File: multichain.py

package info (click to toggle)
python-csb 1.2.3%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 8,708 kB
  • ctags: 4,889
  • sloc: python: 24,180; xml: 812; makefile: 23; sh: 6
file content (1591 lines) | stat: -rw-r--r-- 55,649 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
"""
Implements several extended-ensemble Monte Carlo sampling algorithms.

Here is a short example which shows how to sample from a PDF using the replica
exchange with non-equilibrium switches (RENS) method. It draws 5000 samples from
a 1D normal distribution using the RENS algorithm working on three Markov chains
being generated by the HMC algorithm:


    >>> import numpy
    >>> from numpy import sqrt
    >>> from csb.io.plots import Chart
    >>> from csb.statistics.pdf import Normal
    >>> from csb.statistics.samplers import State
    >>> from csb.statistics.samplers.mc.multichain import ThermostattedMDRENSSwapParameterInfo
    >>> from csb.statistics.samplers.mc.multichain import ThermostattedMDRENS, AlternatingAdjacentSwapScheme
    >>> from csb.statistics.samplers.mc.singlechain import HMCSampler

    >>> # Pick some initial state for the different Markov chains:
    >>> initial_state = State(numpy.array([1.]))

    >>> # Set standard deviations:
    >>> std_devs = [1./sqrt(5), 1. / sqrt(3), 1.]

    >>> # Set HMC timesteps and trajectory length:
    >>> hmc_timesteps = [0.6, 0.7, 0.6]
    >>> hmc_trajectory_length = 20
    >>> hmc_gradients = [lambda q, t: 1 / (std_dev ** 2) * q for std_dev in std_devs]

    >>> # Set parameters for the thermostatted RENS algorithm:
    >>> rens_trajectory_length = 30
    >>> rens_timesteps = [0.3, 0.5]

    >>> # Set interpolation gradients as a function of the work parameter l:
    >>> rens_gradients = [lambda q, l, i=i: (l / (std_devs[i + 1] ** 2) + (1 - l) / (std_devs[i] ** 2)) * q 
                          for i in range(len(std_devs)-1)]

    >>> # Initialize HMC samplers:
    >>> samplers = [HMCSampler(Normal(sigma=std_devs[i]), initial_state, hmc_gradients[i], hmc_timesteps[i],
                    hmc_trajectory_length) for i in range(len(std_devs))]

    >>> # Create swap parameter objects:
    params = [ThermostattedMDRENSSwapParameterInfo(samplers[0], samplers[1], rens_timesteps[0],
              rens_trajectory_length, rens_gradients[0]),
              ThermostattedMDRENSSwapParameterInfo(samplers[1], samplers[2], rens_timesteps[1],
              rens_trajectory_length, rens_gradients[1])]

    >>> # Initialize thermostatted RENS algorithm:
    >>> algorithm = ThermostattedMDRENS(samplers, params)

    >>> # Initialize swapping scheme:
    >>> swapper = AlternatingAdjacentSwapScheme(algorithm)

    >>> # Initialize empty list which will store the samples:
    >>> states = []
    >>> for i in range(5000):
            if i % 5 == 0:
                swapper.swap_all()
            states.append(algorithm.sample())

    >>> # Print acceptance rates:
    >>> print('HMC acceptance rates:', [s.acceptance_rate for s in samplers])
    >>> print('swap acceptance rates:', algorithm.acceptance_rates)

    >>> # Create and plot histogram for first sampler and numpy.random.normal reference:
    >>> chart = Chart()
    >>> rawstates = [state[0].position[0] for state in states]
    >>> chart.plot.hist([numpy.random.normal(size=5000, scale=std_devs[0]), rawstates], bins=30, normed=True)
    >>> chart.plot.legend(['numpy.random.normal', 'RENS + HMC'])
    >>> chart.show()


For L{ReplicaExchangeMC} (RE), the procedure is easier because apart from the
two sampler instances the corresponding L{RESwapParameterInfo} objects take
no arguments.

Every replica exchange algorithm in this module (L{ReplicaExchangeMC}, L{MDRENS},
L{ThermostattedMDRENS}) is used in a similar way. A simulation is always
initialized with a list of samplers (instances of classes derived from
L{AbstractSingleChainMC}) and a list of L{AbstractSwapParameterInfo} objects
suited for the algorithm under consideration. Every L{AbstractSwapParameterInfo}
object holds all the information needed to perform a swap between two samplers.
The usual scheme is to swap only adjacent replicae in a scheme::

    1 <--> 2, 3 <--> 4, ...
    2 <--> 3, 4 <--> 5, ...
    1 <--> 2, 3 <--> 4, ...
    
This swapping scheme is implemented in the L{AlternatingAdjacentSwapScheme} class,
but different schemes can be easily implemented by deriving from L{AbstractSwapScheme}.
Then the simulation is run by looping over the number of samples to be drawn
and calling the L{AbstractExchangeMC.sample} method of the algorithm. By calling
the L{AbstractSwapScheme.swap_all} method of the specific L{AbstractSwapScheme}
implementation, all swaps defined in the list of L{AbstractSwapParameterInfo}
objects are performed according to the swapping scheme. The
L{AbstractSwapScheme.swap_all} method may be called for example after sampling
intervals of a fixed length or randomly.
"""

import numpy

import csb.numeric

from abc import ABCMeta, abstractmethod

from csb.statistics.samplers import EnsembleState
from csb.statistics.samplers.mc import AbstractMC, Trajectory, MCCollection, augment_state
from csb.statistics.samplers.mc.propagators import MDPropagator, ThermostattedMDPropagator
from csb.statistics.samplers.mc.neqsteppropagator import NonequilibriumStepPropagator
from csb.statistics.samplers.mc.neqsteppropagator import Protocol, Step, ReducedHamiltonian
from csb.statistics.samplers.mc.neqsteppropagator import ReducedHamiltonianPerturbation
from csb.statistics.samplers.mc.neqsteppropagator import HMCPropagation, HMCPropagationParam
from csb.statistics.samplers.mc.neqsteppropagator import HamiltonianSysInfo, NonequilibriumTrajectory
from csb.numeric.integrators import AbstractGradient, FastLeapFrog


class AbstractEnsembleMC(AbstractMC):
    """
    Abstract class for Monte Carlo sampling algorithms simulating several ensembles.

