1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "blis.h"
// -- Matrix partitioning ------------------------------------------------------
void bli_acquire_mpart
(
dim_t i,
dim_t j,
dim_t bm,
dim_t bn,
obj_t* parent,
obj_t* child
)
{
// Query the dimensions of the parent object.
const dim_t m_par = bli_obj_length( parent );
const dim_t n_par = bli_obj_width( parent );
// If either i or j is already beyond what exists of the parent matrix,
// slide them back to the outer dimensions. (What will happen in this
// scenario is that bm and bn and/or will be reduced to zero so that the
// child matrix does not refer to anything beyond the bounds of the
// parent. (Note: This is a safety measure and generally should never
// be needed if the caller is passing in sane arguments.)
if ( i > m_par ) i = m_par;
if ( j > n_par ) j = n_par;
// If either bm or bn spills out over the edge of the parent matrix,
// reduce them so that the child matrix fits within the bounds of the
// parent. (Note: This is a safety measure and generally should never
// be needed if the caller is passing in sane arguments, though this
// code is somewhat more likely to be needed than the code above.)
if ( bm > m_par - i ) bm = m_par - i;
if ( bn > n_par - j ) bn = n_par - j;
// Alias the parent object's contents into the child object.
bli_obj_alias_to( parent, child );
// Set the offsets and dimensions of the child object. Note that we
// increment, rather than overwrite, the offsets of the child object
// in case the parent object already had non-zero offsets (usually
// because the parent was itself a child a larger grandparent object).
bli_obj_inc_offs( i, j, child );
bli_obj_set_dims( bm, bn, child );
}
void bli_acquire_mpart_t2b
(
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
bli_acquire_mpart_mdim( BLIS_FWD, req_part, i, b, obj, sub_obj );
}
void bli_acquire_mpart_b2t
(
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
bli_acquire_mpart_mdim( BLIS_BWD, req_part, i, b, obj, sub_obj );
}
void bli_acquire_mpart_mdim
(
dir_t direct,
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
dim_t m;
dim_t n;
dim_t m_part = 0;
dim_t n_part = 0;
inc_t offm_inc = 0;
inc_t offn_inc = 0;
doff_t diag_off_inc;
// Call a special function for partitioning packed objects. (By only
// catching those objects packed to panels, we omit cases where the
// object is packed to row or column storage, as such objects can be
// partitioned through normally.) Note that the function called below
// assumes forward partitioning.
if ( bli_obj_is_panel_packed( obj ) )
{
bli_packm_acquire_mpart_t2b( req_part, i, b, obj, sub_obj );
return;
}
// Check parameters.
if ( bli_error_checking_is_enabled() )
bli_acquire_mpart_t2b_check( req_part, i, b, obj, sub_obj );
// Query the m and n dimensions of the object (accounting for
// transposition, if indicated).
if ( bli_obj_has_notrans( obj ) )
{
m = bli_obj_length( obj );
n = bli_obj_width( obj );
}
else // if ( bli_obj_has_trans( obj ) )
{
m = bli_obj_width( obj );
n = bli_obj_length( obj );
}
// Foolproofing: do not let b exceed what's left of the m dimension at
// row offset i.
if ( b > m - i ) b = m - i;
// NOTE: Most of this function implicitly assumes moving forward.
// When moving backward, we have to relocate i.
if ( direct == BLIS_BWD )
{
// Modify i to account for the fact that we are moving backwards.
i = m - i - b;
}
// Support SUBPART1B (behind SUBPART1) and SUBPART1A (ahead of SUBPART1),
// to refer to subpartitions 0 and 2 when moving forward, and 2 and 0 when
// moving backward.
subpart_t subpart0_alias;
subpart_t subpart2_alias;
if ( direct == BLIS_FWD ) { subpart0_alias = BLIS_SUBPART1B;
subpart2_alias = BLIS_SUBPART1A; }
else { subpart0_alias = BLIS_SUBPART1A;
subpart2_alias = BLIS_SUBPART1B; }
// Compute offset increments and dimensions based on which
// subpartition is being requested, assuming no transposition.
if ( req_part == BLIS_SUBPART0 ||
req_part == subpart0_alias )
{
// A0 (offm,offn) unchanged.
