File: bli_thread.c

package info (click to toggle)
python-cython-blis 1.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 43,676 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 821; cpp: 585; makefile: 14
file content (1663 lines) | stat: -rw-r--r-- 49,078 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
/*

   BLIS
   An object-based framework for developing high-performance BLAS-like
   libraries.

   Copyright (C) 2014, The University of Texas at Austin
   Copyright (C) 2018 - 2019, Advanced Micro Devices, Inc.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "blis.h"

thrinfo_t BLIS_PACKM_SINGLE_THREADED = {};
thrinfo_t BLIS_GEMM_SINGLE_THREADED  = {};
thrcomm_t BLIS_SINGLE_COMM           = {};

// The global rntm_t structure. (The definition resides in bli_rntm.c.)
extern rntm_t global_rntm;

// A mutex to allow synchronous access to global_rntm. (The definition
// resides in bli_rntm.c.)
extern bli_pthread_mutex_t global_rntm_mutex;

// -----------------------------------------------------------------------------

void bli_thread_init( void )
{
	bli_thrcomm_init( 1, &BLIS_SINGLE_COMM );
	bli_packm_thrinfo_init_single( &BLIS_PACKM_SINGLE_THREADED );
	bli_l3_thrinfo_init_single( &BLIS_GEMM_SINGLE_THREADED );

	// Read the environment variables and use them to initialize the
	// global runtime object.
	bli_thread_init_rntm_from_env( &global_rntm );
}

void bli_thread_finalize( void )
{
}

// -----------------------------------------------------------------------------

void bli_thread_range_sub
     (
       thrinfo_t* thread,
       dim_t      n,
       dim_t      bf,
       bool       handle_edge_low,
       dim_t*     start,
       dim_t*     end
     )
{
	dim_t      n_way      = bli_thread_n_way( thread );

	if ( n_way == 1 ) { *start = 0; *end = n; return; }

	dim_t      work_id    = bli_thread_work_id( thread );

	dim_t      all_start  = 0;
	dim_t      all_end    = n;

	dim_t      size       = all_end - all_start;

	dim_t      n_bf_whole = size / bf;
	dim_t      n_bf_left  = size % bf;

	dim_t      n_bf_lo    = n_bf_whole / n_way;
	dim_t      n_bf_hi    = n_bf_whole / n_way;

	// In this function, we partition the space between all_start and
	// all_end into n_way partitions, each a multiple of block_factor
	// with the exception of the one partition that recieves the
	// "edge" case (if applicable).
	//
	// Here are examples of various thread partitionings, in units of
	// the block_factor, when n_way = 4. (A '+' indicates the thread
	// that receives the leftover edge case (ie: n_bf_left extra
	// rows/columns in its sub-range).
	//                                        (all_start ... all_end)
	// n_bf_whole  _left  hel  n_th_lo  _hi   thr0  thr1  thr2  thr3
	//         12     =0    f        0    4      3     3     3     3
	//         12     >0    f        0    4      3     3     3     3+
	//         13     >0    f        1    3      4     3     3     3+
	//         14     >0    f        2    2      4     4     3     3+
	//         15     >0    f        3    1      4     4     4     3+
	//         15     =0    f        3    1      4     4     4     3
	//
	//         12     =0    t        4    0      3     3     3     3
	//         12     >0    t        4    0      3+    3     3     3
	//         13     >0    t        3    1      3+    3     3     4
	//         14     >0    t        2    2      3+    3     4     4
	//         15     >0    t        1    3      3+    4     4     4
	//         15     =0    t        1    3      3     4     4     4

	// As indicated by the table above, load is balanced as equally
	// as possible, even in the presence of an edge case.

	// First, we must differentiate between cases where the leftover
	// "edge" case (n_bf_left) should be allocated to a thread partition
	// at the low end of the index range or the high end.

	if ( handle_edge_low == FALSE )
	{
		// Notice that if all threads receive the same number of
		// block_factors, those threads are considered "high" and
		// the "low" thread group is empty.
		dim_t n_th_lo = n_bf_whole % n_way;
		//dim_t n_th_hi = n_way - n_th_lo;

		// If some partitions must have more block_factors than others
		// assign the slightly larger partitions to lower index threads.
		if ( n_th_lo != 0 ) n_bf_lo += 1;

		// Compute the actual widths (in units of rows/columns) of
		// individual threads in the low and high groups.
		dim_t size_lo = n_bf_lo * bf;
		dim_t size_hi = n_bf_hi * bf;

		// Precompute the starting indices of the low and high groups.
		dim_t lo_start = all_start;
		dim_t hi_start = all_start + n_th_lo * size_lo;

		// Compute the start and end of individual threads' ranges
		// as a function of their work_ids and also the group to which
		// they belong (low or high).
		if ( work_id < n_th_lo )
		{
			*start = lo_start + (work_id  ) * size_lo;
			*end   = lo_start + (work_id+1) * size_lo;
		}
		else // if ( n_th_lo <= work_id )
		{
			*start = hi_start + (work_id-n_th_lo  ) * size_hi;
			*end   = hi_start + (work_id-n_th_lo+1) * size_hi;

			// Since the edge case is being allocated to the high
			// end of the index range, we have to advance the last
			// thread's end.
			if ( work_id == n_way - 1 ) *end += n_bf_left;
		}
	}
	else // if ( handle_edge_low == TRUE )
	{
		// Notice that if all threads receive the same number of
		// block_factors, those threads are considered "low" and
		// the "high" thread group is empty.
		dim_t n_th_hi = n_bf_whole % n_way;
		dim_t n_th_lo = n_way - n_th_hi;