    @param samplers: samplers which sample from their respective equilibrium distributions
    @type samplers: list of L{AbstractSingleChainMC}    
    """

    __metaclass__ = ABCMeta

    def __init__(self, samplers):
        
        self._samplers = MCCollection(samplers)
        state = EnsembleState([x.state for x in self._samplers])
        
        super(AbstractEnsembleMC, self).__init__(state)        

    def sample(self):
        """
        Draw an ensemble sample.
        
        @rtype: L{EnsembleState}
        """
        
        sample = EnsembleState([sampler.sample() for sampler in self._samplers])
        self.state = sample

        return sample

    @property
    def energy(self):
        """
        Total ensemble energy.
        """ 
        return sum([x.energy for x in self._samplers])


class AbstractExchangeMC(AbstractEnsembleMC):
    """
    Abstract class for Monte Carlo sampling algorithms employing some replica exchange method.

    @param samplers: samplers which sample from their respective equilibrium distributions
    @type samplers: list of L{AbstractSingleChainMC}

    @param param_infos: list of ParameterInfo instances providing information needed
        for performing swaps
    @type param_infos: list of L{AbstractSwapParameterInfo}
    """

    __metaclass__ = ABCMeta

    def __init__(self, samplers, param_infos):
        super(AbstractExchangeMC, self).__init__(samplers)
        
        self._swaplist1 = []
        self._swaplist2 = []        
        self._currentswaplist = self._swaplist1
        
        self._param_infos = param_infos
        self._statistics = SwapStatistics(self._param_infos)
        
    def _checkstate(self, state):
        if not isinstance(state, EnsembleState):
            raise TypeError(state)        

    def swap(self, index):
        """
        Perform swap between sampler pair described by param_infos[index]
        and return outcome (true = accepted, false = rejected).

        @param index: index of swap pair in param_infos
        @type index: int

        @rtype: boolean
        """
        param_info = self._param_infos[index]
        swapcom = self._propose_swap(param_info)
        swapcom = self._calc_pacc_swap(swapcom)
        result = self._accept_swap(swapcom)
        
        self.state = EnsembleState([x.state for x in self._samplers])

        self.statistics.stats[index].update(result)
        
        return result

    @abstractmethod
    def _propose_swap(self, param_info):
        """
        Calculate proposal states for a swap between two samplers.
        
        @param param_info: ParameterInfo instance holding swap parameters
        @type param_info: L{AbstractSwapParameterInfo}
        
        @rtype: L{AbstractSwapCommunicator}
        """ 
        pass

    @abstractmethod
    def _calc_pacc_swap(self, swapcom):
        """
        Calculate probability to accept a swap given initial and proposal states.

        @param swapcom: SwapCommunicator instance holding information to be communicated
                        between distinct swap substeps
        @type swapcom: L{AbstractSwapCommunicator}

        @rtype: L{AbstractSwapCommunicator}
        """
        pass

    def _accept_swap(self, swapcom):
        """
        Accept / reject an exchange between two samplers given proposal states and
        the acceptance probability and returns the outcome (true = accepted, false = rejected).

        @param swapcom: SwapCommunicator instance holding information to be communicated
            between distinct swap substeps
        @type swapcom: L{AbstractSwapCommunicator}

        @rtype: boolean
        """

        if numpy.random.random() < swapcom.acceptance_probability:
            if swapcom.sampler1.state.momentum is None and swapcom.sampler2.state.momentum is None:
                swapcom.traj12.final.momentum = None
                swapcom.traj21.final.momentum = None
            swapcom.sampler1.state = swapcom.traj21.final
            swapcom.sampler2.state = swapcom.traj12.final
            return True
        else:
            return False

    @property
    def acceptance_rates(self):
        """
        Return swap acceptance rates.

        @rtype: list of floats
        """        
        return self.statistics.acceptance_rates

    @property
    def param_infos(self):
        """
        List of SwapParameterInfo instances holding all necessary parameters.

        @rtype: list of L{AbstractSwapParameterInfo}
        """
        return self._param_infos
    
    @property
    def statistics(self):
        return self._statistics

    def _update_statistics(self, index, accepted):
        """
        Update statistics of a given swap process.
        
        @param index: position of swap statistics to be updated
        @type index: int
        
        @param accepted: outcome of the swap
        @type accepted: boolean
        """
        
        self._stats[index][0] += 1
        self._stats[index][1] += int(accepted)


class AbstractSwapParameterInfo(object):
    """
    Subclass instances hold all parameters necessary for performing a swap
    between two given samplers.
    """

    __metaclass__ = ABCMeta

    def __init__(self, sampler1, sampler2):
        """
        @param sampler1: First sampler
        @type sampler1: L{AbstractSingleChainMC}

        @param sampler2: Second sampler
        @type sampler2: L{AbstractSingleChainMC}
        """

        self._sampler1 = sampler1
        self._sampler2 = sampler2

    @property
    def sampler1(self):
        return self._sampler1

    @property
    def sampler2(self):
        return self._sampler2


class AbstractSwapCommunicator(object):
    """
    Holds all the information which needs to be communicated between
    distinct swap substeps.

    @param param_info: ParameterInfo instance holding swap parameters
    @type param_info: L{AbstractSwapParameterInfo}

    @param traj12: Forward trajectory
    @type traj12: L{Trajectory}

    @param traj21: Reverse trajectory
    @type traj21: L{Trajectory}
    """

    __metaclass__ = ABCMeta
    
    def __init__(self, param_info, traj12, traj21):
        
        self._sampler1 = param_info.sampler1
        self._sampler2 = param_info.sampler2

        self._traj12 = traj12
        self._traj21 = traj21
        
        self._param_info = param_info
        
        self._acceptance_probability = None
        self._accepted = False
        
    @property
    def sampler1(self):
        return self._sampler1

    @property
    def sampler2(self):
        return self._sampler2
    
    @property
    def traj12(self):
        return self._traj12    

    @property
    def traj21(self):
        return self._traj21

    @property
    def acceptance_probability(self):
        return self._acceptance_probability
    @acceptance_probability.setter
    def acceptance_probability(self, value):
        self._acceptance_probability = value

    @property
    def accepted(self):
        return self._accepted
    @accepted.setter
    def accepted(self, value):
        self._accepted = value

