File: bli_apool.c

package info (click to toggle)
python-cython-blis 1.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 43,676 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 821; cpp: 585; makefile: 14
file content (567 lines) | stat: -rw-r--r-- 18,338 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*

   BLIS
   An object-based framework for developing high-performance BLAS-like
   libraries.

   Copyright (C) 2018 - 2019, Advanced Micro Devices, Inc.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "blis.h"

void bli_apool_init
     (
       apool_t* restrict apool
     )
{
	err_t r_val;

	// NOTE: The apool_t is only used in one place; it is the type used to
	// define the sba. We've switched to static initialization of the mutex
	// field to remove one more thing that could possibly go wrong during
	// library initialization.

	// Query the mutex from the apool_t.
	//bli_pthread_mutex_t* restrict mutex = bli_apool_mutex( apool );

	// Initialize the mutex.
	//*mutex = BLIS_PTHREAD_MUTEX_INITIALIZER;
	//bli_pthread_mutex_init( mutex, NULL );

	// We choose to start with:
	// - an empty pool
	// - an initial block_ptrs_len of 8
	// - a single element in each initial array_t (though this is moot with
	//   num_blocks = 0).
	const siz_t num_blocks     = 0;
	      siz_t block_ptrs_len = 8;
	const siz_t num_elem       = 1;

	// NOTE: Unlike in the bli_pool API, apool_t allocates block_ptrs as an
	// array of array_t* instead of an array of pblk_t. Why? We don't need to
	// track the size of each block, thus we don't need the block_size field
	// of pblk_t. That leaves only the void* field, and since we know apool_t
	// will always contain "blocks" that are really array_t structs, we can
	// make block_ptrs an array of array_t*.

	// We formally set the block_size and align_size fields of the underlying
	// pool, even though they won't be queried. (They are used from hard-coded
	// values in bli_apool_alloc_block().)
	const siz_t block_size = sizeof( array_t );
	const siz_t align_size = 64;

	// Query the underlying pool_t from the apool_t.
	pool_t* restrict pool = bli_apool_pool( apool );

	// Set the default array_t length of the apool_t.
	bli_apool_set_def_array_len( num_elem, apool );

	// -------------------------------------------------------------------------

	// Make sure that block_ptrs_len is at least num_blocks.
	block_ptrs_len = bli_max( block_ptrs_len, num_blocks );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_init(): allocating block_ptrs (length %d): ",
	        ( int )block_ptrs_len );
	#endif

	// Allocate the block_ptrs array.
	array_t** restrict block_ptrs
	=
	bli_malloc_intl( block_ptrs_len * sizeof( array_t* ), &r_val );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_init(): allocating %d array_t.\n", ( int )num_blocks );
	fflush( stdout );
	#endif

	// Allocate and initialize each entry in the block_ptrs array.
	for ( dim_t i = 0; i < num_blocks; ++i )
	{
		// Pass in num_elem so the function knows how many elements to
		// initially have in each array_t.
		bli_apool_alloc_block
		(
		  num_elem,
		  &(block_ptrs[i])
		);
	}

	// NOTE: The semantics of top_index approximate a stack, where a "full"
	// stack (no blocks checked out) is one where top_index == 0 and an empty
	// stack (all blocks checked out) one where top_index == num_blocks.
	// (Here, num_blocks tracks the number of blocks currently allocated as
	// part of the pool.) This "orientation" of the stack was chosen
	// intentionally, in contrast to one where top_index == -1 means the
	// stack is empty and top_index = num_blocks - 1 means the stack is
	// full. The chosen scheme allows one to conceptualize the stack as a
	// number line in which blocks are checked out from lowest to highest,
	// and additional blocks are added at the higher end.

	// Initialize the pool_t structure.
	// NOTE: We don't use the malloc_fp and free_fp fields at the apool_t
	// level. Nevertheless, we set them to NULL.
	bli_pool_set_block_ptrs( block_ptrs, pool );
	bli_pool_set_block_ptrs_len( block_ptrs_len, pool );
	bli_pool_set_top_index( 0, pool );
	bli_pool_set_num_blocks( num_blocks, pool );
	bli_pool_set_block_size( block_size, pool );
	bli_pool_set_align_size( align_size, pool );
	bli_pool_set_malloc_fp( NULL, pool );
	bli_pool_set_free_fp( NULL, pool );
}

void bli_apool_alloc_block
     (
       siz_t              num_elem,
       array_t** restrict array_p
     )
{
	err_t r_val;

