File: bli_gemm_md.c

package info (click to toggle)
python-cython-blis 1.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 43,676 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 821; cpp: 585; makefile: 14
file content (638 lines) | stat: -rw-r--r-- 21,475 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
/*

   BLIS
   An object-based framework for developing high-performance BLAS-like
   libraries.

   Copyright (C) 2014, The University of Texas at Austin
   Copyright (C) 2017 - 2019, Advanced Micro Devices, Inc.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "blis.h"

#ifdef BLIS_ENABLE_GEMM_MD

void bli_gemm_md
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;

	const bool a_is_real = bli_obj_is_real( a );
	const bool a_is_comp = bli_obj_is_complex( a );
	const bool b_is_real = bli_obj_is_real( b );
	const bool b_is_comp = bli_obj_is_complex( b );
	const bool c_is_real = bli_obj_is_real( c );
	const bool c_is_comp = bli_obj_is_complex( c );

	if      ( c_is_real && a_is_real && b_is_real )
	{
		// C_real += A_real * B_real
		doms = bli_gemm_md_rrr( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_comp && a_is_comp && b_is_comp )
	{
		// C_complex += A_complex * B_complex
		doms = bli_gemm_md_ccc( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_comp && a_is_comp && b_is_real )
	{
		// C_complex += A_complex * B_real
		doms = bli_gemm_md_ccr( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_comp && a_is_real && b_is_comp )
	{
		// C_complex += A_real * B_complex
		doms = bli_gemm_md_crc( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_real && a_is_comp && b_is_comp )
	{
		// C_real += A_complex * B_complex
		doms = bli_gemm_md_rcc( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_comp && a_is_real && b_is_real )
	{
		// C_complex += A_real * B_real
		doms = bli_gemm_md_crr( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_real && a_is_comp && b_is_real )
	{
		// C_real += A_complex * B_real
		doms = bli_gemm_md_rcr( a, b, beta, c, cntx_local, cntx );
	}
	else if ( c_is_real && a_is_real && b_is_comp )
	{
		// C_real += A_real * B_complex
		doms = bli_gemm_md_rrc( a, b, beta, c, cntx_local, cntx );
	}
	else
	{
		doms.comp = BLIS_REAL;
		doms.exec = BLIS_REAL;

		// This should never execute.
		bli_abort();
	}

	// Extract the computation and execution domains from the struct
	// returned above.
	dom_t dom_comp = doms.comp;
	dom_t dom_exec = doms.exec;

	// Inspect the computation precision of C. (The user may have set
	// this explicitly to request the precision in which the computation
	// should take place.)
	prec_t prec_comp = bli_obj_comp_prec( c );

	// The computation precision tells us the target precision of A and B.
	// NOTE: We don't set the target domain here. The target domain would
	// either be unchanged, or would have been changed in one of the eight
	// domain cases above.
	bli_obj_set_target_prec( prec_comp, a );
	bli_obj_set_target_prec( prec_comp, b );

	// Combine the execution domain with the computation precision to form
	// the execution datatype. (The computation precision and execution
	// precision are always equal.)
	num_t dt_exec = dom_exec | prec_comp;

	// Set the execution datatypes of A, B, and C.
	bli_obj_set_exec_dt( dt_exec, a );
	bli_obj_set_exec_dt( dt_exec, b );
	bli_obj_set_exec_dt( dt_exec, c );

	// Combine the computation precision and computation domain to form the
	// computation datatype.
	num_t dt_comp = dom_comp | prec_comp;

	// Set the computation datatypes of A, B, and C.
	bli_obj_set_comp_dt( dt_comp, a );
	bli_obj_set_comp_dt( dt_comp, b );
	bli_obj_set_comp_dt( dt_comp, c );

}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_ccr
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;

	// We assume that the requested computation domain is complex.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_COMPLEX;

	// For ccr, the computation (ukernel) will be real, but the execution
	// will appear complex to other parts of the implementation.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_COMPLEX;

