:
            pass
        elif element.enum is not ChemElements:
            raise TypeError(element)
        self._element = element

        # pass type- and value-checking control to setters
        self.serial_number = serial_number
        self.vector = vector
        self.alternate = alternate
        
    def __repr__(self):
        return "<Atom [{0.serial_number}]: {0.name}>".format(self)
        
    def __lt__(self, other):
        return self.serial_number < other.serial_number
    
    def transform(self, rotation, translation):
        
        vector = numpy.dot(self.vector, numpy.transpose(rotation)) + translation
        self.vector = vector
    
    def get_coordinates(self, what=None, skip=False):
        
        if what is None:
            what = [self.name]
            
        if self.name in what:
            return numpy.array([self.vector.copy()])
        elif skip:
            return numpy.array([])
        else:
            raise Missing3DStructureError()
        
    def clone(self):
        
        residue = self._residue
        self._residue = None
        clone = copy.deepcopy(self)
        self._residue = residue
        
        return clone

    @property
    def serial_number(self):
        """
        PDB serial number
        @rtype: int
        """        
        return self._serial_number
    @serial_number.setter
    def serial_number(self, number):
        if not isinstance(number, int) or number < 1:
            raise TypeError(number)
        self._serial_number = number
    
    @property
    def name(self):
        """
        PDB atom name (trimmed)
        @rtype: str
        """
        return self._name
        
    @property
    def element(self):
        """
        Chemical element - a member of L{ChemElements}
        @rtype: enum item
        """
        return self._element
    
    @property
    def residue(self):
        """
        Residue instance that owns this atom (if available)
        @rtype: L{Residue}
        """
        return self._residue
    @residue.setter
    def residue(self, residue):
        if self._residue:
            raise InvalidOperation('This atom is already part of a residue.')
        if not isinstance(residue, Residue):
            raise TypeError(residue)
        self._residue = residue
    
    @property
    def vector(self):
        """
        Atom's 3D coordinates (x, y, z)
        @rtype: numpy.array
        """
        return self._vector
    @vector.setter
    def vector(self, vector):
        if numpy.shape(vector) != (3,):
            raise ValueError("Three dimensional vector expected")
        self._vector = numpy.array(vector)
        
    @property
    def alternate(self):
        """
        Alternative location flag
        @rtype: str
        """
        return self._alternate
    @alternate.setter
    def alternate(self, value):
        self._alternate = value
    
    @property
    def bfactor(self):
        """
        Temperature factor
        @rtype: float
        """
        return self._bfactor
    @bfactor.setter
    def bfactor(self, value):
        self._bfactor = value
    
    @property
    def occupancy(self):
        """
        Occupancy number
        @rtype: float
        """        
        return self._occupancy
    @occupancy.setter
    def occupancy(self, value):
        self._occupancy = value
    
    @property
    def charge(self):
        """
        Charge
        @rtype: int
        """         
        return self._charge
    @charge.setter
    def charge(self, value):
        self._charge = value
    
    @property
    def items(self):
        return iter([])
        
class DisorderedAtom(csb.core.CollectionContainer, Atom):
    """
    A wobbling atom, which has alternative locations. Each alternative is represented 
    as a 'normal' L{Atom}. The atom with a highest occupancy is selected as a representative,
    hence a DisorderedAtom behaves as a regular L{Atom} (proxy of the representative) as well
    as a collection of Atoms. 
    
    @param atom: the first atom to be appended to the collection of alternatives. It
                 is automatically defined as a representative, until a new atom with 
                 higher occupancy is appended to the collection
    @type atom: L{Atom}
    """  
        
    def __init__(self, atom):
        
        super(DisorderedAtom, self).__init__(type=Atom)
        
        self.__rep = None
        self.__alt = {}
        
        self.append(atom)

    def __getattr__(self, name):
        try:
            return object.__getattribute__(self, name)
        except AttributeError:
            subject = object.__getattribute__(self, '_DisorderedAtom__rep')
            return getattr(subject, name)             
            
    def append(self, atom):
        """
        Append a new atom to the collection of alternatives.
        
