1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2019, Advanced Micro Devices, Inc.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "blis.h"
#define FUNCPTR_T gemmsup_fp
typedef void (*FUNCPTR_T)
(
conj_t conja,
conj_t conjb,
dim_t m,
dim_t n,
dim_t k,
void* restrict alpha,
void* restrict a, inc_t rs_a, inc_t cs_a,
void* restrict b, inc_t rs_b, inc_t cs_b,
void* restrict beta,
void* restrict c, inc_t rs_c, inc_t cs_c,
stor3_t eff_id,
cntx_t* restrict cntx,
rntm_t* restrict rntm,
cntl_t* restrict cntl,
thrinfo_t* restrict thread
);
//
// -- var1n --------------------------------------------------------------------
//
static FUNCPTR_T GENARRAY(ftypes_var1n,gemmsup_ref_var1n);
void bli_gemmsup_ref_var1n
(
trans_t trans,
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c,
stor3_t eff_id,
cntx_t* cntx,
rntm_t* rntm,
cntl_t* cntl,
thrinfo_t* thread
)
{
#if 0
obj_t at, bt;
bli_obj_alias_to( a, &at );
bli_obj_alias_to( b, &bt );
// Induce transpositions on A and/or B if either object is marked for
// transposition. We can induce "fast" transpositions since they objects
// are guaranteed to not have structure or be packed.
if ( bli_obj_has_trans( &at ) ) { bli_obj_induce_fast_trans( &at ); }
if ( bli_obj_has_trans( &bt ) ) { bli_obj_induce_fast_trans( &bt ); }
const num_t dt_exec = bli_obj_dt( c );
const conj_t conja = bli_obj_conj_status( a );
const conj_t conjb = bli_obj_conj_status( b );
const dim_t m = bli_obj_length( c );
const dim_t n = bli_obj_width( c );
const dim_t k = bli_obj_width( &at );
void* restrict buf_a = bli_obj_buffer_at_off( &at );
const inc_t rs_a = bli_obj_row_stride( &at );
const inc_t cs_a = bli_obj_col_stride( &at );
void* restrict buf_b = bli_obj_buffer_at_off( &bt );
const inc_t rs_b = bli_obj_row_stride( &bt );
const inc_t cs_b = bli_obj_col_stride( &bt );
void* restrict buf_c = bli_obj_buffer_at_off( c );
const inc_t rs_c = bli_obj_row_stride( c );
const inc_t cs_c = bli_obj_col_stride( c );
void* restrict buf_alpha = bli_obj_buffer_for_1x1( dt_exec, alpha );
void* restrict buf_beta = bli_obj_buffer_for_1x1( dt_exec, beta );
#else
const num_t dt_exec = bli_obj_dt( c );
const conj_t conja = bli_obj_conj_status( a );
const conj_t conjb = bli_obj_conj_status( b );
const dim_t m = bli_obj_length( c );
const dim_t n = bli_obj_width( c );
dim_t k;
void* restrict buf_a = bli_obj_buffer_at_off( a );
inc_t rs_a;
inc_t cs_a;
void* restrict buf_b = bli_obj_buffer_at_off( b );
inc_t rs_b;
inc_t cs_b;
if ( bli_obj_has_notrans( a ) )
{
k = bli_obj_width( a );
rs_a = bli_obj_row_stride( a );
cs_a = bli_obj_col_stride( a );
}
else // if ( bli_obj_has_trans( a ) )
{
// Assign the variables with an implicit transposition.
k = bli_obj_length( a );
rs_a = bli_obj_col_stride( a );
cs_a = bli_obj_row_stride( a );
}
if ( bli_obj_has_notrans( b ) )
{
rs_b = bli_obj_row_stride( b );
cs_b = bli_obj_col_stride( b );
}
else // if ( bli_obj_has_trans( b ) )
{
// Assign the variables with an implicit transposition.
rs_b = bli_obj_col_stride( b );
cs_b = bli_obj_row_stride( b );
}
void* restrict buf_c = bli_obj_buffer_at_off( c );
const inc_t rs_c = bli_obj_row_stride( c );
const inc_t cs_c = bli_obj_col_stride( c );
void* restrict buf_alpha = bli_obj_buffer_for_1x1( dt_exec, alpha );
void* restrict buf_beta = bli_obj_buffer_for_1x1( dt_exec, beta );
#endif
// Index into the type combination array to extract the correct
// function pointer.
