File: __init__.py

package info (click to toggle)
python-csb 1.2.5%2Bdfsg-10
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,952 kB
  • sloc: python: 24,191; xml: 812; sh: 67; makefile: 15
file content (1332 lines) | stat: -rw-r--r-- 41,819 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
"""
Sequence and sequence alignment APIs.

This module defines the base interfaces for biological sequences and alignments:
L{AbstractSequence} and L{AbstractAlignment}. These are the central abstractions
here. This module provides also a number of useful enumerations, like L{SequenceTypes}
and L{SequenceAlphabets}.

Sequences
=========
L{AbstractSequence} has a number of implementations. These are of course interchangeable,
but have different intents and may differ significantly in performance. The standard
L{Sequence} implementation is what you are after if all you need is high performance
and efficient storage (e.g. when you are parsing big files). L{Sequence} objects store
their underlying sequences as strings. L{RichSequence}s on the other hand will store
their residues as L{ResidueInfo} objects, which have the same basic interface as the 
L{csb.bio.structure.Residue} objects. This of course comes at the expense of degraded
performance. A L{ChainSequence} is a special case of a rich sequence, whose residue
objects are I{actually} real L{csb.bio.structure.Residue}s.

Basic usage:

    >>> seq = RichSequence('id', 'desc', 'sequence', SequenceTypes.Protein)
    >>> seq.residues[1]
    <ResidueInfo [1]: SER>
    >>> seq.dump(sys.stdout)
    >desc
    SEQUENCE

See L{AbstractSequence} for details.    

Alignments
==========
L{AbstractAlignment} defines a table-like interface to access the data in an
alignment:

    >>> ali = SequenceAlignment.parse(">a\\nABC\\n>b\\nA-C")
    >>> ali[0, 0]
    <SequenceAlignment>   # a new alignment, constructed from row #1, column #1
    >>> ali[0, 1:3]
    <SequenceAlignment>   # a new alignment, constructed from row #1, columns #2..#3

which is just a shorthand for using the standard 1-based interface:

    >>> ali.rows[1]
    <AlignedSequenceAdapter: a, 3>                        # row #1 (first sequence)
    >>> ali.columns[1]
    (<ColumnInfo a [1]: ALA>, <ColumnInfo b [1]: ALA>)    # residues at column #1

See L{AbstractAlignment} for all details and more examples.

There are a number of L{AbstractAlignment} implementations defined here.
L{SequenceAlignment} is the default one, nothing surprising. L{A3MAlignment}
is a more special one: the first sequence in the alignment is a master sequence.
This alignment is usually used in the context of HHpred. More important is the
L{StructureAlignment}, which is an alignment of L{csb.bio.structure.Chain} objects.
The residues in every aligned sequence are really the L{csb.bio.structure.Residue}
objects taken from those chains.
"""

import re
import csb.core
import csb.io

from abc import ABCMeta, abstractmethod, abstractproperty


class AlignmentFormats(csb.core.enum):
    """
    Enumeration of multiple sequence alignment formats
    """
    A3M='a3m'; FASTA='fa'; PIR='pir'

class SequenceTypes(csb.core.enum):
    """
    Enumeration of sequence types
    """
    NucleicAcid='NA'; DNA='DNA'; RNA='RNA'; Protein='Protein'; Unknown='Unknown'    

class AlignmentTypes(csb.core.enum):
    """
    Enumeration of alignment strategies
    """
    Global='global'; Local='local'

class NucleicAlphabet(csb.core.enum):
    """
    Nucleic sequence alphabet
    """
    Adenine='A'; Cytosine='C'; Guanine='G'; Thymine='T'; Uracil='U'; Purine='R'; Pyrimidine='Y'; Ketone='K';
    Amino='M'; Strong='S'; Weak='W'; NotA='B'; NotC='D'; NotG='H'; NotT='V'; Any='N'; Masked='X'; GAP='-'; INSERTION='.';
    
class ProteinAlphabet(csb.core.enum):
    """
    Protein sequence alphabet
    """
    ALA='A'; ASX='B'; CYS='C'; ASP='D'; GLU='E'; PHE='F'; GLY='G'; HIS='H'; ILE='I'; LYS='K'; LEU='L'; MET='M'; ASN='N';
    PYL='O'; PRO='P'; GLN='Q'; ARG='R'; SER='S'; THR='T'; SEC='U'; VAL='V'; TRP='W'; TYR='Y'; GLX='Z'; UNK='X'; GAP='-';
    INSERTION='.'; STOP='*'
                                    
class StdProteinAlphabet(csb.core.enum):
    """
    Standard protein sequence alphabet
    """      
    ALA='A'; CYS='C'; ASP='D'; GLU='E'; PHE='F'; GLY='G'; HIS='H'; ILE='I'; LYS='K'; LEU='L'; MET='M'; ASN='N';
    PRO='P'; GLN='Q'; ARG='R'; SER='S'; THR='T';  VAL='V'; TRP='W'; TYR='Y'
    
class UnknownAlphabet(csb.core.enum):
    """
    Unknown sequence alphabet
    """  
    UNK='X'; GAP='-'; INSERTION='.'
   
class SequenceAlphabets(object):
    """
    Sequence alphabet enumerations.