    @property
    def param_info(self):
        return self._param_info


class ReplicaExchangeMC(AbstractExchangeMC):
    """
    Replica Exchange (RE, Swendsen & Yang 1986) implementation.
    """
        
    def _propose_swap(self, param_info):
        
        return RESwapCommunicator(param_info, Trajectory([param_info.sampler1.state,
                                                          param_info.sampler1.state]),
                                              Trajectory([param_info.sampler2.state,
                                                          param_info.sampler2.state]))
    
    def _calc_pacc_swap(self, swapcom):
        
        E1 = lambda x:-swapcom.sampler1._pdf.log_prob(x)
        E2 = lambda x:-swapcom.sampler2._pdf.log_prob(x)
            
        T1 = swapcom.sampler1.temperature
        T2 = swapcom.sampler2.temperature
        
        state1 = swapcom.traj12.initial
        state2 = swapcom.traj21.initial
        
        proposal1 = swapcom.traj21.final
        proposal2 = swapcom.traj12.final

        swapcom.acceptance_probability = csb.numeric.exp(-E1(proposal1.position) / T1 
                                                         + E1(state1.position) / T1 
                                                         - E2(proposal2.position) / T2 
                                                         + E2(state2.position) / T2)
                                                         
        return swapcom


class RESwapParameterInfo(AbstractSwapParameterInfo):
    """
    Holds parameters for a standard Replica Exchange swap.
    """
    pass


class RESwapCommunicator(AbstractSwapCommunicator):
    """
    Holds all the information which needs to be communicated between distinct
    RE swap substeps.

    See L{AbstractSwapCommunicator} for constructor signature.
    """
    pass


class AbstractRENS(AbstractExchangeMC):
    """
    Abstract Replica Exchange with Nonequilibrium Switches
    (RENS, Ballard & Jarzynski 2009) class.
    Subclasses implement various ways of generating trajectories
    (deterministic or stochastic).
    """

    __metaclass__ = ABCMeta

    def _propose_swap(self, param_info):

        init_state1 = param_info.sampler1.state
        init_state2 = param_info.sampler2.state
        
        trajinfo12 = RENSTrajInfo(param_info, init_state1, direction="fw")
        trajinfo21 = RENSTrajInfo(param_info, init_state2, direction="bw")
        
        traj12 = self._run_traj_generator(trajinfo12)
        traj21 = self._run_traj_generator(trajinfo21)

        return RENSSwapCommunicator(param_info, traj12, traj21)

    def _setup_protocol(self, traj_info):
        """
        Sets the protocol lambda(t) to either the forward or the reverse protocol.

        @param traj_info: TrajectoryInfo object holding information neccessary to
                          calculate the rens trajectories.
        @type traj_info: L{RENSTrajInfo}
        """

        if traj_info.direction == "fw":
            return traj_info.param_info.protocol
        else:
            return lambda t, tau: traj_info.param_info.protocol(tau - t, tau)
        
        return protocol

    def _get_init_temperature(self, traj_info):
        """
        Determine the initial temperature of a RENS trajectory.

        @param traj_info: TrajectoryInfo object holding information neccessary to
                          calculate the RENS trajectory.
        @type traj_info: L{RENSTrajInfo}
        """
        
        if traj_info.direction == "fw":
            return traj_info.param_info.sampler1.temperature
        else:
            return traj_info.param_info.sampler2.temperature

    @abstractmethod
    def _calc_works(self, swapcom):
        """
        Calculates the works expended during the nonequilibrium
        trajectories.

        @param swapcom: Swap communicator object holding all the
                        neccessary information.
        @type swapcom: L{RENSSwapCommunicator}

        @return: The expended during the forward and the backward
                 trajectory.
        @rtype: 2-tuple of floats
        """
        
        pass

    def _calc_pacc_swap(self, swapcom):

        work12, work21 = self._calc_works(swapcom)
        swapcom.acceptance_probability = csb.numeric.exp(-work12 - work21)

        return swapcom

    @abstractmethod
    def _propagator_factory(self, traj_info):
        """
        Factory method which produces the propagator object used to calculate
        the RENS trajectories.

        @param traj_info: TrajectoryInfo object holding information neccessary to
                          calculate the rens trajectories.
        @type traj_info: L{RENSTrajInfo}
        @rtype: L{AbstractPropagator}
        """
        pass

    def _run_traj_generator(self, traj_info):
        """
        Run the trajectory generator which generates a trajectory
        of a given length between the states of two samplers.

        @param traj_info: TrajectoryInfo instance holding information
                          needed to generate a nonequilibrium trajectory   
        @type traj_info: L{RENSTrajInfo}
        
        @rtype: L{Trajectory}
        """

        init_temperature = self._get_init_temperature(traj_info)
        
        init_state = traj_info.init_state.clone()

        if init_state.momentum is None:
            init_state = augment_state(init_state,
                                       init_temperature,
                                       traj_info.param_info.mass_matrix)
            
        gen = self._propagator_factory(traj_info)

        traj = gen.generate(init_state, int(traj_info.param_info.traj_length))
        
        return traj


class AbstractRENSSwapParameterInfo(RESwapParameterInfo):
    """
    Holds parameters for a RENS swap.
    """

    __metaclass__ = ABCMeta

    def __init__(self, sampler1, sampler2, protocol):

        super(AbstractRENSSwapParameterInfo, self).__init__(sampler1, sampler2)

        ## Can't pass the linear protocol as a default argument because of a reported bug
        ## in epydoc parsing which makes it fail building the docs.
        self._protocol = None
        if protocol is None:
            self._protocol = lambda t, tau: t / tau
        else:
            self._protocol = protocol

    @property
    def protocol(self):
        """
        Switching protocol determining the time dependence
        of the switching parameter.
        """
        return self._protocol
    @protocol.setter
    def protocol(self, value):
        self._protocol = value


class RENSSwapCommunicator(AbstractSwapCommunicator):
    """
    Holds all the information which needs to be communicated between distinct
    RENS swap substeps.

    See L{AbstractSwapCommunicator} for constructor signature.
    """
    
    pass


class RENSTrajInfo(object):
    """
    Holds information necessary for calculating a RENS trajectory.

