1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
# Copyright (c) 2016 Red Hat, Inc.
# Author: Stanislav Kontar, Red Hat Product Security
# License: LGPLv3+
"""
Implements class for CVSS2 specification as defined at
https://www.first.org/cvss/v2/guide .
The library is compatible with both Python 2 and Python 3.
"""
from __future__ import unicode_literals
from decimal import ROUND_HALF_UP
from decimal import Decimal as D
from .constants2 import (
ENVIRONMENTAL_METRICS,
METRICS_ABBREVIATIONS,
METRICS_ABBREVIATIONS_JSON,
METRICS_MANDATORY,
METRICS_VALUE_NAMES,
METRICS_VALUES,
TEMPORAL_METRICS,
OrderedDict,
)
from .exceptions import (
CVSS2MalformedError,
CVSS2MandatoryError,
CVSS2RHMalformedError,
CVSS2RHScoreDoesNotMatch,
)
def round_to_1_decimal(value):
"""
Round to one decimal.
"""
return value.quantize(D("0.1"), rounding=ROUND_HALF_UP)
class CVSS2(object):
"""
Class to hold CVSS2 vector, parsed values, and all scores.
"""
@classmethod
def from_rh_vector(cls, vector):
"""
Creates a CVSS2 object from CVSS vector in Red Hat notation, e.g. containing base score.
Also checks if the score matches the vector.
Args:
vector (str): string specifying CVSS3 vector in Red Hat notation, fields may be out of
order, fields which are not mandatory may be missing
Returns:
CVSS2: the generated CVSS2 object created from the vector string
Raises:
CVSS2RHMalformedError: if vector is not in expected format for Red Hat notation
CVSS2RHScoreDoesNotMatch: if vector and score do not match
"""
try:
score, base_vector = vector.split("/", 1)
except ValueError:
raise CVSS2RHMalformedError(
'Malformed CVSS2 vector in Red Hat notation "{0}"'.format(vector)
)
try:
score_value = float(score)
except ValueError:
raise CVSS2RHMalformedError(
'Malformed CVSS2 vector in Red Hat notation "{0}"'.format(vector)
)
cvss_object = cls(base_vector)
if cvss_object.scores()[0] == score_value:
return cvss_object
else:
raise CVSS2RHScoreDoesNotMatch(
'CVSS2 vector in Red Hat notation "{0}" has score of '
'"{1}" which does not match specified score of "{2}"'.format(
base_vector, cvss_object.scores()[0], score
)
)
def __init__(self, vector):
"""
Args:
vector (str): string specifying CVSS2 vector, fields may be out of order, fields which
are not mandatory may be missing
"""
self.vector = vector
self.metrics = {}
self.base_score = None
self.temporal_score = None
self.environmental_score = None
self.parse_vector()
self.check_mandatory()
self.compute_base_score()
self.compute_temporal_score()
self.compute_environmental_score()
def parse_vector(self):
"""
Parses metrics from the CVSS2 vector.
Raises:
CVSS2MalformedError: if vector is not in expected format
"""
if self.vector == "":
raise CVSS2MalformedError("Malformed CVSS2 vector, vector is empty")
if self.vector.endswith("/"):
raise CVSS2MalformedError('Malformed CVSS2 vector, trailing "/"')
fields = self.vector.split("/")
# Parse fields
for field in fields:
if field == "":
raise CVSS2MalformedError('Empty field in CVSS2 vector "{0}"'.format(self.vector))
try:
metric, value = field.split(":")
except ValueError:
raise CVSS2MalformedError('Malformed CVSS2 field "{0}"'.format(field))
if metric in METRICS_ABBREVIATIONS:
if value in METRICS_VALUES[metric]:
if metric in self.metrics:
raise CVSS2MalformedError('Duplicate metric "{0}"'.format(metric))
self.metrics[metric] = value
else:
raise CVSS2MalformedError(
'Unknown value "{0}" in field "{1}"'.format(value, field)
)
else:
raise CVSS2MalformedError(
'Unknown metric "{0}" in field "{1}"'.format(metric, field)
)
def check_mandatory(self):
"""
Checks if mandatory fields are in CVSS2 vector.