    @note: This class is kept for backwards compatibility. The individual
           alphabet classes must be defined in the top level namespace,
           otherwise the new enum types cannot be pickled properly. 
    """
    Nucleic = NucleicAlphabet
    Protein = ProteinAlphabet
    StdProtein = StdProteinAlphabet
    Unknown = UnknownAlphabet
    
    MAP = { SequenceTypes.Protein: ProteinAlphabet,
            SequenceTypes.NucleicAcid: NucleicAlphabet,
            SequenceTypes.DNA: NucleicAlphabet,
            SequenceTypes.RNA: NucleicAlphabet,
            SequenceTypes.Unknown: UnknownAlphabet }
    
    ALL_ALPHABETS = [ProteinAlphabet, NucleicAlphabet, UnknownAlphabet]

    assert set(MAP) == csb.core.Enum.members(SequenceTypes)
    
    @staticmethod
    def get(type):
        """
        Get the alphabet corresponding to the specified sequence C{type}
        @param type: a member of L{SequenceTypes}
        @type type: L{csb.core.EnumItem}
        @rtype: L{csb.core.enum} 
        """
        return SequenceAlphabets.MAP[type]  
    
    @staticmethod
    def contains(alphabet):
        """
        Return True if C{alphabet} is a sequence alphabet
        @type alphabet: L{csb.core.enum}
        @rtype: bool
        """
        return alphabet in SequenceAlphabets.ALL_ALPHABETS        


class SequenceError(ValueError):
    pass

class PositionError(IndexError):
    
    def __init__(self, index=None, start=1, end=None):
        
        if end == 0:
            start = 0
            
        self.index = index
        self.start = start
        self.end = end
        
        super(PositionError, self).__init__(index, start, end)
        
    def __str__(self):
        
        if self.index is not None:
            s = 'Position {0.index} is out of range [{0.start}, {0.end}]'
        else:
            s = 'Out of range [{0.start}, {0.end}]'
            
        return s.format(self)            
        
class SequencePositionError(PositionError):
    pass

class ColumnPositionError(PositionError):
    pass
     
class SequenceNotFoundError(KeyError):
    pass

class DuplicateSequenceError(KeyError):
    pass           
                
class ResidueInfo(object):
        
    def __init__(self, rank, type):
        
        self._type = None    
        self._rank = rank
        
        self.type = type
                
    @property
    def type(self):
        """
        Residue type - a member of any sequence alphabet
        @rtype: enum item
        """
        return self._type
    @type.setter
    def type(self, type):
        if not SequenceAlphabets.contains(type.enum):
            raise TypeError(type)
        self._type = type
        
    @property
    def rank(self):
        """
        Residue position (1-based)
        @rtype: int
        """
        return self._rank
    
    def __repr__(self):
        return '<{1} [{0.rank}]: {0.type!r}>'.format(self, self.__class__.__name__)

    
class ColumnInfo(object):
    
    def __init__(self, column, id, rank, residue):
        
        self.column = column
        self.id = id
        self.rank = rank
        self.residue = residue

    def __repr__(self):
        return '<{0.__class__.__name__} {0.id} [{0.column}]: {0.residue.type!r}>'.format(self)                
    
class SequenceIndexer(object):
    
    def __init__(self, container):
        self._container = container

    def __getitem__(self, rank):
        
        if not 1 <= rank <= self._container.length:
            raise SequencePositionError(rank, 1, self._container.length)
              
        return self._container._get(rank)
    
    def __iter__(self):
        return iter(self._container)
            
class UngappedSequenceIndexer(SequenceIndexer):

    def __getitem__(self, rank):
        try: 
            return self._container._get_ungapped(rank)
        except SequencePositionError:
            raise SequencePositionError(rank, 1)
    
    def __iter__(self):
        for c in self._container:
            if c.residue.type not in (self._container.alphabet.GAP, self._container.alphabet.INSERTION):
                yield c.residue

class ColumnIndexer(SequenceIndexer):
    
    def __getitem__(self, column):
        
        if not 1 <= column <= self._container.length:
            raise ColumnPositionError(column, 1, self._container.length)
                
        return self._container._get_column(column)
    

class SequenceCollection(csb.core.ReadOnlyCollectionContainer):
    """
    Represents a list of L{AbstractSequence}s.
    """

    def __init__(self, sequences):
        super(SequenceCollection, self).__init__(items=sequences, type=AbstractSequence)

    def to_fasta(self, output_file):
        """
        Dump the whole collection in mFASTA format.
        