        @param atom: the new alternative
        @type atom: L{Atom}
        """
        self.__update_rep(atom)
        self.__alt[atom.alternate] = atom
        
        super(DisorderedAtom, self).append(atom)
        
    def find(self, altloc):
        """
        Retrieve a specific atom by its altloc identifier.
        
        @param altloc: alternative location identifier
        @type altloc: str
        
        @rtype: L{Atom}  
        """
        if altloc in self.__alt:
            return self.__alt[altloc]
        else:
            for atom in self:
                if atom.alternate == altloc:
                    return Atom
        
        raise EntityNotFoundError(altloc)
    
    def transform(self, rotation, translation):
        
        for atom in self:
            atom.transform(rotation, translation)
                
    def __update_rep(self, atom):
        
        if self.__rep is None or \
        ((self.__rep.occupancy != atom.occupancy) and (self.__rep.occupancy < atom.occupancy)):
        
            self.__rep = atom
            
    def __repr__(self):
        return "<DisorderedAtom: {0.length} alternative locations>".format(self)
            
class SuperimposeInfo(object):
    """
    Describes a structural alignment result.
    
    @type rotation: Numpy Array
    @type translation: L{Vector}
    @type rmsd: float
    """
    def __init__(self, rotation, translation, rmsd=None, tm_score=None):
        
        self.rotation = rotation
        self.translation = translation
        self.rmsd = rmsd
        self.tm_score = tm_score

class SecondaryStructureElement(object):
    """ 
    Describes a Secondary Structure Element.
    
    @param start: start position with reference to the chain
    @type start: float
    @param end: end position with reference to the chain
    @type end: float    
    @param type: element type - a member of the L{SecStructures} enum
    @type type: csb.core.EnumItem
    @param score: secondary structure prediction confidence, if available
    @type score: int
    
    @raise IndexError: if start/end positions are out of range
    """    
    def __init__(self, start, end, type, score=None):
        
        if not (0 < start <= end):
            raise IndexError('Element coordinates are out of range: 1 <= start <= end.')
                
        self._start = None
        self._end = None
        self._type = None
        self._score = None

        self.start = start
        self.end = end
        self.type = type
                
        if score is not None: 
            self.score = score
            
    def __lt__(self, other):
        return self.start < other.start
    
    def __eq__(self, other):
        return (self.type == other.type 
                and self.start == other.start 
                and self.end == other.end) 
    
    def __str__(self):
        return self.to_string()
    
    def __repr__(self):
        return "<{0.type!r}: {0.start}-{0.end}>".format(self)
    
    @property
    def start(self):
        """
        Start position (1-based)
        @rtype: int
        """
        return self._start
    @start.setter
    def start(self, value):
        if value is not None:
            value = int(value)
            if value < 1:
                raise ValueError(value)
        self._start = value
    
    @property
    def end(self):
        """
        End position (1-based)
        @rtype: int
        """        
        return self._end
    @end.setter
    def end(self, value):
        if value is not None:
            value = int(value)
            if value < 1:
                raise ValueError(value)            
        self._end = value 
    
    @property
    def type(self):
        """
        Secondary structure type - a member of L{SecStructures}
        @rtype: enum item
        """        
        return self._type
    @type.setter
    def type(self, value):
        if isinstance(value, csb.core.string):
            value = csb.core.Enum.parse(SecStructures, value)
        if not value.enum is SecStructures:
            raise TypeError(value)
        self._type = value
            
    @property
    def length(self):
        """
        Number of residues covered by this element
        @rtype: int
        """
        return self.end - self.start + 1
    
    @property
    def score(self):
        """
        Secondary structure confidence values for each residue
        @rtype: L{CollectionContainer}
        """
        return self._score
    @score.setter
    def score(self, scores):
        if not len(scores) == self.length:
            raise ValueError('There must be a score entry for each residue in the element.')        
        self._score = csb.core.CollectionContainer(
                                items=list(scores), type=int, start_index=self.start)
    
    def overlaps(self, other):
        """
        Return True if C{self} overlaps with C{other}.
        
        @type other: L{SecondaryStructureElement}
        @rtype: bool
        """
        this = set(range(self.start, self.end + 1))
        that = set(range(other.start, other.end + 1))
        return not this.isdisjoint(that)
    
    def merge(self, other):
        """
        Merge C{self} and C{other}.