	// Here we construct the computation datatype, which for the ccr case
	// is equal to the real projection of the execution datatype, and use
	// that computation datatype to query the corresponding ukernel output
	// preference.
	const num_t dt = BLIS_REAL | bli_obj_comp_prec( c );
	const bool  row_pref
	      = bli_cntx_l3_nat_ukr_prefers_rows_dt( dt, BLIS_GEMM_UKR, *cntx );

	// We can only perform this case of mixed-domain gemm, C += A*B where
	// B is real, if the microkernel prefers column output. If it prefers
	// row output, we must induce a transposition and perform C += A*B
	// where A (formerly B) is real.
	if ( row_pref )
	{
		bli_obj_swap( a, b );

		bli_obj_induce_trans( a );
		bli_obj_induce_trans( b );
		bli_obj_induce_trans( c );

		// We must swap the pack schemas because the schemas were set before
		// the objects were swapped.
		bli_obj_swap_pack_schemas( a, b );

		return bli_gemm_md_crc( a, b, beta, c, cntx_local, cntx );
	}

	// Create a local copy of the context and then prepare to use this
	// context instead of the one passed in.
	*cntx_local = **cntx;
	*cntx = cntx_local;

	// Copy the real domain blocksizes into the slots of their complex
	// counterparts.
	blksz_t* blksz_mr = bli_cntx_get_blksz( BLIS_MR, *cntx );
	blksz_t* blksz_nr = bli_cntx_get_blksz( BLIS_NR, *cntx );
	blksz_t* blksz_mc = bli_cntx_get_blksz( BLIS_MC, *cntx );
	blksz_t* blksz_nc = bli_cntx_get_blksz( BLIS_NC, *cntx );
	blksz_t* blksz_kc = bli_cntx_get_blksz( BLIS_KC, *cntx );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_mr, BLIS_SCOMPLEX, blksz_mr );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_mr, BLIS_DCOMPLEX, blksz_mr );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_nr, BLIS_SCOMPLEX, blksz_nr );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_nr, BLIS_DCOMPLEX, blksz_nr );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_mc, BLIS_SCOMPLEX, blksz_mc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_mc, BLIS_DCOMPLEX, blksz_mc );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_nc, BLIS_SCOMPLEX, blksz_nc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_nc, BLIS_DCOMPLEX, blksz_nc );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_kc, BLIS_SCOMPLEX, blksz_kc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_kc, BLIS_DCOMPLEX, blksz_kc );

	// Halve both the real and complex MR's (which are both real MR's).
	bli_blksz_scale_def_max( 1, 2, BLIS_FLOAT,    blksz_mr );
	bli_blksz_scale_def_max( 1, 2, BLIS_DOUBLE,   blksz_mr );
	bli_blksz_scale_def_max( 1, 2, BLIS_SCOMPLEX, blksz_mr );
	bli_blksz_scale_def_max( 1, 2, BLIS_DCOMPLEX, blksz_mr );

	// Halve both the real and complex MC's (which are both real MC's).
	bli_blksz_scale_def_max( 1, 2, BLIS_FLOAT,    blksz_mc );
	bli_blksz_scale_def_max( 1, 2, BLIS_DOUBLE,   blksz_mc );
	bli_blksz_scale_def_max( 1, 2, BLIS_SCOMPLEX, blksz_mc );
	bli_blksz_scale_def_max( 1, 2, BLIS_DCOMPLEX, blksz_mc );

	// Use the default pack schemas in the objects.