        @param output_file: write the output to this file or stream
        @type output_file: str or stream
        """
        from csb.bio.io.fasta import FASTAOutputBuilder
            
        with csb.io.EntryWriter(output_file, close=False) as out:
            builder = FASTAOutputBuilder(out.stream, headers=True)
            
            for s in self:
                builder.add_sequence(s)        

        
class AbstractSequence(object):
    """
    Base abstract class for all Sequence objects.
    
    Provides 1-based access to the residues in the sequence via the
    sequence.residues property. The sequence object itself also behaves like
    a collection and provides 0-based access to its elements (residues).   
        
    @param id: FASTA ID of this sequence (e.g. accession number)
    @type id: str
    @param header: FASTA sequence header
    @type header: str
    @param residues: sequence residues
    @type residues: str or collection of L{ResidueInfo}
    @param type: a L{SequenceTypes} member (defaults to protein)
    @type type: L{EnumItem}
    """
     
    __metaclass__ = ABCMeta
    
    DELIMITER = '>'

    def __init__(self, id, header, residues, type=SequenceTypes.Unknown):

        self._id = None
        self._header = None
        self._residues = []
        self._type = None
          
        self.id = id
        self.header = header
        self.type = type
        
        for residue in residues:
            self._add(residue)
    
    def __getitem__(self, spec):
        
        if isinstance(spec, slice):
            spec = SliceHelper(spec, 0, self.length)
            return self.subregion(spec.start + 1, spec.stop)
        else:
            if not 0 <= spec < self.length:
                raise IndexError(spec)            
            return self._get(spec + 1)
    
    def __iter__(self):
        for index in range(self.length):
            yield self[index]
        
    @abstractmethod
    def _add(self, residue):
        """
        Append a C{residue} to the sequence.
        
        This is a hook method invoked internally for each residue during object
        construction. By implementing this method, sub-classes define how
        residues are attached to the sequence object.   
        """
        pass

    @abstractmethod
    def _get(self, rank):
        """
        Retrieve the sequence residue at the specified position (1-based, positive).
        
        This is a hook method which defines the actual behavior of the sequence
        residue indexer.
          
        @rtype: L{ResidueInfo}
        @raise SequencePositionError: when the supplied rank is out of range
        """
        pass
    
    def _factory(self, *a, **k):
        """
        Return a new sequence of the current L{AbstractSequence} sub-class.
        """
        return self.__class__(*a, **k)    

    def strip(self):
        """
        Remove all gaps and insertions from the sequence.
        
        @return: a new sequence instance, containing no gaps
        @rtype: L{AbstractSequence}
        """
        residues = [r for r in self._residues 
                    if r.type not in (self.alphabet.GAP, self.alphabet.INSERTION)]
        
        return self._factory(self.id, self.header, residues, self.type)
            
    def subregion(self, start, end):
        """
        Extract a subsequence, defined by [start, end]. The start and end
        positions are 1-based, inclusive.
        
        @param start: start position
        @type start: int
        @param end: end position
        @type end: int
        
        @return: a new sequence
        @rtype: L{AbstractSequence}
        
        @raise SequencePositionError: if start/end positions are out of range
        """
        positions = range(start, end + 1)
        return self.extract(positions)
    
    def extract(self, positions):
        """
        Extract a subsequence, defined by a list of 1-based positions.
        
        @param positions: positions to extract
        @type positions: tuple of int
        
        @return: a new sequence
        @rtype: L{AbstractSequence}
        
        @raise SequencePositionError: if any position is out of range
        """

        end = self.length
        residues = []
        
        for rank in sorted(set(positions)):
            if 1 <= rank <= end:
                residues.append(self._get(rank))
            else:
                raise SequencePositionError(rank, 1, end)
            
        return self._factory(self.id, self.header, residues, self.type)
    
    def dump(self, output_file):
        """
        Dump the sequence in FASTA format.
        