	// Since the apool_t is defined as a pool of array_t, we can hard-code
	// the block_size parameter.
	const siz_t block_size = sizeof( array_t );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_alloc_block(): allocating array_t: " );
	#endif

	// Allocate the array_t via the bli_fmalloc_align() wrapper, which performs
	// alignment logic and opaquely saves the original pointer so that it can
	// be recovered when it's time to free the block.
	array_t* restrict array
	=
	bli_malloc_intl( block_size, &r_val );

	// Initialize an array_t struct within the newly allocated memory region.
	bli_array_init( num_elem, sizeof( pool_t* ), array );

	// Save the pointer in the caller's array_t*.
	*array_p = array;
}

void bli_apool_free_block
     (
       array_t* restrict array
     )
{
	const siz_t       num_elem = bli_array_num_elem( array );
	pool_t** restrict buf      = bli_array_buf( array );

	// Step through the array and finalize each pool_t.
	for ( dim_t i = 0; i < num_elem; ++i )
	{
		pool_t* restrict pool = buf[ i ];

		#ifdef BLIS_ENABLE_MEM_TRACING
		printf( "bli_apool_free_block(): freeing pool_t %d within array_t.\n",
		        ( int )i );
		fflush( stdout );
		#endif

		// Finalize and free the current pool_t, if it was created/allocated.
		if ( pool != NULL )
		{
			// Finalize the pool.
			bli_pool_finalize( pool );

			#ifdef BLIS_ENABLE_MEM_TRACING
			printf( "bli_apool_free_block(): pool_t %d: ", ( int )i );
			#endif

			// Free the pool_t struct.
			bli_free_intl( pool );
		}
	}

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_free_block(): " );
	#endif

	// Free the array buffer.
	bli_array_finalize( array );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_free_block(): freeing array_t: " );
	#endif

	// Free the array.
	bli_free_intl( array );
}

void bli_apool_finalize
     (
       apool_t* restrict apool
     )
{
	// NOTE: Since the apool_t's mutex is now initialized statically, we no
	// longer need to explicitly destroy it.

	// Query the mutex from the apool_t.
	//bli_pthread_mutex_t* restrict mutex = bli_apool_mutex( apool );

	// Destroy the mutex.
	//bli_pthread_mutex_destroy( mutex );

	// Query the underlying pool_t and mutex from the apool_t.
	pool_t* restrict pool = bli_apool_pool( apool );

	// ----------------------------------------------------------------

	// Query the block_ptrs array.
	array_t** restrict block_ptrs = bli_pool_block_ptrs( pool );

	// Query the total number of blocks currently allocated.
	siz_t num_blocks = bli_pool_num_blocks( pool );

	// Query the top_index of the pool.
	siz_t top_index = bli_pool_top_index( pool );

	// Sanity check: The top_index should be zero.
	if ( top_index != 0 ) bli_abort();

	// Free the individual blocks (each an array_t) currently in the pool.
	for ( dim_t i = 0; i < num_blocks; ++i )
	{
		#ifdef BLIS_ENABLE_MEM_TRACING
		printf( "bli_apool_finalize(): freeing array_t %d within apool_t.\n",
		        ( int )i );
		fflush( stdout );
		#endif

		bli_apool_free_block( block_ptrs[i] );
	}

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_finalize(): freeing block_ptrs (length %d): ",
	        ( int )( bli_pool_block_ptrs_len( pool ) ) );
	#endif

	// Free the block_ptrs array.
	bli_free_intl( block_ptrs );
}

array_t* bli_apool_checkout_array
     (
       siz_t             n_threads,
       apool_t* restrict apool
     )
{
	// Acquire the apool_t's mutex.
	bli_apool_lock( apool );

	// ----------------------------------------------------------------------------

	// NOTE: Unlike with the bli_pool API, we do not need to handle potential
	// reinitialization since the apool_t's block_size (corresponding to the
	// size of an array_t struct) will never grow.

	// If the apool_t is exhausted, add a block (e.g. an array_t).
	if ( bli_apool_is_exhausted( apool ) )
	{
		#ifdef BLIS_ENABLE_MEM_TRACING
		printf( "bli_apool_checkout_block(): apool_t is exhausted; "
		        "growing by 1 array_t.\n" );
		fflush( stdout );
		#endif

		bli_apool_grow( 1, apool );
	}

	// At this point, at least one array_t is guaranteed to be available.