        @type other: L{SecondaryStructureElement}
                
        @return: a new secondary structure element
        @rtype: L{SecondaryStructureElement}
        
        @bug: confidence scores are lost
        """
        if not self.overlaps(other):
            raise ValueError("Can't merge non-overlapping secondary structures")
        elif self.type != other.type:
            raise ValueError("Can't merge secondary structures of different type")            
        
        start = min(self.start, other.start)
        end = max(self.end, other.end)
        assert self.type == other.type
        
        return SecondaryStructureElement(start, end, self.type)    
    
    def to_string(self):
        """
        Dump the element as a string.
        
        @return: string representation of the element
        @rtype: str
        """
        return str(self.type) * self.length
    
    def simplify(self):
        """
        Convert to three-state secondary structure (Helix, Strand, Coil).
        """           
        if self.type in (SecStructures.Helix, SecStructures.Helix3, SecStructures.PiHelix):
            self.type = SecStructures.Helix
        elif self.type in (SecStructures.Strand, SecStructures.BetaBridge):
            self.type = SecStructures.Strand
        elif self.type in (SecStructures.Coil, SecStructures.Turn, SecStructures.Bend):
            self.type = SecStructures.Coil
        elif self.type == SecStructures.Gap or self.type is None:
            pass
        else:
            assert False, 'Unhandled SS type: ' + repr(self.type)    

class SecondaryStructure(csb.core.CollectionContainer):
    """
    Describes the secondary structure of a chain.
    Provides an index-based access to the secondary structure elements of the chain.
    
    @param string: a secondary structure string (e.g. a PSI-PRED output)
    @type string: str
    @param conf_string: secondary structure prediction confidence values, if available
    @type conf_string: str
    """
    def __init__(self, string=None, conf_string=None):

        super(SecondaryStructure, self).__init__(type=SecondaryStructureElement, start_index=1)
        
        self._minstart = None
        self._maxend = None
         
        if string is not None:
            for motif in SecondaryStructure.parse(string, conf_string):
                self.append(motif)
                
    def __str__(self):
        return self.to_string()
    
    def append(self, element):
        """
        Add a new SecondaryStructureElement. Then sort all elements by
        their start position.
        """
        super(SecondaryStructure, self).append(element)
        super(SecondaryStructure, self)._sort()
        
        if self._minstart is None or element.start < self._minstart:
            self._minstart = element.start
        if self._maxend is None or element.end > self._maxend:
            self._maxend = element.end            
                        
    @staticmethod  
    def parse(string, conf_string=None):
        """ 
        Parse secondary structure from DSSP/PSI-PRED output string.
        
        @param string: a secondary structure string (e.g. a PSI-PRED output)
        @type string: str
        @param conf_string: secondary structure prediction confidence values, if available
        @type conf_string: str
                
        @return: a list of L{SecondaryStructureElement}s.
        @rtype: list
        
        @raise ValueError: if the confidence string is not of the same length
        """
        if not isinstance(string, csb.core.string):
            raise TypeError(string)
                
        string = ''.join(re.split('\s+', string))
        if conf_string is not None:
            conf_string = ''.join(re.split('\s+', conf_string))
            if not len(string) == len(conf_string):
                raise ValueError('The confidence string has unexpected length.')
        motifs = [ ]

        if not len(string) > 0:
            raise ValueError('Empty Secondary Structure string')      
        
        currel = string[0]
        start = 0
                
        for i, char in enumerate(string + '.'):
            
            if currel != char:
                try:
                    type = csb.core.Enum.parse(SecStructures, currel)
                except csb.core.EnumValueError:
                    raise UnknownSecStructureError(currel)
                confidence = None
                if conf_string is not None:
                    confidence = list(conf_string[start : i])
                    confidence = list(map(int, confidence))
                motif = SecondaryStructureElement(start + 1, i, type, confidence)
                motifs.append(motif)
                
                currel = char
                start = i

        return motifs
    
    @property
    def start(self):
        """
        Start position of the leftmost element
        @rtype: int
        """
        return self._minstart
        
    @property
    def end(self):
        """
        End position of the rightmost element
        @rtype: int
        """        
        return self._maxend
    
    def clone(self):
        """
        @return: a deep copy of the object
        """
        return copy.deepcopy(self)
        
    def to_three_state(self):
        """
        Convert to three-state secondary structure (Helix, Strand, Coil).
        """           
        for e in self:
            e.simplify()
    
    def to_string(self, chain_length=None):
        """
        Get back the string representation of the secondary structure.
        