        @param output_file: write the output to this file or stream
        @type output_file: str or stream
        """
        from csb.bio.io.fasta import FASTAOutputBuilder
            
        with csb.io.EntryWriter(output_file, close=False) as out:
            FASTAOutputBuilder(out.stream, headers=True).add_sequence(self)
        
    @property
    def length(self):
        """
        Number of residues
        @rtype: int
        """
        return len(self._residues)
    
    @property
    def id(self):
        """
        Sequence identifier
        @rtype: str
        """        
        return self._id
    @id.setter
    def id(self, value):
        if value is not None:
            value = str(value).strip()
        self._id = value
            
    @property
    def header(self):
        """
        Sequence description
        @rtype: str
        """        
        return self._header
    @header.setter
    def header(self, value):
        if not value:
            value = 'sequence'       
        else:
            value = value.strip().lstrip(AbstractSequence.DELIMITER)
        self._header = value
    
    @property  
    def type(self):
        """
        Sequence type - a member of L{SequenceTypes}
        @rtype: enum item
        """
        return self._type
    @type.setter
    def type(self, value):
        if isinstance(value, csb.core.string):
            value = csb.core.Enum.parse(SequenceTypes, value)
        if value.enum is not SequenceTypes:
            raise TypeError(value) 
        self._type = value 

    @property
    def sequence(self): 
        """
        The actual sequence
        @rtype: str
        """
        return ''.join([str(r.type) for r in self._residues])
    
    @property
    def alphabet(self):
        """
        The sequence alphabet corresponding to the current sequence type
        @rtype: L{csb.core.enum}
        """
        return SequenceAlphabets.get(self._type)
    
    @property
    def residues(self):
        """
        Rank-based access to the underlying L{residues<csb.bio.sequence.ResidueInfo>}
        @rtype: L{SequenceIndexer}
        """
        return SequenceIndexer(self)

    def __len__(self):
        return self.length
    
    def __repr__(self):
        return '<{0.__class__.__name__}: {0.id}, {0.length} residues>'.format(self)
    
    def __str__(self):
        return '{0}{1.header}\n{1.sequence}'.format(AbstractSequence.DELIMITER, self)
        
class Sequence(AbstractSequence):
    """
    High-performance sequence object. The actual sequence is stored internally
    as a string. The indexer acts as a residue factory, which creates a new
    L{ResidueInfo} instance each time. 
    
    @note: This class was created with parsing large volumes of data in mind. This
           comes at the expense of degraded performance of the sequence indexer.
    
    @param id: FASTA ID of this sequence (e.g. accession number)
    @type id: str
    @param header: FASTA sequence header
    @type header: str
    @param residues: sequence string
    @type residues: str
    @param type: a L{SequenceTypes} member (defaults to protein)
    @type type: L{EnumItem}
    """
    
    def __init__(self, id, header, residues, type=SequenceTypes.Unknown):

        self._id = None
        self._header = None
        self._residues = ''
        self._type = None
          
        self.id = id
        self.header = header
        self.type = type        

        self._append(residues)
    
    def _append(self, string):
        # this seems to be the fastest method for sanitization and storage        
        self._residues += re.sub('([^\w\-\.])+', '', string)
        
    def _add(self, char):
        self._append(char)
            
    def _get(self, rank):        
        
        type = csb.core.Enum.parse(self.alphabet, self._residues[rank - 1])
        return ResidueInfo(rank, type)
    
    def strip(self):
        residues = self._residues.replace(
                        str(self.alphabet.GAP), '').replace(
                                        str(self.alphabet.INSERTION), '')
        return self._factory(self.id, self.header, residues, self.type)        

    def subregion(self, start, end):

        if not 1 <= start <= end <= self.length:
            raise SequencePositionError(None, 1, self.length)
                       
        residues = self._residues[start - 1 : end]
        return self._factory(self.id, self.header, residues, self.type)                

    def extract(self, positions):

        end = self.length
        residues = []
        
        for rank in sorted(set(positions)):
            if 1 <= rank <= end:
                residues.append(self._residues[rank - 1])
            else:
                raise SequencePositionError(rank, 1, end)
            
        return self._factory(self.id, self.header, ''.join(residues), self.type)
            
    @property
    def sequence(self):
        return self._residues

class RichSequence(AbstractSequence):
    """
    Sequence implementation, which converts the sequence into a list of
    L{ResidueInfo} objects. See L{AbstractSequence} for details.
    """
        
    def _add(self, residue):
        
        if hasattr(residue, 'rank') and hasattr(residue, 'type'):            
            self._residues.append(residue)
            
        else:
            if residue.isalpha() or residue in (self.alphabet.GAP, self.alphabet.INSERTION):
                
                type = csb.core.Enum.parse(self.alphabet, residue)
                rank = len(self._residues) + 1
                self._residues.append(ResidueInfo(rank, type))
            
    def _get(self, rank):
        return self._residues[rank - 1]

    @staticmethod
    def create(sequence):
        """
        Create a new L{RichSequence} from existing L{AbstractSequence}.
        
