1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef BLIS_RANDNP2S_H
#define BLIS_RANDNP2S_H
// randnp2s
#define bli_srandnp2s( a ) \
{ \
bli_drandnp2s( a ); \
}
#if 0
#define bli_drandnp2s_prev( a ) \
{ \
const double m_max = 3.0; \
const double m_max2 = m_max + 2.0; \
double t; \
double r_val; \
\
/* Compute a narrow-range power of two.
For the purposes of commentary, we'll assume that m_max = 4. This
represents the largest power of two we will use to generate the
random numbers. */ \
\
/* Generate a random real number t on the interval: [0.0, 6.0]. */ \
t = ( ( double ) rand() / ( double ) RAND_MAX ) * m_max2; \
\
/* Modify t to guarantee that is never equal to the upper bound of
the interval (in this case, 6.0). */ \
if ( t == m_max2 ) t = t - 1.0; \
\
/* Transform the interval into the set of integers, {0,1,2,3,4,5}. */ \
t = floor( t ); \
\
/* Map values of t == 0 to a final value of 0. */ \
if ( t == 0.0 ) r_val = 0.0; \
else \
{ \
/* This case handles values of t = {1,2,3,4,5}. */ \
\
double s_exp, s_val; \
\
/* Compute two random numbers to determine the signs of the
exponent and the end result. */ \
PASTEMAC(d,rands)( s_exp ); \
PASTEMAC(d,rands)( s_val ); \
\
/* Compute r_val = 2^s where s = +/-(t-1) = {-4,-3,-2,-1,0,1,2,3,4}. */ \
if ( s_exp < 0.0 ) r_val = pow( 2.0, -(t - 1.0) ); \
else r_val = pow( 2.0, t - 1.0 ); \
\
/* If our sign value is negative, our random power of two will
be negative. */ \
if ( s_val < 0.0 ) r_val = -r_val; \
} \
\
/* Normalize by the largest possible positive value. */ \
r_val = r_val / pow( 2.0, m_max ); \
\
/* r_val = 0, or +/-{2^-4, 2^-3, 2^-2, 2^-1, 2^0, 2^1, 2^2, 2^3, 2^4}. */ \
/* NOTE: For single-precision macros, this assignment results in typecast
down to float. */ \
a = r_val; \
}
#endif
#define bli_drandnp2s( a ) \
{ \
const double m_max = 6.0; \
const double m_max2 = m_max + 2.0; \
double t; \
double r_val; \
\
/* Compute a narrow-range power of two.
For the purposes of commentary, we'll assume that m_max = 4. This
represents the largest power of two we will use to generate the
random numbers. */ \
\
do \
{ \
/* Generate a random real number t on the interval: [0.0, 6.0]. */ \
t = ( ( double ) rand() / ( double ) RAND_MAX ) * m_max2; \
\
/* Transform the interval into the set of integers, {0,1,2,3,4,5}.
Note that 6 is prohibited by the loop guard below. */ \
t = floor( t ); \
} \
/* If t is ever equal to m_max2, we re-randomize. The guard against
m_max2 < t is for sanity and shouldn't happen, unless perhaps there
is weirdness in the typecasting to double when computing t above. */ \
while ( m_max2 <= t ); \
\
/* Map values of t == 0 to a final value of 0. */ \
if ( t == 0.0 ) r_val = 0.0; \
else \
{ \
/* This case handles values of t = {1,2,3,4,5}. */ \
\
double s_val; \
\
/* Compute r_val = 2^s where s = -(t-1) = {-4,-3,-2,-1,0}. */ \
r_val = pow( 2.0, -(t - 1.0) ); \
\
/* Compute a random number to determine the sign of the final
result. */ \
PASTEMAC(d,rands)( s_val ); \
\
/* If our sign value is negative, our random power of two will
be negative. */ \
if ( s_val < 0.0 ) r_val = -r_val; \
} \
\
/* r_val = 0, or +/-{2^0, 2^-1, 2^-2, 2^-3, 2^-4}. */ \
/* NOTE: For single-precision macros, this assignment results in typecast
down to float. */ \
a = r_val; \
}
#define bli_crandnp2s( a ) \
{ \
float ar, ai; \
\
bli_srandnp2s( ar ); \
bli_srandnp2s( ai ); \
\
bli_csets( ar, ai, (a) ); \
}
#define bli_zrandnp2s( a ) \
{ \
double ar, ai; \
\
bli_drandnp2s( ar ); \
bli_drandnp2s( ai ); \
\
bli_zsets( ar, ai, (a) ); \
}
#endif
|