        @return: a string of secondary structure elements
        @rtype: str
        
        @bug: [CSB 0000003] If conflicting elements are found at a given rank,
              this position is represented as a coil.
        """  
        gap = str(SecStructures.Gap)
        coil = str(SecStructures.Coil)
        
        if chain_length is None:
            chain_length = max(e.end for e in self)

        ss = []
        
        for pos in range(1, chain_length + 1):
            elements = self.at(pos)
            if len(elements) > 0:
                if len(set(e.type for e in elements)) > 1:
                    ss.append(coil)                         # [CSB 0000003]                     
                else:    
                    ss.append(elements[0].to_string()) 
            else:
                ss.append(gap)        

        return ''.join(ss)
    
    def at(self, rank, type=None):
        """
        @return: all secondary structure elements covering the specifid position
        @rtype: tuple of L{SecondaryStructureElement}s 
        """
        return self.scan(start=rank, end=rank, filter=type, loose=True, cut=True)
    
    def scan(self, start, end, filter=None, loose=True, cut=True):
        """
        Get all secondary structure elements within the specified [start, end] region.
        
        @param start: the start position of the region, 1-based, inclusive
        @type start: int
        @param end: the end position of the region, 1-based, inclusive
        @type end: int     
        @param filter: return only elements of the specified L{SecStructures} kind
        @type filter: L{csb.core.EnumItem}
        @param loose: grab all fully or partially matching elements within the region.
                      if False, return only the elements which strictly reside within 
                      the region
        @type loose: bool
        @param cut: if an element is partially overlapping with the start..end region, 
                    cut its start and/or end to make it fit into the region. If False, 
                    return the elements with their real lengths
        @type cut: bool

        @return: a list of deep-copied L{SecondaryStructureElement}s, sorted by their 
                 start position
        @rtype: tuple of L{SecondaryStructureElement}s
        """        
        matches = [ ]
        
        for m in self:            
            if filter and m.type != filter:
                continue
            
            if loose:
                if start <= m.start <= end or start <= m.end <= end or (m.start <= start and m.end >= end):
                    partmatch = copy.deepcopy(m)
                    if cut:
                        if partmatch.start < start:
                            partmatch.start = start
                        if partmatch.end > end:
                            partmatch.end = end
                        if partmatch.score:  
                            partmatch.score = partmatch.score[start : end + 1]
                    matches.append(partmatch) 
            else:
                if m.start >= start and m.end <= end:
                    matches.append(copy.deepcopy(m))                                    

        matches.sort()
        return tuple(matches)
    
    def q3(self, reference, relaxed=True):
        """
        Compute Q3 score.
        
        @param reference: reference secondary structure
        @type reference: L{SecondaryStructure}
        @param relaxed: if True, treat gaps as coils
        @type relaxed: bool
        
        @return: the percentage of C{reference} residues with identical
                 3-state secondary structure.
        @rtype: float
        """
        
        this = self.clone()
        this.to_three_state()
        
        ref = reference.clone()
        ref.to_three_state()
        
        total = 0
        identical = 0
        
        def at(ss, rank):
            elements = ss.at(rank)
            if len(elements) == 0:
                return None
            elif len(elements) > 1:
                raise ValueError('Flat secondary structure expected')
            else:
                return elements[0] 
        
        for rank in range(ref.start, ref.end + 1):
            q = at(this, rank)
            s = at(ref, rank)            

            if s:
                if relaxed or s.type != SecStructures.Gap:
                    total += 1
                    if q:
                        if q.type == s.type:
                            identical += 1
                        elif relaxed:
                            pair = set([q.type, s.type])
                            match = set([SecStructures.Gap, SecStructures.Coil])
                            if pair.issubset(match):
                                identical += 1
                    
        if total == 0:
            return 0.0
        else:
            return identical * 100.0 / total
        
    def subregion(self, start, end):
        """
        Same as C{ss.scan(...cut=True)}, but also shift the start-end positions
        of all motifs and return a L{SecondaryStructure} instance instead of a list.
        