FUNCPTR_T f = ftypes_var1n[dt_exec];
if ( bli_is_notrans( trans ) )
{
// Invoke the function.
f
(
conja,
conjb,
m,
n,
k,
buf_alpha,
buf_a, rs_a, cs_a,
buf_b, rs_b, cs_b,
buf_beta,
buf_c, rs_c, cs_c,
eff_id,
cntx,
rntm,
cntl,
thread
);
}
else
{
// Invoke the function (transposing the operation).
f
(
conjb, // swap the conj values.
conja,
n, // swap the m and n dimensions.
m,
k,
buf_alpha,
buf_b, cs_b, rs_b, // swap the positions of A and B.
buf_a, cs_a, rs_a, // swap the strides of A and B.
buf_beta,
buf_c, cs_c, rs_c, // swap the strides of C.
bli_stor3_trans( eff_id ), // transpose the stor3_t id.
cntx,
rntm,
cntl,
thread
);
}
}
#undef GENTFUNC
#define GENTFUNC( ctype, ch, varname ) \
\
void PASTEMAC(ch,varname) \
( \
conj_t conja, \
conj_t conjb, \
dim_t m, \
dim_t n, \
dim_t k, \
void* restrict alpha, \
void* restrict a, inc_t rs_a, inc_t cs_a, \
void* restrict b, inc_t rs_b, inc_t cs_b, \
void* restrict beta, \
void* restrict c, inc_t rs_c, inc_t cs_c, \
stor3_t stor_id, \
cntx_t* restrict cntx, \
rntm_t* restrict rntm, \
cntl_t* restrict cntl, \
thrinfo_t* restrict thread \
) \
{ \
/* If m or n is zero, return immediately. */ \
if ( bli_zero_dim2( m, n ) ) return; \
\
/* If k < 1 or alpha is zero, scale by beta and return. */ \
if ( k < 1 || PASTEMAC(ch,eq0)( *(( ctype* )alpha) ) ) \
{ \
PASTEMAC(ch,scalm) \
( \
BLIS_NO_CONJUGATE, \
0, \
BLIS_NONUNIT_DIAG, \
BLIS_DENSE, \
m, n, \
beta, \
c, rs_c, cs_c \
); \
return; \
} \
\
const num_t dt = PASTEMAC(ch,type); \
\
/* This transposition of the stor3_t id value is inherent to variant 1.
The reason: we assume that variant 2 is the "main" variant. The
consequence of this is that we assume that the millikernels that
iterate over m are registered to the kernel group associated with
the kernel preference. So, regardless of whether the mkernels are
row- or column-preferential, millikernels that iterate over n are
always placed in the slots for the opposite kernel group. */ \
stor_id = bli_stor3_trans( stor_id ); \
\
/* Query the context for various blocksizes. */ \
const dim_t NR = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_NR, cntx ); \
const dim_t MR = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_MR, cntx ); \
const dim_t NC0 = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_NC, cntx ); \
const dim_t MC0 = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_MC, cntx ); \
const dim_t KC0 = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_KC, cntx ); \
\
dim_t KC; \
if ( FALSE ) KC = KC0; \
else if ( stor_id == BLIS_RRC || \
stor_id == BLIS_CRC ) KC = KC0; \
else if ( m <= MR && n <= NR ) KC = KC0; \
else if ( m <= 2*MR && n <= 2*NR ) KC = KC0 / 2; \