    @param param_info: ParameterInfo instance holding swap parameters
    @type param_info: L{AbstractSwapParameterInfo}

    @param init_state: state from which the trajectory is supposed to start
    @type init_state: L{State}

    @param direction: Either "fw" or "bw", indicating a forward or backward
                      trajectory. This is neccessary to pick the protocol or
                      the reversed protocol, respectively.
    @type direction: string, either "fw" or "bw"
    """
    
    def __init__(self, param_info, init_state, direction):
        
        self._param_info = param_info
        self._init_state = init_state
        self._direction = direction
        
    @property
    def param_info(self):
        return self._param_info

    @property
    def init_state(self):
        return self._init_state

    @property
    def direction(self):
        return self._direction


class MDRENS(AbstractRENS):
    """
    Replica Exchange with Nonequilibrium Switches (RENS, Ballard & Jarzynski 2009)
    with Molecular Dynamics (MD) trajectories.

    @param samplers: Samplers which sample their
                         respective equilibrium distributions
    @type samplers: list of L{AbstractSingleChainMC}

    @param param_infos: ParameterInfo instance holding
                        information required to perform a MDRENS swap
    @type param_infos: list of L{MDRENSSwapParameterInfo}

    @param integrator: Subclass of L{AbstractIntegrator} to be used to
                       calculate the non-equilibrium trajectories
    @type integrator: type
    """

    def __init__(self, samplers, param_infos,
                 integrator=csb.numeric.integrators.FastLeapFrog):
        
        super(MDRENS, self).__init__(samplers, param_infos)
        
        self._integrator = integrator

    def _propagator_factory(self, traj_info):
        
        protocol = self._setup_protocol(traj_info)
        tau = traj_info.param_info.traj_length * traj_info.param_info.timestep
        factory = InterpolationFactory(protocol, tau)
        gen = MDPropagator(factory.build_gradient(traj_info.param_info.gradient),
                           traj_info.param_info.timestep,
                           mass_matrix=traj_info.param_info.mass_matrix,
                           integrator=self._integrator)

        return gen

    def _calc_works(self, swapcom):

        T1 = swapcom.param_info.sampler1.temperature
        T2 = swapcom.param_info.sampler2.temperature
        
        heat12 = swapcom.traj12.heat
        heat21 = swapcom.traj21.heat
        
        proposal1 = swapcom.traj21.final
        proposal2 = swapcom.traj12.final
        
        state1 = swapcom.traj12.initial
        state2 = swapcom.traj21.initial
        
        if swapcom.param_info.mass_matrix.is_unity_multiple:
            inverse_mass_matrix = 1.0 / swapcom.param_info.mass_matrix[0][0]
        else:
            inverse_mass_matrix = swapcom.param_info.mass_matrix.inverse
        
        E1 = lambda x:-swapcom.sampler1._pdf.log_prob(x)
        E2 = lambda x:-swapcom.sampler2._pdf.log_prob(x)
        K = lambda x: 0.5 * numpy.dot(x.T, numpy.dot(inverse_mass_matrix, x))

        w12 = (K(proposal2.momentum) + E2(proposal2.position)) / T2 - \
              (K(state1.momentum) + E1(state1.position)) / T1 - heat12 
        w21 = (K(proposal1.momentum) + E1(proposal1.position)) / T1 - \
              (K(state2.momentum) + E2(state2.position)) / T2 - heat21

        return w12, w21


class MDRENSSwapParameterInfo(RESwapParameterInfo):
    """
    Holds parameters for a MDRENS swap.

    @param sampler1: First sampler
    @type sampler1: L{AbstractSingleChainMC}

    @param sampler2: Second sampler
    @type sampler2: L{AbstractSingleChainMC}

    @param timestep: Integration timestep
    @type timestep: float

    @param traj_length: Trajectory length in number of timesteps
    @type traj_length: int

    @param gradient: Gradient which determines the dynamics during a trajectory
    @type gradient: L{AbstractGradient}
    
    @param protocol: Switching protocol determining the time dependence of the
                     switching parameter. It is a function M{f} taking the running
                     time t and the switching time tau to yield a value in M{[0, 1]}
                     with M{f(0, tau) = 0} and M{f(tau, tau) = 1}. Default is a linear
                     protocol, which is being set manually due to an epydoc bug
    @type protocol: callable
    
    @param mass_matrix: Mass matrix
    @type mass_matrix: n-dimensional matrix of type L{InvertibleMatrix} with n being the dimension
                               of the configuration space, that is, the dimension of
                               the position / momentum vectors
    """

    def __init__(self, sampler1, sampler2, timestep, traj_length, gradient,
                 protocol=None, mass_matrix=None):
        
        super(MDRENSSwapParameterInfo, self).__init__(sampler1, sampler2)

        self._mass_matrix = mass_matrix
        if self.mass_matrix is None:
            d = len(sampler1.state.position)
            self.mass_matrix = csb.numeric.InvertibleMatrix(numpy.eye(d), numpy.eye(d))

        self._traj_length = traj_length
        self._gradient = gradient
        self._timestep = timestep

        ## Can't pass the linear protocol as a default argument because of a reported bug
        ## in epydoc parsing which makes it fail building the docs.
        self._protocol = None
        if protocol is None:
            self._protocol = lambda t, tau: t / tau
        else:
            self._protocol = protocol
    
    @property
    def timestep(self):
        """
        Integration timestep.
        """
        return self._timestep
    @timestep.setter
    def timestep(self, value):
        self._timestep = float(value)

    @property
    def traj_length(self):
        """
        Trajectory length in number of integration steps.
        """
        return self._traj_length
    @traj_length.setter
    def traj_length(self, value):
        self._traj_length = int(value)

    @property
    def gradient(self):
        """
        Gradient which governs the equations of motion.
        """
        return self._gradient

    @property
    def mass_matrix(self):
        return self._mass_matrix
    @mass_matrix.setter
    def mass_matrix(self, value):
        self._mass_matrix = value

    @property
    def protocol(self):
        """
        Switching protocol determining the time dependence
        of the switching parameter.
        """
        return self._protocol
    @protocol.setter
    def protocol(self, value):
        self._protocol = value


class ThermostattedMDRENS(MDRENS):
    """
    Replica Exchange with Nonequilibrium Switches (RENS, Ballard & Jarzynski, 2009)
    with Andersen-thermostatted Molecular Dynamics (MD) trajectories.