        @type sequence: L{AbstractSequence}
        @rtype: L{RichSequence}
        """
        return RichSequence(
                sequence.id, sequence.header, sequence.sequence, sequence.type)    

class ChainSequence(AbstractSequence):
    """
    Sequence view for L{csb.bio.structure.Chain} objects.
    See L{AbstractSequence} for details.
    """
            
    def _add(self, residue):
        
        if not (hasattr(residue, 'rank') and hasattr(residue, 'type')):
            raise TypeError(residue)
        else:
            self._residues.append(residue)
            
    def _get(self, rank):
        return self._residues[rank - 1]
    
    @staticmethod
    def create(chain):
        """
        Create a new L{ChainSequence} from existing L{Chain} instance.
        
        @type chain: L{csb.bio.structure.Chain}
        @rtype: L{ChainSequence}
        """        
        return ChainSequence(
                chain.entry_id, chain.header, chain.residues, chain.type)

    
class SequenceAdapter(object):
    """
    Base wrapper class for L{AbstractSequence} objects.
    Needs to be sub-classed (does not do anything special on its own).
    
    @param sequence: adaptee
    @type sequence: L{AbstractSequence}
    """
    
    def __init__(self, sequence):
        
        if not isinstance(sequence, AbstractSequence):
            raise TypeError(sequence)
        
        self._subject = sequence

    def __getitem__(self, i):
        return self._subject[i]
    
    def __iter__(self):
        return iter(self._subject)
                
    def __repr__(self):
        return '<{0.__class__.__name__}: {0.id}, {0.length}>'.format(self)        
    
    def __str__(self):
        return str(self._subject)
    
    def _add(self):
        raise NotImplementedError()
    
    def _get(self, rank):
        return self._subject._get(rank)
    
    def _factory(self, *a, **k):        
        return self.__class__(self._subject._factory(*a, **k))
    
    def strip(self):
        return self._subject.strip()
            
    def subregion(self, start, end):
        return self._subject.subregion(start, end)
    
    def extract(self, positions):
        return self._subject.extract(positions)    

    @property
    def id(self):
        return self._subject.id

    @property
    def length(self):
        return self._subject.length

    @property
    def type(self):
        return self._subject.type

    @property
    def header(self):
        return self._subject.header
    
    @property
    def sequence(self):
        return self._subject.sequence
                    
    @property
    def alphabet(self):
        return self._subject.alphabet

class AlignedSequenceAdapter(SequenceAdapter):
    """
    Adapter, which wraps a gapped L{AbstractSequence} object and makes it
    compatible with the MSA row/entry interface, expected by L{AbstractAlignment}.
    
    The C{adapter.residues} property operates with an L{UngappedSequenceIndexer},
    which provides a gap-free view of the underlying sequence.
    
    The C{adapter.columns} property operates with a standard L{ColumnIndexer},
    the same indexer which is used to provide the column view in multiple 
    alignments. Adapted sequences therefore act as alignment rows and allow for
    MSA-column-oriented indexing.
    
    @param sequence: adaptee
    @type sequence: L{AbstractSequence}    
    """

    def __init__(self, sequence):

        super(AlignedSequenceAdapter, self).__init__(sequence)
        
        self._fmap = {}
        self._rmap = {}
        rank = 0
        
        for column, residue in enumerate(sequence, start=1):
            
            if residue.type not in (self.alphabet.GAP, self.alphabet.INSERTION):
                rank += 1
                self._fmap[column] = rank                
                self._rmap[rank] = column
            else:
                self._fmap[column] = None

    def __getitem__(self, index):
        if not 0 <= index < self.length:
            raise IndexError(index)
        return self._get_column(index + 1)
    
    def __iter__(self):
        for c in sorted(self._fmap):
            yield self._get_column(c)
                    
    @property
    def columns(self):
        """
        Provides 1-based access to the respective columns in the MSA.
        @rtype: L{ColumnIndexer}
        """        
        return ColumnIndexer(self)

    @property
    def residues(self):
        """
        Provides 1-based access to the residues of the unaligned (ungapped)
        sequence.
        @rtype: L{UngappedSequenceIndexer} 
        """
        return UngappedSequenceIndexer(self)

    def _get_column(self, column):
        return ColumnInfo(
                column, self.id, self._fmap[column], self._subject.residues[column])
            
    def _get_ungapped(self, rank):
        return self._subject.residues[self._rmap[rank]]
    
    def map_residue(self, rank):
        """
        Return the MSA column number corresponding to the specified ungapped
        sequence C{rank}.
        
        @param rank: 1-based residue rank
        @type rank: int
        @rtype: int
        """
        return self._rmap[rank]
    
    def map_column(self, column):
        """
        Return the ungapped sequence rank corresponding to the specified MSA
        C{column} number.
        