// A0 is i x n.
offm_inc = 0;
offn_inc = 0;
m_part = i;
n_part = n;
}
else if ( req_part == BLIS_SUBPART1AND0 )
{
// A1+A0 (offm,offn) unchanged.
// A1+A0 is (i+b) x n.
offm_inc = 0;
offn_inc = 0;
m_part = i + b;
n_part = n;
}
else if ( req_part == BLIS_SUBPART1 )
{
// A1 (offm,offn) += (i,0).
// A1 is b x n.
offm_inc = i;
offn_inc = 0;
m_part = b;
n_part = n;
}
else if ( req_part == BLIS_SUBPART1AND2 )
{
// A1+A2 (offm,offn) += (i,0).
// A1+A2 is (m-i) x n.
offm_inc = i;
offn_inc = 0;
m_part = m - i;
n_part = n;
}
else if ( req_part == BLIS_SUBPART2 ||
req_part == subpart2_alias )
{
// A2 (offm,offn) += (i+b,0).
// A2 is (m-i-b) x n.
offm_inc = i + b;
offn_inc = 0;
m_part = m - i - b;
n_part = n;
}
// Compute the diagonal offset based on the m and n offsets.
diag_off_inc = ( doff_t )offm_inc - ( doff_t )offn_inc;
// Begin by copying the info, elem size, buffer, row stride, and column
// stride fields of the parent object. Note that this omits copying view
// information because the new partition will have its own dimensions
// and offsets.
bli_obj_init_subpart_from( obj, sub_obj );
// Modify offsets and dimensions of requested partition based on
// whether it needs to be transposed.
if ( bli_obj_has_notrans( obj ) )
{
bli_obj_set_dims( m_part, n_part, sub_obj );
bli_obj_inc_offs( offm_inc, offn_inc, sub_obj );
bli_obj_inc_diag_offset( diag_off_inc, sub_obj );
}
else // if ( bli_obj_has_trans( obj ) )
{
bli_obj_set_dims( n_part, m_part, sub_obj );
bli_obj_inc_offs( offn_inc, offm_inc, sub_obj );
bli_obj_inc_diag_offset( -diag_off_inc, sub_obj );
}
// If the root matrix is not general (ie: has structure defined by the
// diagonal), and the subpartition does not intersect the root matrix's
// diagonal, then set the subpartition structure to "general"; otherwise
// we let the subpartition inherit the storage structure of its immediate
// parent.
if ( !bli_obj_root_is_general( sub_obj ) &&
bli_obj_is_outside_diag( sub_obj ) )
{
// NOTE: This comment may be out-of-date since we now distinguish
// between uplo properties for the current and root objects...
// Note that we cannot mark the subpartition object as general/dense
// here since it makes sense to preserve the existing uplo information
// a while longer so that the correct kernels are invoked. (Example:
// incremental packing/computing in gemmt produces subpartitions that
// appear general/dense, but their uplo fields are needed to be either
// lower or upper, to determine which macro-kernel gets called in the
// gemmt_int() back-end.)
// If the subpartition lies entirely in an "unstored" triangle of the
// root matrix, then we need to tweak the subpartition. If the root
// matrix is Hermitian or symmetric, then we reflect the partition to
// the other side of the diagonal, toggling the transposition bit (and
// conjugation bit if the root matrix is Hermitian). Or, if the root
// matrix is triangular, the subpartition should be marked as zero.