    @param samplers: Samplers which sample their
                         respective equilibrium distributions
    @type samplers: list of L{AbstractSingleChainMC}

    @param param_infos: ParameterInfo instance holding
                        information required to perform a MDRENS swap
    @type param_infos: list of L{ThermostattedMDRENSSwapParameterInfo}

    @param integrator: Subclass of L{AbstractIntegrator} to be used to
                       calculate the non-equilibrium trajectories
    @type integrator: type
    """

    def __init__(self, samplers, param_infos, integrator=csb.numeric.integrators.LeapFrog):
        
        super(ThermostattedMDRENS, self).__init__(samplers, param_infos, integrator)

    def _propagator_factory(self, traj_info):

        protocol = self._setup_protocol(traj_info)
        tau = traj_info.param_info.traj_length * traj_info.param_info.timestep
        factory = InterpolationFactory(protocol, tau)
        
        grad = factory.build_gradient(traj_info.param_info.gradient)
        temp = factory.build_temperature(traj_info.param_info.temperature)

        gen = ThermostattedMDPropagator(grad,
                                        traj_info.param_info.timestep, temperature=temp, 
                                        collision_probability=traj_info.param_info.collision_probability,
                                        update_interval=traj_info.param_info.collision_interval,
                                        mass_matrix=traj_info.param_info.mass_matrix,
                                        integrator=self._integrator)

        return gen

class ThermostattedMDRENSSwapParameterInfo(MDRENSSwapParameterInfo):
    """
    @param sampler1: First sampler
    @type sampler1: subclass instance of L{AbstractSingleChainMC}

    @param sampler2: Second sampler
    @type sampler2: subclass instance of L{AbstractSingleChainMC}

    @param timestep: Integration timestep
    @type timestep: float

    @param traj_length: Trajectory length in number of timesteps
    @type traj_length: int

    @param gradient: Gradient which determines the dynamics during a trajectory
    @type gradient: subclass instance of L{AbstractGradient}

    @param mass_matrix: Mass matrix
    @type mass_matrix: n-dimensional L{InvertibleMatrix} with n being the dimension
                       of the configuration space, that is, the dimension of
                       the position / momentum vectors

    @param protocol: Switching protocol determining the time dependence of the
                     switching parameter. It is a function f taking the running
                     time t and the switching time tau to yield a value in [0, 1]
                     with f(0, tau) = 0 and f(tau, tau) = 1
    @type protocol: callable

    @param temperature: Temperature interpolation function.
    @type temperature: Real-valued function mapping from [0,1] to R.
        T(0) = temperature of the ensemble sampler1 samples from, T(1) = temperature
        of the ensemble sampler2 samples from

    @param collision_probability: Probability for a collision with the heatbath during one timestep
    @type collision_probability: float

    @param collision_interval: Interval during which collision may occur with probability
        collision_probability
    @type collision_interval: int
    """
        
    def __init__(self, sampler1, sampler2, timestep, traj_length, gradient, mass_matrix=None,
                 protocol=None, temperature=lambda l: 1.0,
                 collision_probability=0.1, collision_interval=1):
        
        super(ThermostattedMDRENSSwapParameterInfo, self).__init__(sampler1, sampler2, timestep,
                                                                   traj_length, gradient,
                                                                   mass_matrix=mass_matrix,
                                                                   protocol=protocol)
        
        self._collision_probability = None
        self._collision_interval = None
        self._temperature = temperature
        self.collision_probability = collision_probability
        self.collision_interval = collision_interval

    @property
    def collision_probability(self):
        """
        Probability for a collision with the heatbath during one timestep.
        """
        return self._collision_probability
    @collision_probability.setter
    def collision_probability(self, value):
        self._collision_probability = float(value)

    @property
    def collision_interval(self):
        """
        Interval during which collision may occur with probability
        C{collision_probability}.
        """
        return self._collision_interval
    @collision_interval.setter
    def collision_interval(self, value):
        self._collision_interval = int(value)

    @property
    def temperature(self):
        return self._temperature


class AbstractStepRENS(AbstractRENS):
    """
    Replica Exchange with Nonequilibrium Switches (RENS, Ballard & Jarzynski 2009)
    with stepwise trajectories as described in Nilmeier et al., "Nonequilibrium candidate
    Monte Carlo is an efficient tool for equilibrium simulation", PNAS 2011.
    The switching parameter dependence of the Hamiltonian is a linear interpolation
    between the PDFs of the sampler objects, 
    M{H(S{lambda}) = H_2 * S{lambda} + (1 - S{lambda}) * H_1}.
    The perturbation kernel is a thermodynamic perturbation and the propagation is subclass
    responsibility.
    Note that due to the linear interpolations between the two Hamiltonians, the
    log-probability has to be evaluated four times per perturbation step which can be
    costly. In this case it is advisable to define the intermediate log probabilities
    in _run_traj_generator differently.

    @param samplers: Samplers which sample their respective equilibrium distributions
    @type samplers: list of L{AbstractSingleChainMC}

    @param param_infos: ParameterInfo instances holding
                        information required to perform a HMCStepRENS swaps
    @type param_infos: list of L{AbstractSwapParameterInfo}
    """

    __metaclass__ = ABCMeta

    def __init__(self, samplers, param_infos):

        super(AbstractStepRENS, self).__init__(samplers, param_infos)

        self._evaluate_im_works = True

    @abstractmethod
    def _setup_propagations(self, im_sys_infos, param_info):
        """
        Set up the propagation steps using the information about the current system
        setup and parameters from the SwapParameterInfo object.

        @param im_sys_infos: Information about the intermediate system setups
        @type im_sys_infos: List of L{AbstractSystemInfo}

        @param param_info: SwapParameterInfo object containing parameters for the
                           propagations like timesteps, trajectory lengths etc.
        @type param_info: L{AbstractSwapParameterInfo}
        """
        
        pass

    @abstractmethod
    def _add_gradients(self, im_sys_infos, param_info, t_prot):
        """
        If needed, set im_sys_infos.hamiltonian.gradient.