        @param column: 1-based alignment column number
        @type column: int
        @rtype: int
        """        
        return self._fmap[column]    
    
class SliceHelper(object):
    
    def __init__(self, slice, start=0, stop=0):
        
        s, e, t = slice.start, slice.stop, slice.step
        
        if s is None:
            s = start
        if e is None:
            e = stop
        if t is None:
            t = 1
            
        for value in [s, e, t]:
            if value < 0:
                raise IndexError(value)
            
        self.start = s
        self.stop = e
        self.step = t            

class AlignmentRowsTable(csb.core.BaseDictionaryContainer):
    
    def __init__(self, container):
        
        super(AlignmentRowsTable, self).__init__()
        
        self._container = container
        self._map = {}
        
    def __getitem__(self, item):
        
        try:
            if isinstance(item, int):
                key = self._map[item]
            else:
                key = item
                
            return super(AlignmentRowsTable, self).__getitem__(key)
        
        except KeyError:
            raise SequenceNotFoundError(item)

    def _append(self, sequence):

        n = 0
        sequence_id = sequence.id
        
        while sequence_id in self:
            n += 1
            sequence_id = '{0}:A{1}'.format(sequence.id, n)

        super(AlignmentRowsTable, self)._append_item(sequence_id, sequence)
        self._map[self.length] = sequence_id
    
    def __iter__(self):
        for id in super(AlignmentRowsTable, self).__iter__():
            yield self[id]
        
    
class AbstractAlignment(object):
    """
    Base class for all alignment objects.
    
    Provides 1-based access to the alignment.rows and alignment.columns.
    Alignment rows can also be accessed by sequence ID. In addition, all
    alignments support 0-based slicing:
    
        >>> alignment[rows, columns]
        AbstractAlignment (sub-alignment)
        
    where
        - C{rows} can be a slice, tuple of row indexes or tuple of sequence IDs
        - columns can be a slice or tuple of column indexes
        
    For example:
    
        >>> alignment[:, 2:]
        AbstractAlignment     # all rows, columns [3, alignment.length]
        >>> alignment[(0, 'seqx'), (3, 5)]
        AbstractAlignment     # rows #1 and 'seq3', columns #4 and #5
        
    @param sequences: alignment entries (must have equal length)
    @type sequences: list of L{AbstractSequence}s
    @param strict: if True, raise {DuplicateSequenceError} when a duplicate ID
                   is found (default=True)
    @type strict: bool
    
    @note: if C{strict} is False and there are C{sequences} with redundant identifiers,
           those sequences will be added to the C{rows} collection with :An suffix,
           where n is a serial number. Therefore, rows['ID'] will return only one sequence,
           the first sequence with id=ID. All remaining sequences can be retrieved
           with C{rows['ID:A1']}, {rows['ID:A2']}, etc. However, the sequence objects will
           remain intact, e.g. {rows['ID:A1'].id} still returns 'ID' and not 'ID:A1'. 
    """
    
    __metaclass__ = ABCMeta
    
    def __init__(self, sequences, strict=True):
        
        self._length = None
        self._msa = AlignmentRowsTable(self)
        self._colview = ColumnIndexer(self)
        self._map = {}
        self._strict = bool(strict)
        
        self._construct(sequences)
            
    def __getitem__(self, spec):
        
        # The following code can hardly get more readable than that, sorry.
        # Don't even think of modifying this before there is a 100% unit test coverage 
        
        # 0. expand the input tuple: (rows/, columns/) => (rows, columns)
        if not isinstance(spec, tuple) or len(spec) not in (1, 2):
            raise TypeError('Invalid alignment slice expression')
        
        if len(spec) == 2:
            rowspec, colspec = spec
        else:
            rowspec, colspec = [spec, slice(None)]

        # 1. interpret the row slice: int, iter(int), iter(str) or slice(int) => list(int, 1-based)
        if isinstance(rowspec, slice):
            if isinstance(rowspec.start, csb.core.string) or isinstance(rowspec.stop, csb.core.string):
                raise TypeError("Invalid row slice: only indexes are supported")
            rowspec = SliceHelper(rowspec, 0, self.size)
            rows = range(rowspec.start + 1, rowspec.stop + 1)
        elif isinstance(rowspec, int):
            rows = [rowspec + 1]     
        elif csb.core.iterable(rowspec):
            try:
                rows = []
                for r in rowspec:
                    if isinstance(r, int):
                        rows.append(r + 1)
                    else:
                        rows.append(self._map[r])
            except KeyError as ke:
                raise KeyError('No such Sequence ID: {0!s}'.format(ke))
        else:
                raise TypeError('Unsupported row expression')            

        # 2. interpret the column slice: int, iter(int) or slice(int) => list(int, 1-based)            
        if isinstance(colspec, slice):
            colspec = SliceHelper(colspec, 0, self._length or 0)
            cols = range(colspec.start + 1, colspec.stop + 1)
        elif isinstance(colspec, int):
            cols = [colspec + 1] 
        elif csb.core.iterable(colspec):
            try:
                cols = [ c + 1 for c in colspec ]
            except:            
                raise TypeError('Unsupported column expression')
        else:
            raise TypeError('Unsupported column expression')
        