	// static func_t* bli_cntx_get_l3_vir_ukrs( l3ukr_t ukr_id, cntx_t* cntx )
	func_t* l3_vir_ukrs = bli_cntx_get_l3_vir_ukrs( BLIS_GEMM_UKR, *cntx );

	// Rather than check which complex datatype dt_comp refers to, we set
	// the mixed-domain virtual microkernel for both types.
	bli_func_set_dt( bli_cgemm_md_c2r_ref, BLIS_SCOMPLEX, l3_vir_ukrs );
	bli_func_set_dt( bli_zgemm_md_c2r_ref, BLIS_DCOMPLEX, l3_vir_ukrs );

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_crc
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;

	// We assume that the requested computation domain is complex.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_COMPLEX;

	// For crc, the computation (ukernel) will be real, but the execution
	// will appear complex to other parts of the implementation.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_COMPLEX;

	// Here we construct the computation datatype, which for the crc case
	// is equal to the real projection of the execution datatype, and use
	// that computation datatype to query the corresponding ukernel output
	// preference.
	const num_t dt = BLIS_REAL | bli_obj_comp_prec( c );
	const bool  col_pref
	      = bli_cntx_l3_nat_ukr_prefers_cols_dt( dt, BLIS_GEMM_UKR, *cntx );

	// We can only perform this case of mixed-domain gemm, C += A*B where
	// A is real, if the microkernel prefers row output. If it prefers
	// column output, we must induce a transposition and perform C += A*B
	// where B (formerly A) is real.
	if ( col_pref )
	{
		bli_obj_swap( a, b );

		bli_obj_induce_trans( a );
		bli_obj_induce_trans( b );
		bli_obj_induce_trans( c );

		// We must swap the pack schemas because the schemas were set before
		// the objects were swapped.
		bli_obj_swap_pack_schemas( a, b );

		return bli_gemm_md_ccr( a, b, beta, c, cntx_local, cntx );
	}

	// Create a local copy of the context and then prepare to use this
	// context instead of the one passed in.
	*cntx_local = **cntx;
	*cntx = cntx_local;

	// Copy the real domain blocksizes into the slots of their complex
	// counterparts.
	blksz_t* blksz_mr = bli_cntx_get_blksz( BLIS_MR, *cntx );
	blksz_t* blksz_nr = bli_cntx_get_blksz( BLIS_NR, *cntx );
	blksz_t* blksz_mc = bli_cntx_get_blksz( BLIS_MC, *cntx );
	blksz_t* blksz_nc = bli_cntx_get_blksz( BLIS_NC, *cntx );
	blksz_t* blksz_kc = bli_cntx_get_blksz( BLIS_KC, *cntx );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_mr, BLIS_SCOMPLEX, blksz_mr );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_mr, BLIS_DCOMPLEX, blksz_mr );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_nr, BLIS_SCOMPLEX, blksz_nr );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_nr, BLIS_DCOMPLEX, blksz_nr );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_mc, BLIS_SCOMPLEX, blksz_mc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_mc, BLIS_DCOMPLEX, blksz_mc );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_nc, BLIS_SCOMPLEX, blksz_nc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_nc, BLIS_DCOMPLEX, blksz_nc );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_kc, BLIS_SCOMPLEX, blksz_kc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_kc, BLIS_DCOMPLEX, blksz_kc );

	// Halve both the real and complex NR's (which are both real NR's).
	bli_blksz_scale_def_max( 1, 2, BLIS_FLOAT,    blksz_nr );
	bli_blksz_scale_def_max( 1, 2, BLIS_DOUBLE,   blksz_nr );
	bli_blksz_scale_def_max( 1, 2, BLIS_SCOMPLEX, blksz_nr );
	bli_blksz_scale_def_max( 1, 2, BLIS_DCOMPLEX, blksz_nr );

	// Halve both the real and complex NC's (which are both real NC's).
	bli_blksz_scale_def_max( 1, 2, BLIS_FLOAT,    blksz_nc );
	bli_blksz_scale_def_max( 1, 2, BLIS_DOUBLE,   blksz_nc );
	bli_blksz_scale_def_max( 1, 2, BLIS_SCOMPLEX, blksz_nc );
	bli_blksz_scale_def_max( 1, 2, BLIS_DCOMPLEX, blksz_nc );

	// Use the default pack schemas in the objects.