        @param im_sys_infos: Information about the intermediate system setups
        @type im_sys_infos: List of L{AbstractSystemInfo}

        @param param_info: SwapParameterInfo object containing parameters for the
                           propagations like timesteps, trajectory lengths etc.
        @type param_info: L{AbstractSwapParameterInfo}

        @param t_prot: Switching protocol defining the time dependence of the switching
                       parameter.
        @type t_prot: callable
        """
        
        pass

    def _setup_stepwise_protocol(self, traj_info):
        """
        Sets up the stepwise protocol consisting of perturbation and relaxation steps.

        @param traj_info: TrajectoryInfo instance holding information
                          needed to generate a nonequilibrium trajectory   
        @type traj_info: L{RENSTrajInfo}
        
        @rtype: L{Protocol}
        """

        pdf1 = traj_info.param_info.sampler1._pdf
        pdf2 = traj_info.param_info.sampler2._pdf
        T1 = traj_info.param_info.sampler1.temperature
        T2 = traj_info.param_info.sampler2.temperature
        traj_length = traj_info.param_info.intermediate_steps
        prot = self._setup_protocol(traj_info)
        t_prot = lambda i: prot(float(i), float(traj_length))

        im_log_probs = [lambda x, i=i: pdf2.log_prob(x) * t_prot(i) + \
                                       (1 - t_prot(i)) * pdf1.log_prob(x)
                        for i in range(traj_length + 1)]
        
        im_temperatures = [T2 * t_prot(i) + (1 - t_prot(i)) * T1 
                           for i in range(traj_length + 1)]
        im_reduced_hamiltonians = [ReducedHamiltonian(im_log_probs[i],
                                                      temperature=im_temperatures[i]) 
                                   for i in range(traj_length + 1)]
        im_sys_infos = [HamiltonianSysInfo(im_reduced_hamiltonians[i])
                        for i in range(traj_length + 1)]
        perturbations = [ReducedHamiltonianPerturbation(im_sys_infos[i], im_sys_infos[i+1])
                        for i in range(traj_length)]
        if self._evaluate_im_works == False:
            for p in perturbations:
                p.evaluate_work = False
        im_sys_infos = self._add_gradients(im_sys_infos, traj_info.param_info, t_prot)
        propagations = self._setup_propagations(im_sys_infos, traj_info.param_info)
        
        steps = [Step(perturbations[i], propagations[i]) for i in range(traj_length)]

        return Protocol(steps)

    def _propagator_factory(self, traj_info):

        protocol = self._setup_stepwise_protocol(traj_info)
        gen = NonequilibriumStepPropagator(protocol)
        
        return gen

    def _run_traj_generator(self, traj_info):

        init_temperature = self._get_init_temperature(traj_info)

        gen = self._propagator_factory(traj_info)

        traj = gen.generate(traj_info.init_state)
        
        return NonequilibriumTrajectory([traj_info.init_state, traj.final], jacobian=1.0,
                                         heat=traj.heat, work=traj.work, deltaH=traj.deltaH)       


class HMCStepRENS(AbstractStepRENS):
    """
    Replica Exchange with Nonequilibrium Switches (RENS, Ballard & Jarzynski 2009)
    with stepwise trajectories as described in Nilmeier et al., "Nonequilibrium candidate
    Monte Carlo is an efficient tool for equilibrium simulation", PNAS 2011.
    The switching parameter dependence of the Hamiltonian is a linear interpolation
    between the PDFs of the sampler objects, 
    M{H(S{lambda}) = H_2 * S{lambda} + (1 - S{lambda}) * H_1}.
    The perturbation kernel is a thermodynamic perturbation and the propagation is done using HMC.

    Note that due to the linear interpolations between the two Hamiltonians, the
    log-probability and its gradient has to be evaluated four times per perturbation step which
    can be costly. In this case it is advisable to define the intermediate log probabilities
    in _run_traj_generator differently.

    @param samplers: Samplers which sample their respective equilibrium distributions
    @type samplers: list of L{AbstractSingleChainMC}

    @param param_infos: ParameterInfo instances holding
                        information required to perform a HMCStepRENS swaps
    @type param_infos: list of L{HMCStepRENSSwapParameterInfo}
    """

    def __init__(self, samplers, param_infos):

        super(HMCStepRENS, self).__init__(samplers, param_infos)

    def _add_gradients(self, im_sys_infos, param_info, t_prot):

        im_gradients = [lambda x, t, i=i: param_info.gradient(x, t_prot(i))
                        for i in range(param_info.intermediate_steps + 1)]

        for i, s in enumerate(im_sys_infos):
            s.hamiltonian.gradient = im_gradients[i]

        return im_sys_infos
            
    def _setup_propagations(self, im_sys_infos, param_info):
                        
        propagation_params = [HMCPropagationParam(param_info.timestep,
                                                  param_info.hmc_traj_length,
                                                  im_sys_infos[i+1].hamiltonian.gradient,
                                                  param_info.hmc_iterations,
                                                  mass_matrix=param_info.mass_matrix,
                                                  integrator=param_info.integrator)
                              for i in range(param_info.intermediate_steps)]

        propagations = [HMCPropagation(im_sys_infos[i+1], propagation_params[i], evaluate_heat=False)
                        for i in range(param_info.intermediate_steps)]

        return propagations        

    def _calc_works(self, swapcom):

        return swapcom.traj12.work, swapcom.traj21.work


class HMCStepRENSSwapParameterInfo(AbstractRENSSwapParameterInfo):
    """
    Holds all required information for performing HMCStepRENS swaps.