else if ( m <= 3*MR && n <= 3*NR ) KC = (( KC0 / 3 ) / 4 ) * 4; \
else if ( m <= 4*MR && n <= 4*NR ) KC = KC0 / 4; \
else KC = (( KC0 / 5 ) / 4 ) * 4; \
\
/* Nudge NC up to a multiple of MR and MC up to a multiple of NR. */ \
const dim_t NC = bli_align_dim_to_mult( NC0, MR ); \
const dim_t MC = bli_align_dim_to_mult( MC0, NR ); \
\
/* Query the maximum blocksize for MR, which implies a maximum blocksize
extension for the final iteration. */ \
const dim_t MRM = bli_cntx_get_l3_sup_blksz_max_dt( dt, BLIS_MR, cntx ); \
const dim_t MRE = MRM - MR; \
\
/* Compute partitioning step values for each matrix of each loop. */ \
const inc_t jcstep_c = rs_c * NC; \
const inc_t jcstep_a = rs_a * NC; \
\
const inc_t pcstep_a = cs_a * KC; \
const inc_t pcstep_b = rs_b * KC; \
\
const inc_t icstep_c = cs_c * MC; \
const inc_t icstep_b = cs_b * MC; \
\
const inc_t jrstep_c = rs_c * MR; \
const inc_t jrstep_a = rs_a * MR; \
\
/*
const inc_t irstep_c = cs_c * NR; \
const inc_t irstep_b = cs_b * NR; \
*/ \
\
/* Query the context for the sup microkernel address and cast it to its
function pointer type. */ \
PASTECH(ch,gemmsup_ker_ft) \
gemmsup_ker = bli_cntx_get_l3_sup_ker_dt( dt, stor_id, cntx ); \
\
ctype* restrict a_00 = a; \
ctype* restrict b_00 = b; \
ctype* restrict c_00 = c; \
ctype* restrict alpha_cast = alpha; \
ctype* restrict beta_cast = beta; \
\
ctype* restrict one = PASTEMAC(ch,1); \
\
auxinfo_t aux; \
\
/* Compute number of primary and leftover components of the outer
dimensions.
NOTE: Functionally speaking, we compute jc_iter as:
jc_iter = m / NC; if ( jc_left ) ++jc_iter;
However, this is implemented as:
jc_iter = ( m + NC - 1 ) / NC;
This avoids a branch at the cost of two additional integer instructions.
The pc_iter, mc_iter, nr_iter, and mr_iter variables are computed in
similar manner. */ \
const dim_t jc_iter = ( m + NC - 1 ) / NC; \
const dim_t jc_left = m % NC; \
\
const dim_t pc_iter = ( k + KC - 1 ) / KC; \
const dim_t pc_left = k % KC; \
\
const dim_t ic_iter = ( n + MC - 1 ) / MC; \
const dim_t ic_left = n % MC; \
\
const dim_t jc_inc = 1; \
const dim_t pc_inc = 1; \
const dim_t ic_inc = 1; \
const dim_t jr_inc = 1; \
/*
const dim_t ir_inc = 1; \
*/ \
\
/* Loop over the m dimension (NC rows/columns at a time). */ \
for ( dim_t jj = 0; jj < jc_iter; jj += jc_inc ) \
{ \
const dim_t nc_cur = ( bli_is_not_edge_f( jj, jc_iter, jc_left ) ? NC : jc_left ); \
\
ctype* restrict a_jc = a_00 + jj * jcstep_a; \
ctype* restrict c_jc = c_00 + jj * jcstep_c; \
\
dim_t jr_iter = ( nc_cur + MR - 1 ) / MR; \
dim_t jr_left = nc_cur % MR; \
\
/* An optimization: allow the last jr iteration to contain up to MRE
rows of C and A. (If MRE > MR, the mkernel has agreed to handle