	// static func_t* bli_cntx_get_l3_vir_ukrs( l3ukr_t ukr_id, cntx_t* cntx )
	func_t* l3_vir_ukrs = bli_cntx_get_l3_vir_ukrs( BLIS_GEMM_UKR, *cntx );

	// Rather than check which complex datatype dt_comp refers to, we set
	// the mixed-domain virtual microkernel for both types.
	bli_func_set_dt( bli_cgemm_md_c2r_ref, BLIS_SCOMPLEX, l3_vir_ukrs );
	bli_func_set_dt( bli_zgemm_md_c2r_ref, BLIS_DCOMPLEX, l3_vir_ukrs );

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_rcc
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;

	// We assume that the requested computation domain is complex.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_COMPLEX;

	// For rcc, the computation (ukernel) will be real, and since the output
	// matrix C is also real, so must be the execution domain.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_REAL;

	// Create a local copy of the context and then prepare to use this
	// context instead of the one passed in.
	*cntx_local = **cntx;
	*cntx = cntx_local;

	// Copy the real domain blocksizes into the slots of their complex
	// counterparts.
	blksz_t* blksz_mr = bli_cntx_get_blksz( BLIS_MR, *cntx );
	blksz_t* blksz_nr = bli_cntx_get_blksz( BLIS_NR, *cntx );
	blksz_t* blksz_mc = bli_cntx_get_blksz( BLIS_MC, *cntx );
	blksz_t* blksz_nc = bli_cntx_get_blksz( BLIS_NC, *cntx );
	blksz_t* blksz_kc = bli_cntx_get_blksz( BLIS_KC, *cntx );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_mr, BLIS_SCOMPLEX, blksz_mr );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_mr, BLIS_DCOMPLEX, blksz_mr );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_nr, BLIS_SCOMPLEX, blksz_nr );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_nr, BLIS_DCOMPLEX, blksz_nr );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_mc, BLIS_SCOMPLEX, blksz_mc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_mc, BLIS_DCOMPLEX, blksz_mc );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_nc, BLIS_SCOMPLEX, blksz_nc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_nc, BLIS_DCOMPLEX, blksz_nc );

	bli_blksz_copy_dt( BLIS_FLOAT,  blksz_kc, BLIS_SCOMPLEX, blksz_kc );
	bli_blksz_copy_dt( BLIS_DOUBLE, blksz_kc, BLIS_DCOMPLEX, blksz_kc );

	// Halve both the real and complex KC's (which are both real KC's).
	bli_blksz_scale_def_max( 1, 2, BLIS_FLOAT,    blksz_kc );
	bli_blksz_scale_def_max( 1, 2, BLIS_DOUBLE,   blksz_kc );
	bli_blksz_scale_def_max( 1, 2, BLIS_SCOMPLEX, blksz_kc );
	bli_blksz_scale_def_max( 1, 2, BLIS_DCOMPLEX, blksz_kc );

	// Use the 1r pack schema for both A and B with the conjugation
	// of A or B toggled (to produce ar * br - ai * bi).
	bli_obj_set_pack_schema( BLIS_PACKED_ROW_PANELS_1R, a );
	bli_obj_set_pack_schema( BLIS_PACKED_COL_PANELS_1R, b );

	bli_obj_toggle_conj( b );

	// We also need to copy over the packm kernels from the 1m
	// context. We query the address of that context here.
	// NOTE: This is needed for situations where the rcc case does not
	// involve any casting to different precisions, since currently
	// bli_packm_blk_var1() is coded to hand off control to
	// bli_packm_blk_var1_md() only when the storage datatype differs from
	// the target datatype. (The packm_blk_var1_md() function has "built-in"
	// support for packing to 1r (and 1e) schemas, whereas the
	// packm_blk_var1() function relies on packm kernels for packing to 1r.
	const num_t dt_complex = bli_obj_dt( a );
	cntx_t* cntx_1m = bli_gks_query_ind_cntx( BLIS_1M, dt_complex );

	func_t* cntx_funcs    = bli_cntx_packm_kers_buf( *cntx );
	func_t* cntx_1m_funcs = bli_cntx_packm_kers_buf( cntx_1m );

	for ( dim_t i = 0; i <= BLIS_PACKM_31XK_KER; ++i )
	{
		cntx_funcs[ i ] = cntx_1m_funcs[ i ];
	}