    @param sampler1: First sampler
    @type sampler1: subclass instance of L{AbstractSingleChainMC}

    @param sampler2: Second sampler
    @type sampler2: subclass instance of L{AbstractSingleChainMC}

    @param timestep: integration timestep
    @type timestep: float

    @param hmc_traj_length: HMC trajectory length
    @type hmc_traj_length: int

    @param hmc_iterations: number of HMC iterations in the propagation step
    @type hmc_iterations: int

    @param gradient: gradient governing the equations of motion, function of
                     position array and switching protocol
    @type gradient: callable
    
    @param intermediate_steps: number of steps in the protocol; this is a discrete version
                               of the switching time in "continuous" RENS implementations
    @type intermediate_steps: int

    @param protocol: Switching protocol determining the time dependence of the
                     switching parameter. It is a function f taking the running
                     time t and the switching time tau to yield a value in [0, 1]
                     with f(0, tau) = 0 and f(tau, tau) = 1
    @type protocol: callable

    @param mass_matrix: mass matrix for kinetic energy definition
    @type mass_matrix: L{InvertibleMatrix}

    @param integrator: Integration scheme to be utilized
    @type integrator: l{AbstractIntegrator}
    """

    def __init__(self, sampler1, sampler2, timestep, hmc_traj_length, hmc_iterations, 
                 gradient, intermediate_steps, parametrization=None, protocol=None,
                 mass_matrix=None, integrator=FastLeapFrog):

        super(HMCStepRENSSwapParameterInfo, self).__init__(sampler1, sampler2, protocol)

        self._mass_matrix = None
        self.mass_matrix = mass_matrix
        if self.mass_matrix is None:
            d = len(sampler1.state.position)
            self.mass_matrix = csb.numeric.InvertibleMatrix(numpy.eye(d), numpy.eye(d))

        self._hmc_traj_length = None
        self.hmc_traj_length = hmc_traj_length
        self._gradient = None
        self.gradient = gradient
        self._timestep = None
        self.timestep = timestep
        self._hmc_iterations = None
        self.hmc_iterations = hmc_iterations
        self._intermediate_steps = None
        self.intermediate_steps = intermediate_steps
        self._integrator = None
        self.integrator = integrator
    
    @property
    def timestep(self):
        """
        Integration timestep.
        """
        return self._timestep
    @timestep.setter
    def timestep(self, value):
        self._timestep = float(value)

    @property
    def hmc_traj_length(self):
        """
        HMC trajectory length in number of integration steps.
        """
        return self._hmc_traj_length
    @hmc_traj_length.setter
    def hmc_traj_length(self, value):
        self._hmc_traj_length = int(value)

    @property
    def gradient(self):
        """
        Gradient which governs the equations of motion.
        """
        return self._gradient
    @gradient.setter
    def gradient(self, value):
        self._gradient = value

    @property
    def mass_matrix(self):
        return self._mass_matrix
    @mass_matrix.setter
    def mass_matrix(self, value):
        self._mass_matrix = value

    @property
    def hmc_iterations(self):
        return self._hmc_iterations
    @hmc_iterations.setter
    def hmc_iterations(self, value):
        self._hmc_iterations = value

    @property
    def intermediate_steps(self):
        return self._intermediate_steps
    @intermediate_steps.setter
    def intermediate_steps(self, value):
        self._intermediate_steps = value

    @property
    def integrator(self):
        return self._integrator
    @integrator.setter
    def integrator(self, value):
        self._integrator = value


class AbstractSwapScheme(object):
    """
    Provides the interface for classes defining schemes according to which swaps in
    Replica Exchange-like simulations are performed.

    @param algorithm: Exchange algorithm that performs the swaps
    @type algorithm: L{AbstractExchangeMC}
    """

    __metaclass__ = ABCMeta

    def __init__(self, algorithm):

        self._algorithm = algorithm

    @abstractmethod
    def swap_all(self):
        """
        Advises the Replica Exchange-like algorithm to perform swaps according to
        the schedule defined here.
        """
        
        pass


class AlternatingAdjacentSwapScheme(AbstractSwapScheme):
    """
    Provides a swapping scheme in which tries exchanges between neighbours only
    following the scheme 1 <-> 2, 3 <-> 4, ... and after a sampling period 2 <-> 3, 4 <-> 5, ...

    @param algorithm: Exchange algorithm that performs the swaps
    @type algorithm: L{AbstractExchangeMC}
    """

    def __init__(self, algorithm):

        super(AlternatingAdjacentSwapScheme, self).__init__(algorithm)
        
        self._current_swap_list = None
        self._swap_list1 = []
        self._swap_list2 = []
        self._create_swap_lists()
    
    def _create_swap_lists(self):

        if len(self._algorithm.param_infos) == 1:
            self._swap_list1.append(0)
            self._swap_list2.append(0)
        else:
            i = 0
            while i < len(self._algorithm.param_infos):
                self._swap_list1.append(i)
                i += 2
                
            i = 1
            while i < len(self._algorithm.param_infos):
                self._swap_list2.append(i)
                i += 2

        self._current_swap_list = self._swap_list1

    def swap_all(self):
        
        for x in self._current_swap_list:
            self._algorithm.swap(x)

        if self._current_swap_list == self._swap_list1:
            self._current_swap_list = self._swap_list2
        else:
            self._current_swap_list = self._swap_list1


class SingleSwapStatistics(object):
    """
    Tracks swap statistics of a single sampler pair.

    @param param_info: ParameterInfo instance holding swap parameters
    @type param_info: L{AbstractSwapParameterInfo}
    """
    
    def __init__(self, param_info):
        self._total_swaps = 0
        self._accepted_swaps = 0

    @property
    def total_swaps(self):
        return self._total_swaps
    
    @property
    def accepted_swaps(self):
        return self._accepted_swaps
    
    @property
    def acceptance_rate(self):
        """
        Acceptance rate of the sampler pair.
        """
        if self.total_swaps > 0:
            return float(self.accepted_swaps) / float(self.total_swaps)
        else:
            return 0.

    def update(self, accepted):
        """
        Updates swap statistics.
        """        
        self._total_swaps += 1
        self._accepted_swaps += int(accepted)


class SwapStatistics(object):
    """
    Tracks swap statistics for an AbstractExchangeMC subclass instance.

    @param param_infos: list of ParameterInfo instances providing information
                        needed for performing swaps
    @type param_infos: list of L{AbstractSwapParameterInfo}
    """
    
    def __init__(self, param_infos):        
        self._stats = [SingleSwapStatistics(x) for x in param_infos]
        
    @property
    def stats(self):
        return tuple(self._stats)

    @property
    def acceptance_rates(self):
        """
        Returns acceptance rates for all swaps.
        """        
        return [x.acceptance_rate for x in self._stats]
        

class InterpolationFactory(object):
    """
    Produces interpolations for functions changed during non-equilibrium
    trajectories.
    