if ( bli_obj_is_unstored_subpart( sub_obj ) )
{
if ( bli_obj_root_is_hermitian( sub_obj ) )
{
bli_obj_reflect_about_diag( sub_obj );
bli_obj_toggle_conj( sub_obj );
}
else if ( bli_obj_root_is_symmetric( sub_obj ) )
{
bli_obj_reflect_about_diag( sub_obj );
}
else if ( bli_obj_root_is_triangular( sub_obj ) )
{
bli_obj_set_uplo( BLIS_ZEROS, sub_obj );
}
}
}
}
void bli_acquire_mpart_l2r
(
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
bli_acquire_mpart_ndim( BLIS_FWD, req_part, i, b, obj, sub_obj );
}
void bli_acquire_mpart_r2l
(
subpart_t req_part,
dim_t j,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
bli_acquire_mpart_ndim( BLIS_BWD, req_part, j, b, obj, sub_obj );
}
void bli_acquire_mpart_ndim
(
dir_t direct,
subpart_t req_part,
dim_t j,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
dim_t m;
dim_t n;
dim_t m_part = 0;
dim_t n_part = 0;
inc_t offm_inc = 0;
inc_t offn_inc = 0;
doff_t diag_off_inc;
// Call a special function for partitioning packed objects. (By only
// catching those objects packed to panels, we omit cases where the
// object is packed to row or column storage, as such objects can be
// partitioned through normally.) Note that the function called below
// assumes forward partitioning.
if ( bli_obj_is_panel_packed( obj ) )
{
bli_packm_acquire_mpart_l2r( req_part, j, b, obj, sub_obj );
return;
}
// Check parameters.
if ( bli_error_checking_is_enabled() )
bli_acquire_mpart_l2r_check( req_part, j, b, obj, sub_obj );
// Query the m and n dimensions of the object (accounting for
// transposition, if indicated).
if ( bli_obj_has_notrans( obj ) )
{
m = bli_obj_length( obj );
n = bli_obj_width( obj );
}
else // if ( bli_obj_has_trans( obj ) )
{
m = bli_obj_width( obj );
n = bli_obj_length( obj );
}
// Foolproofing: do not let b exceed what's left of the n dimension at
// column offset j.
if ( b > n - j ) b = n - j;
// NOTE: Most of this function implicitly assumes moving forward.
// When moving backward, we have to relocate j.
if ( direct == BLIS_BWD )
{
// Modify j to account for the fact that we are moving backwards.
j = n - j - b;
}
// Support SUBPART1B (behind SUBPART1) and SUBPART1A (ahead of SUBPART1),
// to refer to subpartitions 0 and 2 when moving forward, and 2 and 0 when
// moving backward.
subpart_t subpart0_alias;
subpart_t subpart2_alias;
if ( direct == BLIS_FWD ) { subpart0_alias = BLIS_SUBPART1B;
subpart2_alias = BLIS_SUBPART1A; }
else { subpart0_alias = BLIS_SUBPART1A;
subpart2_alias = BLIS_SUBPART1B; }
// Compute offset increments and dimensions based on which
// subpartition is being requested, assuming no transposition.
if ( req_part == BLIS_SUBPART0 ||
req_part == subpart0_alias )
{
// A0 (offm,offn) unchanged.
// A0 is m x j.
offm_inc = 0;
offn_inc = 0;
m_part = m;
n_part = j;
}
else if ( req_part == BLIS_SUBPART1AND0 )
{
// A1+A0 (offm,offn) unchanged.
// A1+A0 is m x (j+b).
offm_inc = 0;
offn_inc = 0;
m_part = m;
n_part = j + b;
}
else if ( req_part == BLIS_SUBPART1 )
{
// A1 (offm,offn) += (0,j).
// A1 is m x b.
offm_inc = 0;
offn_inc = j;
m_part = m;
n_part = b;
}
else if ( req_part == BLIS_SUBPART1AND2 )
{
// A1+A2 (offm,offn) += (0,j).
// A1+A2 is m x (n-j).
offm_inc = 0;
offn_inc = j;
m_part = m;
n_part = n - j;
}
else if ( req_part == BLIS_SUBPART2 ||
req_part == subpart2_alias )
{
// A2 (offm,offn) += (0,j+b).