        @param start: start position of the subregion, with reference to the chain
        @type start: int
        @param end: start position of the subregion, with reference to the chain
        @type end: int
        
        @return: a deep-copy sub-fragment of the original L{SecondaryStructure}
        @rtype: L{SecondaryStructure}
        """
        sec_struct = SecondaryStructure()
        
        for motif in self.scan(start, end, loose=True, cut=True):
            
            motif.start = motif.start - start + 1
            motif.end = motif.end - start + 1
            if motif.score:
                motif.score = list(motif.score) # this will automatically fix the score indices in the setter
            sec_struct.append(motif) 
            
        return sec_struct
        
class TorsionAnglesCollection(csb.core.CollectionContainer):
    """
    Describes a collection of torsion angles. Provides 1-based list-like access.
    
    @param items: an initialization list of L{TorsionAngles}
    @type items: list
    """  
    def __init__(self, items=None, start=1):
        
        super(TorsionAnglesCollection, self).__init__(
                                items,type=TorsionAngles, start_index=start)

    def __repr__(self):
        if len(self) > 0:
            return "<TorsionAnglesList: {0} ... {1}>".format(self[self.start_index], self[self.last_index])
        else:
            return "<TorsionAnglesList: empty>"        
        
    @property
    def phi(self):
        """
        List of all phi angles
        @rtype: list
        """   
        return [a.phi for a in self]

    @property
    def psi(self):
        """
        List of all psi angles
        @rtype: list
        """           
        return [a.psi for a in self]            

    @property
    def omega(self):  
        """
        List of all omega angles
        @rtype: list
        """                
        return [a.omega for a in self] 
    
    def update(self, angles):
        self._update(angles)   
    
    def rmsd(self, other):
        """
        Calculate the Circular RSMD against another TorsionAnglesCollection.
        
        @param other: subject (right-hand-term)
        @type other: L{TorsionAnglesCollection}
        
        @return: RMSD based on torsion angles
        @rtype: float
        
        @raise Broken3DStructureError: on discontinuous torsion angle collections
        (phi and psi values are still allowed to be absent at the termini)
        @raise ValueError: on mismatching torsion angles collection lengths
        """                   
        if len(self) != len(other) or len(self) < 1:
            raise ValueError('Both collections must be of the same and positive length')
        
        length = len(self)
        query, subject = [], []
                
        for n, (q, s) in enumerate(zip(self, other), start=1):
            
            q = q.copy()
            q.to_radians()
            
            s = s.copy()
            s.to_radians()
            
            if q.phi is None or s.phi is None:
                if n == 1:
                    q.phi = s.phi = 0.0
                else:
                    raise Broken3DStructureError('Discontinuous torsion angles collection at {0}'.format(n))
                    
            if q.psi is None or s.psi is None:
                if n == length:
                    q.psi = s.psi = 0.0
                else:
                    raise Broken3DStructureError('Discontinuous torsion angles collection at {0}'.format(n))
                
            query.append([q.phi, q.psi])
            subject.append([s.phi, s.psi])
            
        return csb.bio.utils.torsion_rmsd(numpy.array(query), numpy.array(subject))
           
class TorsionAngles(object):
    """
    Describes a collection of phi, psi and omega backbone torsion angles.
    
    It is assumed that the supplied values are either None, or fitting into 
    the range of [-180, +180] for AngleUnites.Degrees and [0, 2pi] for Radians.  
    
    @param phi: phi angle value in C{units}
    @type phi: float
    @param psi: psi angle value in C{units}
    @type psi: float
    @param omega: omega angle value in C{units}
    @type omega: float    
    @param units: any of L{AngleUnits}'s enum members
    @type units: L{csb.core.EnumItem}
    