    @param protocol: protocol to be used to generate non-equilibrium trajectories
    @type protocol: function mapping t to [0...1] for fixed tau
    @param tau: switching time
    @type tau: float    
    """
    
    def __init__(self, protocol, tau):
        
        self._protocol = None
        self._tau = None
        
        self.protocol = protocol
        self.tau = tau
        
    @property
    def protocol(self):
        return self._protocol
    @protocol.setter
    def protocol(self, value):
        if not hasattr(value, '__call__'):
            raise TypeError(value)
        self._protocol = value
                    
    @property
    def tau(self):
        return self._tau
    @tau.setter
    def tau(self, value):
        self._tau = float(value)
        
    def build_gradient(self, gradient):
        """
        Create a gradient instance with according to given protocol
        and switching time.
        
        @param gradient: gradient with G(0) = G_1 and G(1) = G_2
        @type gradient: callable    
        """
        return Gradient(gradient, self._protocol, self._tau)
    
    def build_temperature(self, temperature):
        """
        Create a temperature function according to given protocol and
        switching time.

        @param temperature: temperature with T(0) = T_1 and T(1) = T_2
        @type temperature: callable        
        """
        return lambda t: temperature(self.protocol(t, self.tau))
        

class Gradient(AbstractGradient):
    
    def __init__(self, gradient, protocol, tau):
        
        self._protocol = protocol
        self._gradient = gradient
        self._tau = tau
    
    def evaluate(self, q, t):
        return self._gradient(q, self._protocol(t, self._tau))


class ReplicaHistory(object):
    '''
    Replica history object, works with both RE and RENS for
    the AlternatingAdjacentSwapScheme.

    @param samples: list holding ensemble states
    @type samples: list

    @param swap_interval: interval with which swaps were attempted, e.g.,
                          5 means that every 5th regular MC step is replaced
                          by a swap
    @type swap_interval: int

    @param first_swap: sample index of the first sample generated by a swap attempt.
                       If None, the first RE sampled is assumed to have sample index
                       swap_interval. If specified, it has to be greater than zero
    @type first_swap: int
    '''
    
    def __init__(self, samples, swap_interval, first_swap=None):
        self.samples = samples
        self.swap_interval = swap_interval
        if first_swap == None:
            self.first_swap = swap_interval - 1
        elif first_swap > 0:
            self.first_swap = first_swap - 1
        else:
            raise(ValueError("Sample index of first swap has to be greater than zero!"))
        self.n_replicas = len(samples[0])

    @staticmethod
    def _change_direction(x):
        if x == 1:
            return -1
        if x == -1:
            return 1

    def calculate_history(self, start_ensemble):
        '''
        Calculates the replica history of the first state of ensemble #start_ensemble.

        @param start_ensemble: index of the ensemble to start at, zero-indexed
        @type start_ensemble: int

        @return: replica history as a list of ensemble indices
        @rtype: list of ints
        '''
        
        sample_counter = 0

        # determine the direction (up = 1, down = -1) in the "temperature ladder" of
        # the first swap attempt. Remember: first swap series is always 0 <-> 1, 2 <-> 3, ...
        if start_ensemble % 2 == 0:
            direction = +1
        else:
            direction = -1

        # if number of replicas is not even and the start ensemble is the highest-temperature-
        # ensemble, the first swap will be attempted "downwards"
        if start_ensemble % 2 == 0 and start_ensemble == self.n_replicas - 1:
            direction = -1

        # will store the indices of the ensembles the state will visit in chronological order
        history = []

        # the ensemble the state is currently in
        ens = start_ensemble
        
        while sample_counter < len(self.samples):
            if self.n_replicas == 2:
                if (sample_counter - self.first_swap - 1) % self.swap_interval == 0 and \
                   sample_counter >= self.first_swap:
                    ## swap attempt: determine whether it was successfull or not
                    # state after swap attempt
                    current_sample = self.samples[sample_counter][ens]

                    # state before swap attempt
                    previous_sample = self.samples[sample_counter - 1][history[-1]]

                    # swap was accepted when position of the current state doesn't equal
                    # the position of the state before the swap attempt, that is, the last 
                    # state in the history
                    swap_accepted = not numpy.all(current_sample.position == 
                                                  previous_sample.position)

                    if swap_accepted:
                        if ens == 0:
                            ens = 1
                        else:
                            ens = 0
                    history.append(ens)                    
                else:
                    history.append(ens)

            else:
                
                if (sample_counter - self.first_swap - 1) % self.swap_interval == 0 and \
                   sample_counter >= self.first_swap:
                    # state after swap attempt
                    current_sample = self.samples[sample_counter][ens]

                    # state before swap attempt
                    previous_sample = self.samples[sample_counter - 1][ens]

                    # swap was accepted when position of the current state doesn't equal
                    # the position of the state before the swap attempt, that is, the last 
                    # state in the history
                    swap_accepted = not numpy.all(current_sample.position == previous_sample.position)

                    if swap_accepted:
                        ens += direction
                    else:
                        if ens == self.n_replicas - 1:
                            # if at the top of the ladder, go downwards again
                            direction = -1
                        elif ens == 0:
                            # if at the bottom of the ladder, go upwards
                            direction = +1
                        else:
                            # in between, reverse the direction of the trajectory
                            # in temperature space
                            direction = self._change_direction(direction)

                history.append(ens)

            sample_counter += 1

        return history

    def calculate_projected_trajectories(self, ensemble):
        '''
        Calculates sequentially correlated trajectories projected on a specific ensemble.

        @param ensemble: ensemble index of ensemble of interest, zero-indexed
        @type ensemble: int

        @return: list of Trajectory objects containg sequentially correlated trajectories
        @rtype: list of L{Trajectory} objects.
        '''
        
        trajectories = []

        for i in range(self.n_replicas):
            history = self.calculate_history(i)
            traj = [x[ensemble] for k, x in enumerate(self.samples) if history[k] == ensemble]
            trajectories.append(Trajectory(traj))

        return trajectories

    def calculate_trajectories(self):
        '''
        Calculates sequentially correlated trajectories.

        @return: list of Trajectory objects containg sequentially correlated trajectories
        @rtype: list of L{Trajectory} objects.
        '''
        
        trajectories = []

        for i in range(self.n_replicas):
            history = self.calculate_history(i)
            traj = [x[history[k]] for k, x in enumerate(self.samples)]
            trajectories.append(Trajectory(traj))

        return trajectories