File: bli_pba.c

package info (click to toggle)
python-cython-blis 0.9.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 43,648 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 820; cpp: 585; makefile: 14
file content (584 lines) | stat: -rw-r--r-- 17,574 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*

   BLIS
   An object-based framework for developing high-performance BLAS-like
   libraries.

   Copyright (C) 2014, The University of Texas at Austin
   Copyright (C) 2016, Hewlett Packard Enterprise Development LP
   Copyright (C) 2018 - 2019, Advanced Micro Devices, Inc.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "blis.h"

// Statically initialize the mutex within the packing block allocator object.
static pba_t pba = { .mutex = BLIS_PTHREAD_MUTEX_INITIALIZER };

// -----------------------------------------------------------------------------

pba_t* bli_pba_query( void )
{
    return &pba;
}

void bli_pba_init
     (
       cntx_t* restrict cntx
     )
{
	pba_t* restrict pba = bli_pba_query();

	const siz_t align_size = BLIS_POOL_ADDR_ALIGN_SIZE_GEN;
	malloc_ft   malloc_fp  = BLIS_MALLOC_POOL;
	free_ft     free_fp    = BLIS_FREE_POOL;

	// These fields are used for general-purpose allocation (ie: buf_type
	// equal to BLIS_BUFFER_FOR_GEN_USE) within bli_pba_acquire_m().
	bli_pba_set_align_size( align_size, pba );
	bli_pba_set_malloc_fp( malloc_fp, pba );
	bli_pba_set_free_fp( free_fp, pba );

	// The mutex field of pba is initialized statically above. This
	// keeps bli_pba_init() simpler and removes the possibility of
	// something going wrong during mutex initialization.

#ifdef BLIS_ENABLE_PBA_POOLS
	bli_pba_init_pools( cntx, pba );
#endif
}

void bli_pba_finalize
     (
       void
     )
{
	pba_t* restrict pba = bli_pba_query();

#ifdef BLIS_ENABLE_PBA_POOLS
	bli_pba_finalize_pools( pba );
#endif

	// The mutex field of pba is initialized statically above, and
	// therefore never destroyed.

	bli_pba_set_malloc_fp( NULL, pba );
	bli_pba_set_free_fp( NULL, pba );
}

void bli_pba_acquire_m
     (
       rntm_t*   rntm,
       siz_t     req_size,
       packbuf_t buf_type,
       mem_t*    mem
     )
{
	pool_t* pool;
	pblk_t* pblk;
	dim_t   pi;
	err_t   r_val;

	// If the internal memory pools for packing block allocator are disabled,
	// we spoof the buffer type as BLIS_BUFFER_FOR_GEN_USE to induce the
	// immediate usage of bli_pba_malloc().
#ifndef BLIS_ENABLE_PBA_POOLS
	buf_type = BLIS_BUFFER_FOR_GEN_USE;

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_pba_acquire_m(): bli_fmalloc_align(): size %ld\n",
	        ( long )req_size );
	#endif
#endif

	// Query the memory broker from the runtime.
	pba_t* pba = bli_rntm_pba( rntm );


	if ( buf_type == BLIS_BUFFER_FOR_GEN_USE )
	{
		malloc_ft malloc_fp  = bli_pba_malloc_fp( pba );
		siz_t     align_size = bli_pba_align_size( pba );

		// For general-use buffer requests, dynamically allocating memory
		// is assumed to be sufficient.
		void* buf = bli_fmalloc_align( malloc_fp, req_size, align_size, &r_val );

		// Initialize the mem_t object with:
		// - the address of the memory block,
		// - the buffer type (a packbuf_t value),
		// - the size of the requested region,
		// - the pba_t from which the mem_t entry was acquired.
		// NOTE: We initialize the pool field to NULL since this block did not
		// come from a memory pool.
		bli_mem_set_buffer( buf, mem );
		bli_mem_set_buf_type( buf_type, mem );
		bli_mem_set_pool( NULL, mem );
		bli_mem_set_size( req_size, mem );
	}
	else
	{
		// This branch handles cases where the memory block needs to come
		// from an internal memory pool, in which blocks are allocated once
		// and then recycled.