these cases.) Note that this prevents us from declaring jr_iter and
jr_left as const. */ \
if ( 1 ) \
if ( MRE != 0 && 1 < jr_iter && jr_left != 0 && jr_left <= MRE ) \
{ \
jr_iter--; jr_left += MR; \
} \
\
/* Loop over the k dimension (KC rows/columns at a time). */ \
for ( dim_t pp = 0; pp < pc_iter; pp += pc_inc ) \
{ \
const dim_t kc_cur = ( bli_is_not_edge_f( pp, pc_iter, pc_left ) ? KC : pc_left ); \
\
ctype* restrict a_pc = a_jc + pp * pcstep_a; \
ctype* restrict b_pc = b_00 + pp * pcstep_b; \
\
/* Only apply beta to the first iteration of the pc loop. */ \
ctype* restrict beta_use = ( pp == 0 ? beta_cast : one ); \
\
/* Loop over the n dimension (MC rows at a time). */ \
for ( dim_t ii = 0; ii < ic_iter; ii += ic_inc ) \
{ \
const dim_t mc_cur = ( bli_is_not_edge_f( ii, ic_iter, ic_left ) ? MC : ic_left ); \
\
ctype* restrict b_ic = b_pc + ii * icstep_b; \
ctype* restrict c_ic = c_jc + ii * icstep_c; \
\
/*
const dim_t ir_iter = ( mc_cur + NR - 1 ) / NR; \
const dim_t ir_left = mc_cur % NR; \
*/ \
\
/* Loop over the m dimension (NR columns at a time). */ \
for ( dim_t j = 0; j < jr_iter; j += jr_inc ) \
{ \
const dim_t nr_cur = ( bli_is_not_edge_f( j, jr_iter, jr_left ) ? MR : jr_left ); \
\
ctype* restrict a_jr = a_pc + j * jrstep_a; \
ctype* restrict c_jr = c_ic + j * jrstep_c; \
\
/* Loop over the n dimension (MR rows at a time). */ \
{ \
/* Invoke the gemmsup millikernel. */ \
gemmsup_ker \
( \
conja, \
conjb, \
nr_cur, /* Notice: nr_cur <= MR. */ \
mc_cur, /* Recall: mc_cur partitions the n dimension! */ \
kc_cur, \
alpha_cast, \
a_jr, rs_a, cs_a, \
b_ic, rs_b, cs_b, \
beta_use, \
c_jr, rs_c, cs_c, \
&aux, \
cntx \
); \
} \
} \
} \
} \
} \
\
/*
PASTEMAC(ch,fprintm)( stdout, "gemmsup_ref_var2: b1", kc_cur, nr_cur, b_jr, rs_b, cs_b, "%4.1f", "" ); \
PASTEMAC(ch,fprintm)( stdout, "gemmsup_ref_var2: a1", mr_cur, kc_cur, a_ir, rs_a, cs_a, "%4.1f", "" ); \
PASTEMAC(ch,fprintm)( stdout, "gemmsup_ref_var2: c ", mr_cur, nr_cur, c_ir, rs_c, cs_c, "%4.1f", "" ); \
*/ \
}
INSERT_GENTFUNC_BASIC0( gemmsup_ref_var1n )
//
// -- var2m --------------------------------------------------------------------
//
static FUNCPTR_T GENARRAY(ftypes_var2m,gemmsup_ref_var2m);
void bli_gemmsup_ref_var2m
(
trans_t trans,
obj_t* alpha,
obj_t* a,
obj_t* b,
obj_t* beta,
obj_t* c,
stor3_t eff_id,
cntx_t* cntx,
rntm_t* rntm,
cntl_t* cntl,
thrinfo_t* thread
)
{
#if 0
obj_t at, bt;
bli_obj_alias_to( a, &at );
bli_obj_alias_to( b, &bt );
// Induce transpositions on A and/or B if either object is marked for
// transposition. We can induce "fast" transpositions since they objects
// are guaranteed to not have structure or be packed.