        # 3. some more checks
        if len(rows) == 0:
            raise ValueError("The expression returns zero rows")
        if len(cols) == 0:
            raise ValueError("The expression returns zero columns")
                
        # 4. we are done
        return self._extract(rows, cols)
    
    def _range(self, slice, start, end):
        
        s, e, t = slice.start, slice.end, slice.step
        
        if s is None:
            s = start
        if e is None:
            e = end
        if t is None:
            t = 1
            
        return range(s, e, t)
    
    def __iter__(self):
        for cn in range(1, self.length + 1):
            yield self._get_column(cn)
            
    @abstractmethod
    def _construct(self, sequences):
        """
        Hook method, called internally upon object construction. Subclasses
        define how the source alignment sequences are handled during alignment
        construction.
        
        @param sequences: alignment entries
        @type sequences: list of L{AbstractSequence}s
        """
        pass
    
    def _initialize(self, rep_sequence):
        """
        Hook method, which is used to initialize various alignment properties
        (such as length) from the first alignned sequence.
        """
        if rep_sequence.length == 0:
            raise SequenceError("Sequence '{0}' is empty".format(rep_sequence.id))
                
        assert self._length is None
        self._length = rep_sequence.length 
        
    def _factory(self, *a, **k):
        """
        Return a new sequence of the current L{AbstractAlignment} sub-class.
        """ 
        return self.__class__(*a, **k)
      
    def add(self, sequence):
        """
        Append a new sequence to the alignment.
        
        @type sequence: L{AbstractSequence}
        @raise SequenceError: if the new sequence is too short/long
        @raise DuplicateSequenceError: if a sequence with same ID already exists  
        """
        
        if self._msa.length == 0:
            self._initialize(sequence)

        if sequence.length != self._length:
            raise SequenceError('{0!r} is not of the expected length'.format(sequence))
        
        if self._strict and sequence.id in self._msa:
            raise DuplicateSequenceError(sequence.id)
        
        self._msa._append(AlignedSequenceAdapter(sequence))
        self._map[sequence.id] = self._msa.length

    @property
    def length(self):
        """
        Number of columns in the alignment
        @rtype: int
        """
        return self._length or 0

    @property
    def size(self):
        """
        Number of rows (sequences) in the alignment
        @rtype: int
        """        
        return self._msa.length    
            
    @property
    def rows(self):
        """
        1-based access to the alignment entries (sequences)
        @rtype: L{AlignmentRowsTable}
        """
        return self._msa 
        
    @property
    def columns(self):
        """
        1-based access to the alignment columns
        @rtype: L{ColumnIndexer}
        """
        return self._colview
    
    def gap_at(self, column):
        """
        Return True of C{column} contains at least one gap.
        @param column: column number, 1-based
        @type column: int
        
        @rtype: bool
        """
        
        for row in self._msa:
            if row.columns[column].residue.type == row.alphabet.GAP:
                return True
            
        return False        
    
    def _get_column(self, column):
        return tuple(row._get_column(column) for row in self.rows)
    
    def _extract(self, rows, cols):
        
        rows = set(rows)
        cols = set(cols)
                
        if not 1 <= min(rows) <= max(rows) <= self.size:
            raise IndexError('Row specification out of range')
                
        if not 1 <= min(cols) <= max(cols) <= self.length:
            raise IndexError('Column specification out of range')
        
        sequences = []
        
        for rn, row in enumerate(self.rows, start=1):
            if rn in rows:
                sequences.append(row.extract(cols))
                
        return self._factory(sequences, strict=self._strict)
    
    def subregion(self, start, end):
        """
        Extract a sub-alignment, ranging from C{start} to C{end} columns.
        
        @param start: starting column, 1-based
        @type start: int
        @param end: ending column, 1-based
        @type end: int
        
        @return: a new alignment of the current type
        @rtype: L{AbstractAlignment}
        
        @raise ColumnPositionError: if start/end is out of range 
        """
        if not 1 <= start <= end <= self.length:
            raise ColumnPositionError(None, 1, self.length)
        
        sequences = []
        
        for row in self.rows:
            sequences.append(row.subregion(start, end))
                
        return self._factory(sequences, strict=self._strict)
    
    def format(self, format=AlignmentFormats.FASTA, headers=True):
        """
        Format the alignment as a string.
        