		// Map the requested packed buffer type to a zero-based index, which
		// we then use to select the corresponding memory pool.
		pi   = bli_packbuf_index( buf_type );
		pool = bli_pba_pool( pi, pba );

		// Extract the address of the pblk_t struct within the mem_t.
		pblk = bli_mem_pblk( mem );

		// Acquire the mutex associated with the pba object.
		bli_pba_lock( pba );

		// BEGIN CRITICAL SECTION
		{

			// Checkout a block from the pool. If the pool's blocks are too
			// small, it will be reinitialized with blocks large enough to
			// accommodate the requested block size. If the pool is exhausted,
			// either because it is still empty or because all blocks have
			// been checked out already, additional blocks will be allocated
			// automatically, as-needed. Note that the addresses are stored
			// directly into the mem_t struct since pblk is the address of
			// the struct's pblk_t field.
			bli_pool_checkout_block( req_size, pblk, pool );

		}
		// END CRITICAL SECTION

		// Release the mutex associated with the pba object.
		bli_pba_unlock( pba );

		// Query the block_size from the pblk_t. This will be at least
		// req_size, perhaps larger.
		siz_t block_size = bli_pblk_block_size( pblk );

		// Initialize the mem_t object with:
		// - the buffer type (a packbuf_t value),
		// - the address of the memory pool to which it belongs,
		// - the size of the contiguous memory block (NOT the size of the
		//   requested region),
		// - the pba_t from which the mem_t entry was acquired.
		// The actual (aligned) address is already stored in the mem_t
		// struct's pblk_t field.
		bli_mem_set_buf_type( buf_type, mem );
		bli_mem_set_pool( pool, mem );
		bli_mem_set_size( block_size, mem );
	}
}


void bli_pba_release
     (
       rntm_t* rntm,
       mem_t*  mem
     )
{
	packbuf_t buf_type;
	pool_t*   pool;
	pblk_t*   pblk;

	// Query the memory broker from the runtime.
	pba_t* pba = bli_rntm_pba( rntm );

	// Extract the buffer type so we know what kind of memory was allocated.
	buf_type = bli_mem_buf_type( mem );

#ifndef BLIS_ENABLE_PBA_POOLS
	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_pba_release(): bli_ffree_align(): size %ld\n",
	        ( long )bli_mem_size( mem ) );
	#endif
#endif

	if ( buf_type == BLIS_BUFFER_FOR_GEN_USE )
	{
		free_ft free_fp = bli_pba_free_fp( pba );
		void*   buf     = bli_mem_buffer( mem );

		// For general-use buffers, we dynamically allocate memory, and so
		// here we need to free it.
		bli_ffree_align( free_fp, buf );
	}
	else
	{
		// Extract the address of the pool from which the memory was
		// allocated.
		pool = bli_mem_pool( mem );

		// Extract the address of the pblk_t struct within the mem_t struct.
		pblk = bli_mem_pblk( mem );

		// Acquire the mutex associated with the pba object.
		bli_pba_lock( pba );

		// BEGIN CRITICAL SECTION
		{

			// Check the block back into the pool.
			bli_pool_checkin_block( pblk, pool );

		}
		// END CRITICAL SECTION

		// Release the mutex associated with the pba object.
		bli_pba_unlock( pba );
	}

	// Clear the mem_t object so that it appears unallocated. This clears:
	// - the pblk_t struct's fields (ie: the buffer addresses)
	// - the pool field
	// - the size field
	// - the pba field
	// NOTE: We do not clear the buf_type field since there is no
	// "uninitialized" value for packbuf_t.
	bli_mem_clear( mem );
}