if ( bli_obj_has_trans( &at ) ) { bli_obj_induce_fast_trans( &at ); }
if ( bli_obj_has_trans( &bt ) ) { bli_obj_induce_fast_trans( &bt ); }
const num_t dt_exec = bli_obj_dt( c );
const conj_t conja = bli_obj_conj_status( a );
const conj_t conjb = bli_obj_conj_status( b );
const dim_t m = bli_obj_length( c );
const dim_t n = bli_obj_width( c );
const dim_t k = bli_obj_width( &at );
void* restrict buf_a = bli_obj_buffer_at_off( &at );
const inc_t rs_a = bli_obj_row_stride( &at );
const inc_t cs_a = bli_obj_col_stride( &at );
void* restrict buf_b = bli_obj_buffer_at_off( &bt );
const inc_t rs_b = bli_obj_row_stride( &bt );
const inc_t cs_b = bli_obj_col_stride( &bt );
void* restrict buf_c = bli_obj_buffer_at_off( c );
const inc_t rs_c = bli_obj_row_stride( c );
const inc_t cs_c = bli_obj_col_stride( c );
void* restrict buf_alpha = bli_obj_buffer_for_1x1( dt_exec, alpha );
void* restrict buf_beta = bli_obj_buffer_for_1x1( dt_exec, beta );
#else
const num_t dt_exec = bli_obj_dt( c );
const conj_t conja = bli_obj_conj_status( a );
const conj_t conjb = bli_obj_conj_status( b );
const dim_t m = bli_obj_length( c );
const dim_t n = bli_obj_width( c );
dim_t k;
void* restrict buf_a = bli_obj_buffer_at_off( a );
inc_t rs_a;
inc_t cs_a;
void* restrict buf_b = bli_obj_buffer_at_off( b );
inc_t rs_b;
inc_t cs_b;
if ( bli_obj_has_notrans( a ) )
{
k = bli_obj_width( a );
rs_a = bli_obj_row_stride( a );
cs_a = bli_obj_col_stride( a );
}
else // if ( bli_obj_has_trans( a ) )
{
// Assign the variables with an implicit transposition.
k = bli_obj_length( a );
rs_a = bli_obj_col_stride( a );
cs_a = bli_obj_row_stride( a );
}
if ( bli_obj_has_notrans( b ) )
{
rs_b = bli_obj_row_stride( b );
cs_b = bli_obj_col_stride( b );
}
else // if ( bli_obj_has_trans( b ) )
{
// Assign the variables with an implicit transposition.
rs_b = bli_obj_col_stride( b );
cs_b = bli_obj_row_stride( b );
}
void* restrict buf_c = bli_obj_buffer_at_off( c );
const inc_t rs_c = bli_obj_row_stride( c );
const inc_t cs_c = bli_obj_col_stride( c );
void* restrict buf_alpha = bli_obj_buffer_for_1x1( dt_exec, alpha );
void* restrict buf_beta = bli_obj_buffer_for_1x1( dt_exec, beta );
#endif
// Index into the type combination array to extract the correct
// function pointer.
FUNCPTR_T f = ftypes_var2m[dt_exec];
if ( bli_is_notrans( trans ) )
{
// Invoke the function.
f
(
conja,
conjb,
m,
n,
k,
buf_alpha,
buf_a, rs_a, cs_a,
buf_b, rs_b, cs_b,
buf_beta,
buf_c, rs_c, cs_c,
eff_id,
cntx,
rntm,
cntl,
thread
);
}
else
{
// Invoke the function (transposing the operation).
f
(
conjb, // swap the conj values.
conja,
n, // swap the m and n dimensions.
m,
k,
buf_alpha,
buf_b, cs_b, rs_b, // swap the positions of A and B.
buf_a, cs_a, rs_a, // swap the strides of A and B.
buf_beta,
buf_c, cs_c, rs_c, // swap the strides of C.
bli_stor3_trans( eff_id ), // transpose the stor3_t id.