        @param format: alignment format type, member of L{AlignmentFormats}
        @type format: L{EnumItem}
        @param headers: if False, omit headers
        @type headers: bool
        
        @rtype: str 
        """
        from csb.bio.io.fasta import OutputBuilder

        temp = csb.io.MemoryStream()
                
        try:            
            builder = OutputBuilder.create(format, temp, headers=headers)
            builder.add_alignment(self)
            
            return temp.getvalue()
        
        finally:
            temp.close()          

class SequenceAlignment(AbstractAlignment):
    """
    Multiple sequence alignment. See L{AbstractAlignment} for details.
    """
        
    def _construct(self, sequences):
        
        for sequence in sequences:
            self.add(sequence)
            
    @staticmethod
    def parse(string, strict=True):
        """
        Create a new L{SequenceAlignment} from an mFASTA string.
        
        @param string: MSA-formatted string
        @type string: str
        @param strict: see L{AbstractAlignment}
        @type strict: bool        
        
        @rtype: L{SequenceAlignment}
        """
        from csb.bio.io.fasta import SequenceAlignmentReader
        return SequenceAlignmentReader(strict=strict).read_fasta(string)
        
class StructureAlignment(AbstractAlignment):
    """
    Multiple structure alignment. Similar to a L{SequenceAlignment}, but
    the alignment holds the actual L{csb.bio.structure.ProteinResidue} objects,
    taken from the corresponding source L{csb.bio.structure.Chain}s.
    
    See L{AbstractAlignment} for details.
    """
        
    def _construct(self, sequences):
        
        for sequence in sequences:
            self.add(sequence)
            
    @staticmethod
    def parse(string, provider, id_factory=None, strict=True):
        """
        Create a new L{StructureAlignment} from an mFASTA string. See 
        L{csb.bio.io.fasta.StructureAlignmentFactory} for details. 
        
        @param string: MSA-formatted string
        @type string: str
        @param provider: data source for all structures found in the alignment
        @type provider: L{csb.bio.io.wwpdb.StructureProvider}
        @param strict: see L{AbstractAlignment}
        @type strict: bool
        @param id_factory: callable factory, which transforms a sequence ID into
                           a L{csb.bio.io.wwpdb.EntryID} object. By default
                           this is L{csb.bio.io.wwpdb.EntryID.create}. 
        @type id_factory: callable        
        @rtype: L{StructureAlignment}
        """
        from csb.bio.io.fasta import StructureAlignmentFactory
        
        factory = StructureAlignmentFactory(
                        provider, id_factory=id_factory, strict=strict)
        return factory.make_alignment(string)
    
class A3MAlignment(AbstractAlignment):
    """
    A specific type of multiple alignment, which provides some operations
    relative to a master sequence (the first entry in the alignment). 
    """
    
    def __init__(self, sequences, strict=True):

        self._master = None
        self._matches = 0
        self._insertions = set()
                
        super(A3MAlignment, self).__init__(sequences, strict=strict)

    def _initialize(self, rep_sequence):
        
        super(A3MAlignment, self)._initialize(rep_sequence)
        self._alphabet = rep_sequence.alphabet        
            
    def _construct(self, sequences):
        
        for sequence in sequences:
            
            self.add(sequence)
                    
            for rank, residue in enumerate(sequence, start=1):
                if residue.type == self._alphabet.INSERTION:
                    self._insertions.add(rank)

        if self.size == 0:
            raise SequenceError("At least one sequence is required") 
        
        self._master = list(self._msa)[0]
        self._matches = self._master.strip().length
    
    @property
    def master(self):
        """
        The master sequence
        @rtype: L{AbstractSequence}
        """
        return self._master
    
    def insertion_at(self, column):
        """
        Return True of C{column} contains at least one insertion.
        
        @param column: column number, 1-based
        @type column: int
        @rtype: bool
        """        
        return column in self._insertions
    
    def hmm_subregion(self, match_start, match_end):
        """
        Same as L{AbstractAlignment.subregion}, but start/end positions are
        ranks in the ungapped master sequence.
        """

        if not 1 <= match_start <= match_end <= self.matches:
            raise ColumnPositionError(None, 1, self.matches)
                
        start = self._master.map_residue(match_start)
        end = self._master.map_residue(match_end)
        
        return self.subregion(start, end)

    def format(self, format=AlignmentFormats.A3M, headers=True):
        return super(A3MAlignment, self).format(format, headers) 
    
    @property
    def matches(self):
        """
        Number of match states (residues in the ungapped master).
        @rtype: int
        """
        return self._matches
    
    @staticmethod
    def parse(string, strict=True):
        """
        Create a new L{A3MAlignment} from an A3M string.
        
        @param string: MSA-formatted string
        @type string: str
        @param strict: see L{AbstractAlignment}
        @type strict: bool
        
        @rtype: L{A3MAlignment}
        """        
        from csb.bio.io.fasta import SequenceAlignmentReader
        return SequenceAlignmentReader(strict=strict).read_a3m(string)