// A2 is m x (n-j-b).
offm_inc = 0;
offn_inc = j + b;
m_part = m;
n_part = n - j - b;
}
// Compute the diagonal offset based on the m and n offsets.
diag_off_inc = ( doff_t )offm_inc - ( doff_t )offn_inc;
// Begin by copying the info, elem size, buffer, row stride, and column
// stride fields of the parent object. Note that this omits copying view
// information because the new partition will have its own dimensions
// and offsets.
bli_obj_init_subpart_from( obj, sub_obj );
// Modify offsets and dimensions of requested partition based on
// whether it needs to be transposed.
if ( bli_obj_has_notrans( obj ) )
{
bli_obj_set_dims( m_part, n_part, sub_obj );
bli_obj_inc_offs( offm_inc, offn_inc, sub_obj );
bli_obj_inc_diag_offset( diag_off_inc, sub_obj );
}
else // if ( bli_obj_has_trans( obj ) )
{
bli_obj_set_dims( n_part, m_part, sub_obj );
bli_obj_inc_offs( offn_inc, offm_inc, sub_obj );
bli_obj_inc_diag_offset( -diag_off_inc, sub_obj );
}
// If the root matrix is not general (ie: has structure defined by the
// diagonal), and the subpartition does not intersect the root matrix's
// diagonal, then we might need to modify some of the subpartition's
// properties, depending on its structure type.
if ( !bli_obj_root_is_general( sub_obj ) &&
bli_obj_is_outside_diag( sub_obj ) )
{
// NOTE: This comment may be out-of-date since we now distinguish
// between uplo properties for the current and root objects...
// Note that we cannot mark the subpartition object as general/dense
// here since it makes sense to preserve the existing uplo information
// a while longer so that the correct kernels are invoked. (Example:
// incremental packing/computing in gemmt produces subpartitions that
// appear general/dense, but their uplo fields are needed to be either
// lower or upper, to determine which macro-kernel gets called in the
// gemmt_int() back-end.)
// If the subpartition lies entirely in an "unstored" triangle of the
// root matrix, then we need to tweak the subpartition. If the root
// matrix is Hermitian or symmetric, then we reflect the partition to
// the other side of the diagonal, toggling the transposition bit (and
// conjugation bit if the root matrix is Hermitian). Or, if the root
// matrix is triangular, the subpartition should be marked as zero.
if ( bli_obj_is_unstored_subpart( sub_obj ) )
{
if ( bli_obj_root_is_hermitian( sub_obj ) )
{
bli_obj_reflect_about_diag( sub_obj );
bli_obj_toggle_conj( sub_obj );
}
else if ( bli_obj_root_is_symmetric( sub_obj ) )
{
bli_obj_reflect_about_diag( sub_obj );
}
else if ( bli_obj_root_is_triangular( sub_obj ) )
{
bli_obj_set_uplo( BLIS_ZEROS, sub_obj );
}
}
}
}
void bli_acquire_mpart_tl2br
(
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
bli_acquire_mpart_mndim( BLIS_FWD, req_part, i, b, obj, sub_obj );
}
void bli_acquire_mpart_br2tl
(
subpart_t req_part,
dim_t j,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
bli_acquire_mpart_mndim( BLIS_BWD, req_part, j, b, obj, sub_obj );
}
void bli_acquire_mpart_mndim
(
dir_t direct,
subpart_t req_part,
dim_t ij,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
dim_t m;
dim_t n;
dim_t min_m_n;
dim_t m_part = 0;
dim_t n_part = 0;
inc_t offm_inc = 0;
inc_t offn_inc = 0;
doff_t diag_off_inc;
// Call a special function for partitioning packed objects. (By only
// catching those objects packed to panels, we omit cases where the
// object is packed to row or column storage, as such objects can be
// partitioned through normally.) Note that the function called below
// assumes forward partitioning.
if ( bli_obj_is_panel_packed( obj ) )
{
bli_packm_acquire_mpart_tl2br( req_part, ij, b, obj, sub_obj );
return;
}
// Check parameters.
if ( bli_error_checking_is_enabled() )
bli_acquire_mpart_tl2br_check( req_part, ij, b, obj, sub_obj );
// Query the m and n dimensions of the object (accounting for
// transposition, if indicated).
if ( bli_obj_has_notrans( obj ) )
{
m = bli_obj_length( obj );
n = bli_obj_width( obj );
}
else // if ( bli_obj_has_trans( obj ) )
{
m = bli_obj_width( obj );
n = bli_obj_length( obj );
}
// Foolproofing: do not let b exceed what's left of min(m,n) at
// row/column offset ij.
min_m_n = bli_min( m, n );
if ( b > min_m_n - ij ) b = min_m_n - ij;
// NOTE: Most of this function implicitly assumes moving forward.