	// Query the underlying pool_t from the apool_t.
	pool_t* restrict pool = bli_apool_pool( apool );

	// Query the block_ptrs array.
	array_t** restrict block_ptrs = bli_pool_block_ptrs( pool );

	// Query the top_index of the pool.
	const siz_t top_index = bli_pool_top_index( pool );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_checkout_array(): checking out array_t %d.\n",
	        ( int )top_index );
	fflush( stdout );
	#endif

	// Select the array_t* at top_index to return to the caller.
	array_t* restrict array = block_ptrs[ top_index ];

	// Increment the pool's top_index.
	bli_pool_set_top_index( top_index + 1, pool );

	// ----------------------------------------------------------------------------

	// Release the apool_t's mutex.
	bli_apool_unlock( apool );

	// Resize the array_t according to the number of threads specified by the
	// caller. (We need one element in the array_t per thread.)
	bli_array_resize( n_threads, array );

	// Return the selected array_t*.
	return array;
}

void bli_apool_checkin_array
     (
       array_t* restrict array,
       apool_t* restrict apool
     )
{
	// Acquire the apool_t's mutex.
	bli_apool_lock( apool );

	// Query the underlying pool_t from the apool_t.
	pool_t* restrict pool = bli_apool_pool( apool );

	// ----------------------------------------------------------------------------

	// NOTE: Unlike with the bli_pool API, we do not need to handle potential
	// freeing of the blocks upon checkin due to the block_size having since
	// changed due to reinitialization since the apool's block_size will never
	// change.

	// Query the block_ptrs array.
	array_t** restrict block_ptrs = bli_pool_block_ptrs( pool );

	// Query the top_index of the pool.
	const siz_t top_index = bli_pool_top_index( pool );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_checkin_block(): checking in array_t %d.\n",
	        ( int )top_index - 1 );
	fflush( stdout );
	#endif

	// Copy the caller's array_t address to the element at top_index - 1.
	block_ptrs[ top_index - 1 ] = array;

	// Decrement the pool's top_index.
	bli_pool_set_top_index( top_index - 1, pool );

	// ----------------------------------------------------------------------------

	// Release the apool_t's mutex.
	bli_apool_unlock( apool );
}

pool_t* bli_apool_array_elem
     (
       siz_t             index,
       array_t* restrict array
     )
{
	err_t r_val;

	// Query the array element corresponding to index.
	// NOTE: If we knew that the array_t contained elements of size
	// sizeof( void* ) or sizeof( whatever ), we could return the *value*
	// stored in the array. But since array_t is general-purpose, it can't
	// return the element itself. So instead, bli_array_elem() returns the
	// address of the element in the array. Since the elements that apool_t
	// stores in the array_t are pool_t*, that means that the function is
	// actually returning the address of a pool_t*, or pool_t**, hence the
	// dereferencing below.
	pool_t** restrict pool_p = bli_array_elem( index, array );
	pool_t*           pool   = *pool_p;

	// If the element is NULL, then it means a pool_t has not yet been created
	// and allocated for the given index (thread id).
	if ( pool == NULL )
	{
		// Settle on the parameters to use when initializing the pool_t for
		// the current index within the array_t.
		const siz_t num_blocks     = 1;
		const siz_t block_ptrs_len = 25;
		const siz_t align_size     = 16;
		const siz_t offset_size    = 0;
		malloc_ft   malloc_fp      = BLIS_MALLOC_POOL;
		free_ft     free_fp        = BLIS_FREE_POOL;

		// Each small block pool should contain blocks large enough to
		// accommodate any of the data structures for which they will be
		// used.
		const siz_t n_sizes        = 4;
		siz_t       sizes[4]       = { sizeof( cntl_t ),
		                               sizeof( packm_params_t ),
		                               sizeof( thrcomm_t ),
		                               sizeof( thrinfo_t ) };
		siz_t       block_size     = 0;

		// Find the largest of the sizes above and use that as the block_size
		// for the pool.
		for ( dim_t i = 0; i < n_sizes; ++i )
		{
			if ( block_size < sizes[i] ) block_size = sizes[i];
		}

		#ifdef BLIS_ENABLE_MEM_TRACING
		printf( "bli_apool_array_elem(): pool_t for tid %d is NULL; allocating pool_t.\n",
		        ( int )index );
		printf( "bli_apool_array_elem(): allocating pool_t: " );
		#endif

		// Allocate the pool_t.
		pool = bli_malloc_intl( sizeof( pool_t ), &r_val );

		// Initialize the pool_t.
		bli_pool_init
		(
		  num_blocks,
		  block_ptrs_len,
		  block_size,
		  align_size,
		  offset_size,
		  malloc_fp,
		  free_fp,
		  pool
		);

		// Update the array element with the address to the new pool_t.
		// NOTE: We pass in the address of the pool_t* since the bli_array
		// API is generalized for arbitrarily-sized elements, and therefore
		// it must always take the address of the data, rather than the
		// value (which it can only do if the elem size were fixed).
		bli_array_set_elem( &pool, index, array );
	}

	// The array element is now guaranteed to refer to an allocated and
	// initialized pool_t.