Raises:
CVSS2MandatoryError: if mandatory metric is missing in the vector
"""
missing = []
for mandatory_metric in METRICS_MANDATORY:
if mandatory_metric not in self.metrics:
missing.append(mandatory_metric)
if missing:
raise CVSS2MandatoryError('Missing mandatory metrics "{0}"'.format(", ".join(missing)))
def get_value(self, abbreviation):
"""
Gets value of specific metric specified by its abbreviation.
"""
string_value = self.metrics.get(abbreviation, "ND")
result = METRICS_VALUES[abbreviation][string_value]
return result
def get_value_description(self, abbreviation):
"""
Gets textual description of specific metric specified by its abbreviation.
"""
string_value = self.metrics.get(abbreviation, "ND")
result = METRICS_VALUE_NAMES[abbreviation][string_value]
return result
def impact_equation(self):
"""
Impact = 10.41*(1-(1-ConfImpact)*(1-IntegImpact)*(1-AvailImpact))
"""
return D("10.41") * (
D("1")
- (D("1") - self.get_value("C"))
* (D("1") - self.get_value("I"))
* (D("1") - self.get_value("A"))
)
def adjusted_impact_equation(self):
"""
AdjustedImpact = min(10,10.41*(1-(1-ConfImpact*ConfReq)*(1-IntegImpact*IntegReq)
*(1-AvailImpact*AvailReq)))
"""
return min(
D("10"),
D("10.41")
* (
D("1")
- (D("1") - self.get_value("C") * self.get_value("CR"))
* (D("1") - self.get_value("I") * self.get_value("IR"))
* (D("1") - self.get_value("A") * self.get_value("AR"))
),
)
def base_score_equation(self, adjusted_impact=False):
"""
BaseScore = round_to_1_decimal(((0.6*Impact)+(0.4*Exploitability)-1.5)*f(Impact))
Impact = see impact_equation or modified_impact_equation
Exploitability = 20*AccessVector*AccessComplexity*Authentication
f(impact)= 0 if Impact=0, 1.176 otherwise
"""
if adjusted_impact:
impact = self.adjusted_impact_equation()
else:
impact = self.impact_equation()
exploitability = (
D("20") * self.get_value("AV") * self.get_value("AC") * self.get_value("Au")
)
f_impact = D("0") if impact == D("0") else D("1.176")
return round_to_1_decimal(
((D("0.6") * impact) + (D("0.4") * exploitability) - D("1.5")) * f_impact
)
def compute_base_score(self):
"""
Compute base score using normal Impact equation. Do not allow negative result.
"""
self.base_score = max(D("0.0"), self.base_score_equation())
def temporal_score_equation(self, adjusted_impact=False):
"""
TemporalScore = round_to_1_decimal(BaseScore*Exploitability
*RemediationLevel*ReportConfidence)
"""
if adjusted_impact:
base_score = self.base_score_equation(adjusted_impact=True)
else:
base_score = self.base_score
return round_to_1_decimal(
base_score * self.get_value("E") * self.get_value("RL") * self.get_value("RC")
)
def compute_temporal_score(self):
"""
Compute temporal score using normal Impact equation.
"""
if all(self.metrics.get(a, "ND") == "ND" for a in TEMPORAL_METRICS):
self.temporal_score = None
else:
self.temporal_score = max(D("0.0"), self.temporal_score_equation())
def compute_environmental_score(self):
"""
EnvironmentalScore = round_to_1_decimal((AdjustedTemporal+
(10-AdjustedTemporal)*CollateralDamagePotential)*TargetDistribution)
AdjustedTemporal = TemporalScore recomputed with the BaseScores Impact sub-equation
replaced with the AdjustedImpact equation
"""
if all(self.metrics.get(a, "ND") == "ND" for a in ENVIRONMENTAL_METRICS):
self.environmental_score = None
else:
temporal_score_adjusted = self.temporal_score_equation(adjusted_impact=True)
raw_environmental_score = round_to_1_decimal(
(
temporal_score_adjusted
+ (D("10") - temporal_score_adjusted) * self.get_value("CDP")
)
* self.get_value("TD")
)
self.environmental_score = max(D("0.0"), raw_environmental_score)
def scores(self):
"""
Returns all computed scores.