// When moving backward, we have to relocate ij.
if ( direct == BLIS_BWD )
{
// Modify ij to account for the fact that we are moving backwards.
ij = min_m_n - ij - b;
}
// Compute offset increments and dimensions based on which
// subpartition is being requested, assuming no transposition.
// Left column of subpartitions
if ( req_part == BLIS_SUBPART00 )
{
// A00 (offm,offn) unchanged.
// A00 is ij x ij.
offm_inc = 0;
offn_inc = 0;
m_part = ij;
n_part = ij;
}
else if ( req_part == BLIS_SUBPART10 )
{
// A10 (offm,offn) += (ij,0).
// A10 is b x ij.
offm_inc = ij;
offn_inc = 0;
m_part = b;
n_part = ij;
}
else if ( req_part == BLIS_SUBPART20 )
{
// A20 (offm,offn) += (ij+b,0).
// A20 is (m-ij-b) x ij.
offm_inc = ij + b;
offn_inc = 0;
m_part = m - ij - b;
n_part = ij;
}
// Middle column of subpartitions.
else if ( req_part == BLIS_SUBPART01 )
{
// A01 (offm,offn) += (0,ij).
// A01 is ij x b.
offm_inc = 0;
offn_inc = ij;
m_part = ij;
n_part = b;
}
else if ( req_part == BLIS_SUBPART11 )
{
// A11 (offm,offn) += (ij,ij).
// A11 is b x b.
offm_inc = ij;
offn_inc = ij;
m_part = b;
n_part = b;
}
else if ( req_part == BLIS_SUBPART21 )
{
// A21 (offm,offn) += (ij+b,ij).
// A21 is (m-ij-b) x b.
offm_inc = ij + b;
offn_inc = ij;
m_part = m - ij - b;
n_part = b;
}
// Right column of subpartitions.
else if ( req_part == BLIS_SUBPART02 )
{
// A02 (offm,offn) += (0,ij+b).
// A02 is ij x (n-ij-b).
offm_inc = 0;
offn_inc = ij + b;
m_part = ij;
n_part = n - ij - b;
}
else if ( req_part == BLIS_SUBPART12 )
{
// A12 (offm,offn) += (ij,ij+b).
// A12 is b x (n-ij-b).
offm_inc = ij;
offn_inc = ij + b;
m_part = b;
n_part = n - ij - b;
}
else // if ( req_part == BLIS_SUBPART22 )
{
// A22 (offm,offn) += (ij+b,ij+b).
// A22 is (m-ij-b) x (n-ij-b).
offm_inc = ij + b;
offn_inc = ij + b;
m_part = m - ij - b;
n_part = n - ij - b;
}
// Compute the diagonal offset based on the m and n offsets.
diag_off_inc = ( doff_t )offm_inc - ( doff_t )offn_inc;
// Begin by copying the info, elem size, buffer, row stride, and column
// stride fields of the parent object. Note that this omits copying view
// information because the new partition will have its own dimensions
// and offsets.
bli_obj_init_subpart_from( obj, sub_obj );
// Modify offsets and dimensions of requested partition based on
// whether it needs to be transposed.
if ( bli_obj_has_notrans( obj ) )
{
bli_obj_set_dims( m_part, n_part, sub_obj );
bli_obj_inc_offs( offm_inc, offn_inc, sub_obj );
bli_obj_inc_diag_offset( diag_off_inc, sub_obj );
}
else // if ( bli_obj_has_trans( obj ) )
{
bli_obj_set_dims( n_part, m_part, sub_obj );
bli_obj_inc_offs( offn_inc, offm_inc, sub_obj );
bli_obj_inc_diag_offset( -diag_off_inc, sub_obj );
}
// If the root matrix is not general (ie: has structure defined by the
// diagonal), and the subpartition does not intersect the root matrix's
// diagonal, then set the subpartition structure to "general"; otherwise
// we let the subpartition inherit the storage structure of its immediate
// parent.