	// Return the array element.
	return pool;
}

void bli_apool_grow
     (
       siz_t             num_blocks_add,
       apool_t* restrict apool
     )
{
	err_t r_val;

	// If the requested increase is zero, return early.
	if ( num_blocks_add == 0 ) return;

	// Query the underlying pool_t from the apool_t.
	pool_t* restrict pool = bli_apool_pool( apool );

	// Query the default initial array length from the apool_t.
	const siz_t num_elem = bli_apool_def_array_len( apool );

	// ----------------------------------------------------------------------------

	// Query the allocated length of the block_ptrs array and also the
	// total number of blocks currently allocated.
	const siz_t block_ptrs_len_cur = bli_pool_block_ptrs_len( pool );
	const siz_t num_blocks_cur     = bli_pool_num_blocks( pool );

	// Compute the total number of allocated blocks that will exist
	// after we grow the pool.
	const siz_t num_blocks_new = num_blocks_cur + num_blocks_add;

	// If adding num_blocks_add new blocks will exceed the current capacity
	// of the block_ptrs array, we need to first put in place a new (larger)
	// array.
	if ( block_ptrs_len_cur < num_blocks_new )
	{
		// To prevent this from happening often, we double the current
		// length of the block_ptrs array.
		const siz_t block_ptrs_len_new = 2 * block_ptrs_len_cur;

		// Query the current block_ptrs array.
		array_t** restrict block_ptrs_cur = bli_pool_block_ptrs( pool );

		#ifdef BLIS_ENABLE_MEM_TRACING
		printf( "bli_apool_grow(): growing block_ptrs_len (%d -> %d): ",
		        ( int )block_ptrs_len_cur, ( int )block_ptrs_len_new );
		#endif

		// Allocate a new block_ptrs array.
		array_t** restrict block_ptrs_new
		=
		bli_malloc_intl( block_ptrs_len_new * sizeof( array_t* ), &r_val );

		// Query the top_index of the pool.
		const siz_t top_index = bli_pool_top_index( pool );

		// Copy the contents of the old block_ptrs array to the new/resized
		// array. Notice that we can begin with top_index since all entries
		// from 0 to top_index-1 have been (and are currently) checked out
		// to threads.
		for ( dim_t i = top_index; i < num_blocks_cur; ++i )
		{
			block_ptrs_new[i] = block_ptrs_cur[i];
		}

		#ifdef BLIS_ENABLE_MEM_TRACING
		printf( "bli_apool_grow(): freeing prev block_ptrs: " );
		#endif

		// Free the old block_ptrs array.
		bli_free_intl( block_ptrs_cur );

		// Update the pool_t struct with the new block_ptrs array and
		// record its allocated length.
		bli_pool_set_block_ptrs( block_ptrs_new, pool );
		bli_pool_set_block_ptrs_len( block_ptrs_len_new, pool );
	}

	// At this point, we are guaranteed to have enough unused elements
	// in the block_ptrs array to accommodate an additional num_blocks_add
	// blocks.

	// Query the current block_ptrs array (which was maybe just resized).
	array_t** restrict block_ptrs = bli_pool_block_ptrs( pool );

	#ifdef BLIS_ENABLE_MEM_TRACING
	printf( "bli_apool_grow(): growing apool_t (%d -> %d).\n",
	        ( int )num_blocks_cur, ( int )num_blocks_new );
	fflush( stdout );
	#endif

	// Allocate the requested additional blocks in the resized array.
	for ( dim_t i = num_blocks_cur; i < num_blocks_new; ++i )
	{
		bli_apool_alloc_block
		(
		  num_elem,
		  &(block_ptrs[i])
		);
	}

	// Update the pool_t struct with the new number of allocated blocks.
	// Notice that top_index remains unchanged, as do the block_size and
	// align_size fields.
	bli_pool_set_num_blocks( num_blocks_new, pool );
}