#if 0
void bli_pba_acquire_v
     (
       pba_t* pba,
       siz_t  req_size,
       mem_t* mem
     )
{
	bli_pba_acquire_m
	(
	  pba,
	  req_size,
	  BLIS_BUFFER_FOR_GEN_USE,
	  mem
	);
}
#endif


siz_t bli_pba_pool_size
     (
       pba_t*    pba,
       packbuf_t buf_type
     )
{
	siz_t r_val;

	if ( buf_type == BLIS_BUFFER_FOR_GEN_USE )
	{
		// We don't (yet) track the amount of general-purpose
		// memory that is currently allocated.
		r_val = 0;
	}
	else
	{
		dim_t   pool_index;
		pool_t* pool;

		// Acquire the pointer to the pool corresponding to the buf_type
		// provided.
		pool_index = bli_packbuf_index( buf_type );
		pool       = bli_pba_pool( pool_index, pba );

		// Compute the pool "size" as the product of the block size
		// and the number of blocks in the pool.
		r_val = bli_pool_block_size( pool ) *
		        bli_pool_num_blocks( pool );
	}

	return r_val;
}

// -----------------------------------------------------------------------------

void bli_pba_init_pools
     (
       cntx_t* cntx,
       pba_t*  pba
     )
{
	// Map each of the packbuf_t values to an index starting at zero.
	const dim_t index_a      = bli_packbuf_index( BLIS_BUFFER_FOR_A_BLOCK );
	const dim_t index_b      = bli_packbuf_index( BLIS_BUFFER_FOR_B_PANEL );
	const dim_t index_c      = bli_packbuf_index( BLIS_BUFFER_FOR_C_PANEL );

	// Alias the pool addresses to convenient identifiers.
	pool_t*     pool_a       = bli_pba_pool( index_a, pba );
	pool_t*     pool_b       = bli_pba_pool( index_b, pba );
	pool_t*     pool_c       = bli_pba_pool( index_c, pba );

	// Start with empty pools.
	const dim_t num_blocks_a = 0;
	const dim_t num_blocks_b = 0;
	const dim_t num_blocks_c = 0;

	siz_t       block_size_a = 0;
	siz_t       block_size_b = 0;
	siz_t       block_size_c = 0;

	// For blocks of A and panels of B, start off with block_ptrs arrays that
	// are of a decent length. For C, we can start off with an empty array.
	const dim_t block_ptrs_len_a = 80;
	const dim_t block_ptrs_len_b = 80;
	const dim_t block_ptrs_len_c = 0;

	// Use the address alignment sizes designated (at configure-time) for pools.
	const siz_t align_size_a = BLIS_POOL_ADDR_ALIGN_SIZE_A;
	const siz_t align_size_b = BLIS_POOL_ADDR_ALIGN_SIZE_B;
	const siz_t align_size_c = BLIS_POOL_ADDR_ALIGN_SIZE_C;

	// Use the offsets from the above alignments.
	const siz_t offset_size_a = BLIS_POOL_ADDR_OFFSET_SIZE_A;
	const siz_t offset_size_b = BLIS_POOL_ADDR_OFFSET_SIZE_B;
	const siz_t offset_size_c = BLIS_POOL_ADDR_OFFSET_SIZE_C;

	// Use the malloc() and free() designated (at configure-time) for pools.
	malloc_ft malloc_fp  = BLIS_MALLOC_POOL;
	free_ft   free_fp    = BLIS_FREE_POOL;

	// Determine the block size for each memory pool.
	bli_pba_compute_pool_block_sizes( &block_size_a,
	                                  &block_size_b,
	                                  &block_size_c,
	                                  cntx );