if ( !bli_obj_root_is_general( sub_obj ) &&
req_part != BLIS_SUBPART00 &&
req_part != BLIS_SUBPART11 &&
req_part != BLIS_SUBPART22 )
{
// FGVZ: Fix me. This needs to be cleaned up. Either non-diagonal
// intersecting subpartitions should inherit their root object's
// uplo field, or it should not. Right now, they DO inherit the
// uplo (because they are not set to BLIS_DENSE when the diagonal
// does not intersect). But the whole point of being able to query
// the root object's properties (e.g. uplo field) was so that we
// COULD mark such subpartitions as dense, to make it easier for
// certain subproblems on those subpartitions--subproblems that
// are agnostic to where the subpartition came from.
// NOTE: This comment may be out-of-date since we now distinguish
// between uplo properties for the current and root objects...
// Note that we cannot mark the subpartition object as general/dense
// here since it makes sense to preserve the existing uplo information
// a while longer so that the correct kernels are invoked. (Example:
// incremental packing/computing in gemmt produces subpartitions that
// appear general/dense, but their uplo fields are needed to be either
// lower or upper, to determine which macro-kernel gets called in the
// gemmt_int() back-end.)
// If the subpartition lies entirely in an "unstored" triangle of the
// root matrix, then we need to tweak the subpartition. If the root
// matrix is Hermitian or symmetric, then we reflect the partition to
// the other side of the diagonal, toggling the transposition bit (and
// conjugation bit if the root matrix is Hermitian). Or, if the root
// matrix is triangular, the subpartition should be marked as zero.
if ( bli_obj_is_unstored_subpart( sub_obj ) )
{
if ( bli_obj_root_is_hermitian( sub_obj ) )
{
bli_obj_reflect_about_diag( sub_obj );
bli_obj_toggle_conj( sub_obj );
}
else if ( bli_obj_root_is_symmetric( sub_obj ) )
{
bli_obj_reflect_about_diag( sub_obj );
}
else if ( bli_obj_root_is_triangular( sub_obj ) )
{
bli_obj_set_uplo( BLIS_ZEROS, sub_obj );
}
}
}
}
// -- Vector partitioning ------------------------------------------------------
void bli_acquire_vpart_f2b
(
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
if ( bli_obj_is_col_vector( obj ) )
bli_acquire_mpart_mdim( BLIS_FWD, req_part, i, b, obj, sub_obj );
else // if ( bli_obj_is_row_vector( obj ) )
bli_acquire_mpart_ndim( BLIS_FWD, req_part, i, b, obj, sub_obj );
}
void bli_acquire_vpart_b2f
(
subpart_t req_part,
dim_t i,
dim_t b,
obj_t* obj,
obj_t* sub_obj
)
{
if ( bli_obj_is_col_vector( obj ) )
bli_acquire_mpart_mdim( BLIS_BWD, req_part, i, b, obj, sub_obj );
else // if ( bli_obj_is_row_vector( obj ) )
bli_acquire_mpart_ndim( BLIS_BWD, req_part, i, b, obj, sub_obj );
}
// -- Scalar acquisition -------------------------------------------------------
void bli_acquire_mij
(
dim_t i,
dim_t j,
obj_t* obj,
obj_t* sub_obj
)
{
obj_t tmp_obj;
bli_acquire_mpart_ndim( BLIS_FWD, BLIS_SUBPART1, j, 1, obj, &tmp_obj );
bli_acquire_mpart_mdim( BLIS_FWD, BLIS_SUBPART1, i, 1, &tmp_obj, sub_obj );
}
void bli_acquire_vi
(
dim_t i,
obj_t* obj,
obj_t* sub_obj
)
{
if ( bli_obj_is_col_vector( obj ) )
bli_acquire_mpart_mdim( BLIS_FWD, BLIS_SUBPART1, i, 1, obj, sub_obj );
else // if ( bli_obj_is_row_vector( obj ) )
bli_acquire_mpart_ndim( BLIS_FWD, BLIS_SUBPART1, i, 1, obj, sub_obj );
}
|