cntx,
rntm,
cntl,
thread
);
}
}
#undef GENTFUNC
#define GENTFUNC( ctype, ch, varname ) \
\
void PASTEMAC(ch,varname) \
( \
conj_t conja, \
conj_t conjb, \
dim_t m, \
dim_t n, \
dim_t k, \
void* restrict alpha, \
void* restrict a, inc_t rs_a, inc_t cs_a, \
void* restrict b, inc_t rs_b, inc_t cs_b, \
void* restrict beta, \
void* restrict c, inc_t rs_c, inc_t cs_c, \
stor3_t stor_id, \
cntx_t* restrict cntx, \
rntm_t* restrict rntm, \
cntl_t* restrict cntl, \
thrinfo_t* restrict thread \
) \
{ \
/* If m or n is zero, return immediately. */ \
if ( bli_zero_dim2( m, n ) ) return; \
\
/* If k < 1 or alpha is zero, scale by beta and return. */ \
if ( k < 1 || PASTEMAC(ch,eq0)( *(( ctype* )alpha) ) ) \
{ \
PASTEMAC(ch,scalm) \
( \
BLIS_NO_CONJUGATE, \
0, \
BLIS_NONUNIT_DIAG, \
BLIS_DENSE, \
m, n, \
beta, \
c, rs_c, cs_c \
); \
return; \
} \
\
const num_t dt = PASTEMAC(ch,type); \
\
/* Query the context for various blocksizes. */ \
const dim_t NR = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_NR, cntx ); \
const dim_t MR = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_MR, cntx ); \
const dim_t NC = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_NC, cntx ); \
const dim_t MC = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_MC, cntx ); \
const dim_t KC0 = bli_cntx_get_l3_sup_blksz_def_dt( dt, BLIS_KC, cntx ); \
\
dim_t KC; \
if ( stor_id == BLIS_RRR || \
stor_id == BLIS_CCC ) KC = KC0; \
else if ( stor_id == BLIS_RRC || \
stor_id == BLIS_CRC ) KC = KC0; \
else if ( m <= MR && n <= NR ) KC = KC0; \
else if ( m <= 2*MR && n <= 2*NR ) KC = KC0 / 2; \
else if ( m <= 3*MR && n <= 3*NR ) KC = (( KC0 / 3 ) / 4 ) * 4; \
else if ( m <= 4*MR && n <= 4*NR ) KC = KC0 / 4; \
else KC = (( KC0 / 5 ) / 4 ) * 4; \
\
/* Query the maximum blocksize for NR, which implies a maximum blocksize
extension for the final iteration. */ \
const dim_t NRM = bli_cntx_get_l3_sup_blksz_max_dt( dt, BLIS_NR, cntx ); \
const dim_t NRE = NRM - NR; \
\
/* Compute partitioning step values for each matrix of each loop. */ \
const inc_t jcstep_c = cs_c * NC; \
const inc_t jcstep_b = cs_b * NC; \
\
const inc_t pcstep_a = cs_a * KC; \
const inc_t pcstep_b = rs_b * KC; \
\
const inc_t icstep_c = rs_c * MC; \
const inc_t icstep_a = rs_a * MC; \
\
const inc_t jrstep_c = cs_c * NR; \
const inc_t jrstep_b = cs_b * NR; \
\
/*
const inc_t irstep_c = rs_c * MR; \
const inc_t irstep_a = rs_a * MR; \
*/ \
\
/* Query the context for the sup microkernel address and cast it to its
function pointer type. */ \
PASTECH(ch,gemmsup_ker_ft) \
gemmsup_ker = bli_cntx_get_l3_sup_ker_dt( dt, stor_id, cntx ); \
\
ctype* restrict a_00 = a; \
ctype* restrict b_00 = b; \
ctype* restrict c_00 = c; \
ctype* restrict alpha_cast = alpha; \
ctype* restrict beta_cast = beta; \
\
ctype* restrict one = PASTEMAC(ch,1); \
\
auxinfo_t aux; \
\
/* Compute number of primary and leftover components of the outer
dimensions.
NOTE: Functionally speaking, we compute jc_iter as:
jc_iter = n / NC; if ( jc_left ) ++jc_iter;
However, this is implemented as:
jc_iter = ( n + NC - 1 ) / NC;
This avoids a branch at the cost of two additional integer instructions.