Returns:
(tuple): Base Score, Temporal Score, Environmental Score, either float or None if not
defined
"""
scores = (self.base_score, self.temporal_score, self.environmental_score)
return tuple(float(a) if a is not None else None for a in scores)
def clean_vector(self):
"""
Returns vector without optional metrics marked as ND and in preferred order.
Returns:
(str): cleaned CVSS2 with metrics in correct order
"""
vector = []
for metric in METRICS_ABBREVIATIONS:
if metric in self.metrics:
value = self.metrics[metric]
if value != "ND":
vector.append("{0}:{1}".format(metric, value))
return "/".join(vector)
def severities(self):
"""
Returns severities based on scores. https://nvd.nist.gov/vuln-metrics/cvss
Returns:
(tuple): Base Severity, Temporal Severity, Environmental Severity as strings
"""
severities = []
for score in (self.base_score, self.temporal_score, self.environmental_score):
if score is None:
severities.append("None")
elif score <= D("3.9"):
severities.append("Low")
elif score <= D("6.9"):
severities.append("Medium")
else:
severities.append("High")
return tuple(severities)
def rh_vector(self):
"""
Returns cleaned vector with score in Red Hat notation, e.g. score/vector.
Example: 5.0/AV:L/AC:L/Au:M/C:N/I:P/A:C/E:U/RL:W/CDP:L/TD:H/AR:M
"""
return str(self.scores()[0]) + "/" + self.clean_vector()
def temporal_vector(self):
"""
Returns the temporal vector from the full CVSS vector.
Returns:
(str): Temporal CVSS vector.
"""
return "/".join(
[metric + ":" + self.metrics.get(metric, "ND") for metric in TEMPORAL_METRICS]
)
def environmental_vector(self):
"""
Returns the environmental vector from the full CVSS vector.
Returns:
(str): Environmental CVSS vector.
"""
return "/".join(
[metric + ":" + self.metrics.get(metric, "ND") for metric in ENVIRONMENTAL_METRICS]
)
def as_json(self, sort=False, minimal=False):
"""
Returns a dictionary formatted with attribute names and values defined by the official
CVSS JSON schema:
https://www.first.org/cvss/cvss-v2.0.json?20170531
Serialize a CVSS2 instance to JSON with:
json.dumps(cvss2.as_json())
Or get sorted JSON in an OrderedDict with:
json.dumps(cvss2.as_json(sort=True))
Returns:
(dict): JSON schema-compatible CVSS representation
"""
def us(text):
# Uppercase and convert to snake case
return text.upper().replace("-", "_").replace(" ", "_")
def add_metric_to_data(metric):
k = METRICS_ABBREVIATIONS_JSON[metric]
data[k] = us(self.get_value_description(metric))
data = {
"version": "2.0",
"vectorString": self.vector,
"baseScore": float(self.base_score),
}
for metric in METRICS_MANDATORY:
add_metric_to_data(metric)
if not minimal or self.temporal_score:
for metric in TEMPORAL_METRICS:
add_metric_to_data(metric)
data["temporalScore"] = float(self.temporal_score) if self.temporal_score else 0.0
if not minimal or self.environmental_score:
for metric in ENVIRONMENTAL_METRICS:
add_metric_to_data(metric)
data["environmentalScore"] = (
float(self.environmental_score) if self.environmental_score else 0.0
)
if sort:
data = OrderedDict(sorted(data.items()))
return data
def __hash__(self):
return hash(self.clean_vector())
def __eq__(self, o):
if isinstance(o, CVSS2):
return self.clean_vector() == o.clean_vector()
return False
|