    @raise ValueError: on invalid/unknown units
    """
                     
    def __init__(self, phi, psi, omega, units=AngleUnits.Degrees):
        
        try:
            if isinstance(units, csb.core.string):
                units = csb.core.Enum.parse(AngleUnits, units, ignore_case=True)
            else:
                if units.enum is not AngleUnits:
                    raise TypeError(units)
                
        except ValueError:
            raise ValueError('Unknown angle unit type {0}'.format(units))                              

        self._units = units
        
        self._phi = None
        self._psi = None
        self._omega = None
                                        
        self.phi = phi
        self.psi = psi
        self.omega = omega        

    def __repr__(self):
        return "<TorsionAngles: phi={0.phi}, psi={0.psi}, omega={0.omega}>".format(self)
    
    def __nonzero__(self):
        return self.__bool__()

    def __bool__(self):
        return  self.phi is not None \
                or self.psi is not None \
                or self.omega is not None        

    @property
    def units(self):
        """
        Current torsion angle units - a member of L{AngleUnits}
        @rtype: enum item
        """
        return self._units
    
    @property
    def phi(self):
        return self._phi
    @phi.setter
    def phi(self, phi):
        TorsionAngles.check_angle(phi, self._units)
        self._phi = phi   

    @property
    def psi(self):
        return self._psi
    @psi.setter
    def psi(self, psi):
        TorsionAngles.check_angle(psi, self._units)
        self._psi = psi     
        
    @property
    def omega(self):
        return self._omega
    @omega.setter
    def omega(self, omega):
        TorsionAngles.check_angle(omega, self._units)
        self._omega = omega        
        
    def copy(self):
        """
        @return: a deep copy of C{self}
        """
        return TorsionAngles(self.phi, self.psi, self.omega, self.units)
        
    def to_degrees(self):
        """
        Set angle measurement units to degrees.
        Convert the angles in this TorsionAngles instance to degrees.
        """
        
        if self._units != AngleUnits.Degrees:
    
            phi = TorsionAngles.deg(self._phi)
            psi = TorsionAngles.deg(self._psi)
            omega = TorsionAngles.deg(self._omega)
            
            # if no ValueError is raised by TorsionAngles.check_angle in TorsionAngles.deg:
            # (we assign directly to the instance variables to avoid check_angle being invoked again in setters)
            self._phi, self._psi, self._omega = phi, psi, omega
            self._units = AngleUnits.Degrees

        
    def to_radians(self):
        """
        Set angle measurement units to radians.
        Convert the angles in this TorsionAngles instance to radians.
        """

        if self._units != AngleUnits.Radians:        

            phi = TorsionAngles.rad(self._phi)
            psi = TorsionAngles.rad(self._psi)
            omega = TorsionAngles.rad(self._omega)
            
            # if no ValueError is raised by TorsionAngles.check_angle in TorsionAngles.rad:
            # (we assign directly to the instance variables to avoid check_angle being invoked again in setters)
            self._phi, self._psi, self._omega = phi, psi, omega
            self._units = AngleUnits.Radians

    @staticmethod
    def check_angle(angle, units):
        """
        Check the value of a torsion angle expressed in the specified units.
        """
        if angle is None:
            return
        elif units == AngleUnits.Degrees:
            if not (-180 <= angle <= 180):
                raise ValueError('Torsion angle {0} is out of range -180..180'.format(angle))           
        elif units == AngleUnits.Radians:
            if not (0 <= angle <= (2 * math.pi)):
                raise ValueError('Torsion angle {0} is out of range 0..2pi'.format(angle))
        else:
            raise ValueError('Unknown angle unit type {0}'.format(units))  
                    
    @staticmethod
    def rad(angle):
        """ 
        Convert a torsion angle value, expressed in degrees, to radians.
        Negative angles are converted to their positive counterparts: rad(ang + 360deg). 
        
        Return the calculated value in the range of [0, 2pi] radians. 
        """
        TorsionAngles.check_angle(angle, AngleUnits.Degrees)
                       
        if angle is not None:
            if angle < 0:
                angle += 360.            
            angle = math.radians(angle)
        return angle               
    
    @staticmethod
    def deg(angle):    
        """ 
        Convert a torsion angle value, expressed in radians, to degrees.
        Negative angles are not accepted, it is assumed that negative torsion angles have been 
        converted to their ang+2pi counterparts beforehand.  
        
        Return the calculated value in the range of [-180, +180] degrees. 
        """    
        TorsionAngles.check_angle(angle, AngleUnits.Radians)
         
        if angle is not None:                   
            if angle > math.pi:
                angle = -((2. * math.pi) - angle)
            angle = math.degrees(angle)
            
        return angle