The pc_iter, mc_iter, nr_iter, and mr_iter variables are computed in
similar manner. */ \
const dim_t jc_iter = ( n + NC - 1 ) / NC; \
const dim_t jc_left = n % NC; \
\
const dim_t pc_iter = ( k + KC - 1 ) / KC; \
const dim_t pc_left = k % KC; \
\
const dim_t ic_iter = ( m + MC - 1 ) / MC; \
const dim_t ic_left = m % MC; \
\
const dim_t jc_inc = 1; \
const dim_t pc_inc = 1; \
const dim_t ic_inc = 1; \
const dim_t jr_inc = 1; \
/*
const dim_t ir_inc = 1; \
*/ \
\
/* Loop over the n dimension (NC rows/columns at a time). */ \
for ( dim_t jj = 0; jj < jc_iter; jj += jc_inc ) \
{ \
const dim_t nc_cur = ( bli_is_not_edge_f( jj, jc_iter, jc_left ) ? NC : jc_left ); \
\
ctype* restrict b_jc = b_00 + jj * jcstep_b; \
ctype* restrict c_jc = c_00 + jj * jcstep_c; \
\
dim_t jr_iter = ( nc_cur + NR - 1 ) / NR; \
dim_t jr_left = nc_cur % NR; \
\
/* An optimization: allow the last jr iteration to contain up to NRE
columns of C and B. (If NRE > NR, the mkernel has agreed to handle
these cases.) Note that this prevents us from declaring jr_iter and
jr_left as const. */ \
if ( 1 ) \
if ( NRE != 0 && 1 < jr_iter && jr_left != 0 && jr_left <= NRE ) \
{ \
jr_iter--; jr_left += NR; \
} \
\
/* Loop over the k dimension (KC rows/columns at a time). */ \
for ( dim_t pp = 0; pp < pc_iter; pp += pc_inc ) \
{ \
const dim_t kc_cur = ( bli_is_not_edge_f( pp, pc_iter, pc_left ) ? KC : pc_left ); \
\
ctype* restrict a_pc = a_00 + pp * pcstep_a; \
ctype* restrict b_pc = b_jc + pp * pcstep_b; \
\
/* Only apply beta to the first iteration of the pc loop. */ \
ctype* restrict beta_use = ( pp == 0 ? beta_cast : one ); \
\
/* Loop over the m dimension (MC rows at a time). */ \
for ( dim_t ii = 0; ii < ic_iter; ii += ic_inc ) \
{ \
const dim_t mc_cur = ( bli_is_not_edge_f( ii, ic_iter, ic_left ) ? MC : ic_left ); \
\
ctype* restrict a_ic = a_pc + ii * icstep_a; \
ctype* restrict c_ic = c_jc + ii * icstep_c; \
\
/*
const dim_t ir_iter = ( mc_cur + MR - 1 ) / MR; \
const dim_t ir_left = mc_cur % MR; \
*/ \
\
/* Loop over the n dimension (NR columns at a time). */ \
for ( dim_t j = 0; j < jr_iter; j += jr_inc ) \
{ \
const dim_t nr_cur = ( bli_is_not_edge_f( j, jr_iter, jr_left ) ? NR : jr_left ); \
\
ctype* restrict b_jr = b_pc + j * jrstep_b; \
ctype* restrict c_jr = c_ic + j * jrstep_c; \
\
/* Loop over the m dimension (MR rows at a time). */ \
{ \
/* Invoke the gemmsup millikernel. */ \
gemmsup_ker \
( \
conja, \
conjb, \
mc_cur, \
nr_cur, \
kc_cur, \
alpha_cast, \
a_ic, rs_a, cs_a, \
b_jr, rs_b, cs_b, \
beta_use, \
c_jr, rs_c, cs_c, \
&aux, \
cntx \
); \
} \
} \
} \
} \
} \
\
/*
PASTEMAC(ch,fprintm)( stdout, "gemmsup_ref_var2: b1", kc_cur, nr_cur, b_jr, rs_b, cs_b, "%4.1f", "" ); \
PASTEMAC(ch,fprintm)( stdout, "gemmsup_ref_var2: a1", mr_cur, kc_cur, a_ir, rs_a, cs_a, "%4.1f", "" ); \
PASTEMAC(ch,fprintm)( stdout, "gemmsup_ref_var2: c ", mr_cur, nr_cur, c_ir, rs_c, cs_c, "%4.1f", "" ); \
*/ \
}
INSERT_GENTFUNC_BASIC0( gemmsup_ref_var2m )
|