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_crr
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;
#ifndef BLIS_ENABLE_GEMM_MD_EXTRA_MEM
	obj_t  c_real;
#endif

	// We assume that the requested computation domain is real.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_REAL;

	// For crr, the computation (ukernel) will be real, and since we will
	// be updating only the real part of the output matrix C, the exectuion
	// domain is also real.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_REAL;

	// Since the A*B product is real, we can update only the real part of
	// C. Thus, we convert the obj_t for the complex matrix to one that
	// represents only the real part. HOWEVER, there are two situations in
	// which we forgo this trick:
	// - If extra memory optimizations are enabled, we should leave C alone
	//   since we'll be computing A*B to a temporary matrix and accumulating
	//   that result back to C, and in order for that to work, we need to
	//   allow that code to continue accessing C as a complex matrix.
	// - Even if extra memory optimizations are diabled, logically projecting
	//   C as a real matrix can still cause problems if beta is non-unit. In
	//   that situation, the implementation won't get a chance to scale the
	//   imaginary components of C by beta, and thus it would compute the
	//   wrong answer. Thus, if beta is non-unit, we must leave C alone.
#ifndef BLIS_ENABLE_GEMM_MD_EXTRA_MEM
	if ( bli_obj_equals( beta, &BLIS_ONE ) )
	{
		bli_obj_real_part( c, &c_real );

		// Overwrite the complex obj_t with its real-only alias.
		*c = c_real;
	}
#endif

	// Use the default pack schemas in the objects.

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_rcr
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;
	obj_t  a_real;

	// We assume that the requested computation domain is real.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_REAL;

	// For rcr, the computation (ukernel) will be real, and since the output
	// matrix C is also real, so must be the execution domain.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_REAL;

	// Convert the obj_t for the complex matrix to one that represents only
	// the real part.
	bli_obj_real_part( a, &a_real );

	// Overwrite the complex obj_t with its real-only alias.
	*a = a_real;

	// Use the default pack schemas in the objects.

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_rrc
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;
	obj_t  b_real;

	// We assume that the requested computation domain is real.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_REAL;

	// For rcr, the computation (ukernel) will be real, and since the output
	// matrix C is also real, so must be the execution domain.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_REAL;

	// Convert the obj_t for the complex matrix to one that represents only
	// the real part.
	bli_obj_real_part( b, &b_real );

	// Overwrite the complex obj_t with its real-only alias.
	*b = b_real;

	// Use the default pack schemas in the objects.

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_rrr
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;

	// We assume that the requested computation domain is real.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_REAL;

	// For rrr, the computation (ukernel) and execution domains are both
	// real.
	doms.comp = BLIS_REAL;
	doms.exec = BLIS_REAL;

	// Use the default pack schemas in the objects.

	// Return the computation and execution domains.
	return doms;
}

// -----------------------------------------------------------------------------

//                 cab
mddm_t bli_gemm_md_ccc
     (
       obj_t*   a,
       obj_t*   b,
       obj_t*   beta,
       obj_t*   c,
       cntx_t*  cntx_local,
       cntx_t** cntx
     )
{
	mddm_t doms;

	// We assume that the requested computation domain is complex.
	//dom_t dom_comp_in = bli_obj_comp_domain( c );
	//dom_t dom_comp_in = BLIS_COMPLEX;

	// For ccc, the computation (ukernel) and execution domains are both
	// complex.
	doms.comp = BLIS_COMPLEX;
	doms.exec = BLIS_COMPLEX;

	// Use the default pack schemas in the objects.

	// Return the computation and execution domains.
	return doms;
}

#endif