	// Initialize the memory pools for A, B, and C.
	bli_pool_init( num_blocks_a, block_ptrs_len_a, block_size_a, align_size_a,
	               offset_size_a, malloc_fp, free_fp, pool_a );
	bli_pool_init( num_blocks_b, block_ptrs_len_b, block_size_b, align_size_b,
	               offset_size_b, malloc_fp, free_fp, pool_b );
	bli_pool_init( num_blocks_c, block_ptrs_len_c, block_size_c, align_size_c,
	               offset_size_c, malloc_fp, free_fp, pool_c );
}

void bli_pba_finalize_pools
     (
       pba_t* pba
     )
{
	// Map each of the packbuf_t values to an index starting at zero.
	dim_t   index_a = bli_packbuf_index( BLIS_BUFFER_FOR_A_BLOCK );
	dim_t   index_b = bli_packbuf_index( BLIS_BUFFER_FOR_B_PANEL );
	dim_t   index_c = bli_packbuf_index( BLIS_BUFFER_FOR_C_PANEL );

	// Alias the pool addresses to convenient identifiers.
	pool_t* pool_a  = bli_pba_pool( index_a, pba );
	pool_t* pool_b  = bli_pba_pool( index_b, pba );
	pool_t* pool_c  = bli_pba_pool( index_c, pba );

	// Finalize the memory pools for A, B, and C.
	bli_pool_finalize( pool_a );
	bli_pool_finalize( pool_b );
	bli_pool_finalize( pool_c );
}

// -----------------------------------------------------------------------------

void bli_pba_compute_pool_block_sizes
     (
       siz_t*  bs_a,
       siz_t*  bs_b,
       siz_t*  bs_c,
       cntx_t* cntx
     )
{
	const ind_t im = bli_cntx_method( cntx );

	siz_t bs_cand_a = 0;
	siz_t bs_cand_b = 0;
	siz_t bs_cand_c = 0;

	num_t dt;

	// Compute pool block sizes for each datatype and find the maximum
	// size for each pool. This is done so that new pools do not need
	// to be allocated if the user switches datatypes.
	for ( dt = BLIS_DT_LO; dt <= BLIS_DT_HI; ++dt )
	{
		siz_t bs_dt_a;
		siz_t bs_dt_b;
		siz_t bs_dt_c;

		// Avoid considering induced methods for real datatypes.
		if ( bli_is_real( dt ) && im != BLIS_NAT ) continue;

		bli_pba_compute_pool_block_sizes_dt( dt,
		                                     &bs_dt_a,
		                                     &bs_dt_b,
		                                     &bs_dt_c,
		                                     cntx );

		bs_cand_a = bli_max( bs_dt_a, bs_cand_a );
		bs_cand_b = bli_max( bs_dt_b, bs_cand_b );
		bs_cand_c = bli_max( bs_dt_c, bs_cand_c );
	}

	// Save the results.
	*bs_a = bs_cand_a;
	*bs_b = bs_cand_b;
	*bs_c = bs_cand_c;
}

// -----------------------------------------------------------------------------

void bli_pba_compute_pool_block_sizes_dt
     (
       num_t   dt,
       siz_t*  bs_a,
       siz_t*  bs_b,
       siz_t*  bs_c,
       cntx_t* cntx
     )
{
	siz_t    size_dt = bli_dt_size( dt );

	blksz_t* mr;
	blksz_t* nr;

	blksz_t* mc;
	blksz_t* kc;
	blksz_t* nc;

	dim_t    mr_dt;
	dim_t    nr_dt;
	dim_t    max_mnr_dt;

	dim_t    mc_max_dt;
	dim_t    kc_max_dt;
	dim_t    nc_max_dt;

	dim_t    packmr_dt;
	dim_t    packnr_dt;
	dim_t    max_packmnr_dt;

	dim_t    scale_num_dt;
	dim_t    scale_den_dt;

	dim_t    pool_mc_dt, left_mc_dt;
	dim_t    pool_nc_dt, left_nc_dt;
	dim_t    pool_kc_dt;

	//
	// Find the larger of the two register blocksizes.
	//

	// Query the mr and nr blksz_t objects for the given method of
	// execution.
	mr = bli_cntx_get_blksz( BLIS_MR, cntx );
	nr = bli_cntx_get_blksz( BLIS_NR, cntx );

	// Extract the mr and nr values specific to the current datatype.
	mr_dt = bli_blksz_get_def( dt, mr );
	nr_dt = bli_blksz_get_def( dt, nr );

	// Find the maximum of mr and nr.
	max_mnr_dt = bli_max( mr_dt, nr_dt );

	//
	// Define local maximum cache blocksizes.
	//

	// Query the mc, kc, and nc blksz_t objects for native execution.
	mc = bli_cntx_get_blksz( BLIS_MC, cntx );
	kc = bli_cntx_get_blksz( BLIS_KC, cntx );
	nc = bli_cntx_get_blksz( BLIS_NC, cntx );

	// Extract the maximum mc, kc, and nc values specific to the current
	// datatype.
	mc_max_dt = bli_blksz_get_max( dt, mc );
	kc_max_dt = bli_blksz_get_max( dt, kc );
	nc_max_dt = bli_blksz_get_max( dt, nc );

	// Add max(mr,nr) to kc to make room for the nudging of kc at
	// runtime to be a multiple of mr or nr for triangular operations
	// trmm, trmm3, and trsm.
	kc_max_dt += max_mnr_dt;

	//
	// Compute scaling factors.
	//

	// Compute integer scaling factors (numerator and denominator) used
	// to account for situations when the packing register blocksizes are
	// larger than the regular register blocksizes.

	// In order to compute the scaling factors, we first have to determine
	// whether ( packmr / mr ) is greater than ( packnr / nr ). This is
	// needed ONLY because the amount of space allocated for a block of A
	// and a panel of B needs to be such that MR and NR can be swapped (ie:
	// A is packed with NR and B is packed with MR). This transformation is
	// needed for right-side trsm when inducing an algorithm that (a) has
	// favorable access patterns for column-stored C and (b) allows the
	// macro-kernel to reuse the existing left-side fused gemmtrsm micro-
	// kernels. We avoid integer division by cross-multiplying:
	//
	//   ( packmr / mr )      >= ( packnr / nr )
	//   ( packmr / mr ) * nr >=   packnr
	//     packmr * nr        >=   packnr * mr
	//
	// So, if packmr * nr >= packnr * mr, then we will use packmr and mr as
	// our scaling factors. Otherwise, we'll use packnr and nr.

	packmr_dt = bli_blksz_get_max( dt, mr );
	packnr_dt = bli_blksz_get_max( dt, nr );

	if ( packmr_dt * nr_dt >=
	     packnr_dt * mr_dt ) { scale_num_dt = packmr_dt;
	                           scale_den_dt =     mr_dt; }
	else                     { scale_num_dt = packnr_dt;
	                           scale_den_dt =     nr_dt; }

	//
	// Compute pool block dimensions.
	//

	pool_mc_dt = ( mc_max_dt * scale_num_dt ) / scale_den_dt;
	left_mc_dt = ( mc_max_dt * scale_num_dt ) % scale_den_dt;

	pool_nc_dt = ( nc_max_dt * scale_num_dt ) / scale_den_dt;
	left_nc_dt = ( nc_max_dt * scale_num_dt ) % scale_den_dt;

	pool_kc_dt = ( kc_max_dt );

	if ( left_mc_dt > 0 ) pool_mc_dt += 1;
	if ( left_nc_dt > 0 ) pool_nc_dt += 1;

	//
	// Compute pool block sizes
	//

	// We add an extra micro-panel of space to the block sizes for A and B
	// just to be sure any pre-loading performed by the micro-kernel does
	// not cause a segmentation fault.
	max_packmnr_dt = bli_max( packmr_dt, packnr_dt );

	*bs_a = ( pool_mc_dt + max_packmnr_dt ) * pool_kc_dt * size_dt;
	*bs_b = ( pool_nc_dt + max_packmnr_dt ) * pool_kc_dt * size_dt;
	*bs_c = ( pool_mc_dt                  ) * pool_nc_dt * size_dt;
}