		// If some partitions must have more block_factors than others
		// assign the slightly larger partitions to higher index threads.
		if ( n_th_hi != 0 ) n_bf_hi += 1;

		// Compute the actual widths (in units of rows/columns) of
		// individual threads in the low and high groups.
		dim_t size_lo = n_bf_lo * bf;
		dim_t size_hi = n_bf_hi * bf;

		// Precompute the starting indices of the low and high groups.
		dim_t lo_start = all_start;
		dim_t hi_start = all_start + n_th_lo * size_lo
		                           + n_bf_left;

		// Compute the start and end of individual threads' ranges
		// as a function of their work_ids and also the group to which
		// they belong (low or high).
		if ( work_id < n_th_lo )
		{
			*start = lo_start + (work_id  ) * size_lo;
			*end   = lo_start + (work_id+1) * size_lo;

			// Since the edge case is being allocated to the low
			// end of the index range, we have to advance the
			// starts/ends accordingly.
			if ( work_id == 0 )   *end   += n_bf_left;
			else                { *start += n_bf_left;
			                      *end   += n_bf_left; }
		}
		else // if ( n_th_lo <= work_id )
		{
			*start = hi_start + (work_id-n_th_lo  ) * size_hi;
			*end   = hi_start + (work_id-n_th_lo+1) * size_hi;
		}
	}
}

siz_t bli_thread_range_l2r
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	num_t dt = bli_obj_dt( a );
	dim_t m  = bli_obj_length_after_trans( a );
	dim_t n  = bli_obj_width_after_trans( a );
	dim_t bf = bli_blksz_get_def( dt, bmult );

	bli_thread_range_sub( thr, n, bf,
	                      FALSE, start, end );

	return m * ( *end - *start );
}

siz_t bli_thread_range_r2l
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	num_t dt = bli_obj_dt( a );
	dim_t m  = bli_obj_length_after_trans( a );
	dim_t n  = bli_obj_width_after_trans( a );
	dim_t bf = bli_blksz_get_def( dt, bmult );

	bli_thread_range_sub( thr, n, bf,
	                      TRUE, start, end );

	return m * ( *end - *start );
}

siz_t bli_thread_range_t2b
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	num_t dt = bli_obj_dt( a );
	dim_t m  = bli_obj_length_after_trans( a );
	dim_t n  = bli_obj_width_after_trans( a );
	dim_t bf = bli_blksz_get_def( dt, bmult );

	bli_thread_range_sub( thr, m, bf,
	                      FALSE, start, end );

	return n * ( *end - *start );
}

siz_t bli_thread_range_b2t
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	num_t dt = bli_obj_dt( a );
	dim_t m  = bli_obj_length_after_trans( a );
	dim_t n  = bli_obj_width_after_trans( a );
	dim_t bf = bli_blksz_get_def( dt, bmult );

	bli_thread_range_sub( thr, m, bf,
	                      TRUE, start, end );

	return n * ( *end - *start );
}

// -----------------------------------------------------------------------------

dim_t bli_thread_range_width_l
     (
       doff_t diagoff_j,
       dim_t  m,
       dim_t  n_j,
       dim_t  j,
       dim_t  n_way,
       dim_t  bf,
       dim_t  bf_left,
       double area_per_thr,
       bool   handle_edge_low
     )
{
	dim_t width;

	// In this function, we assume that we are somewhere in the process of
	// partitioning an m x n lower-stored region (with arbitrary diagonal
	// offset) n_ways along the n dimension (into column panels). The value
	// j identifies the left-to-right subpartition index (from 0 to n_way-1)
	// of the subpartition whose width we are about to compute using the
	// area per thread determined by the caller. n_j is the number of
	// columns in the remaining region of the matrix being partitioned,
	// and diagoff_j is that region's diagonal offset.

	// If this is the last subpartition, the width is simply equal to n_j.
	// Note that this statement handles cases where the "edge case" (if
	// one exists) is assigned to the high end of the index range (ie:
	// handle_edge_low == FALSE).
	if ( j == n_way - 1 ) return n_j;

	// At this point, we know there are at least two subpartitions left.
	// We also know that IF the submatrix contains a completely dense
	// rectangular submatrix, it will occur BEFORE the triangular (or
	// trapezoidal) part.

	// Here, we implement a somewhat minor load balancing optimization
	// that ends up getting employed only for relatively small matrices.
	// First, recall that all subpartition widths will be some multiple
	// of the blocking factor bf, except perhaps either the first or last
	// subpartition, which will receive the edge case, if it exists.
	// Also recall that j represents the current thread (or thread group,
	// or "caucus") for which we are computing a subpartition width.
	// If n_j is sufficiently small that we can only allocate bf columns
	// to each of the remaining threads, then we set the width to bf. We
	// do not allow the subpartition width to be less than bf, so, under
	// some conditions, if n_j is small enough, some of the reamining
	// threads may not get any work. For the purposes of this lower bound
	// on work (ie: width >= bf), we allow the edge case to count as a
	// "full" set of bf columns.
	{
		dim_t n_j_bf = n_j / bf + ( bf_left > 0 ? 1 : 0 );

		if ( n_j_bf <= n_way - j )
		{
			if ( j == 0 && handle_edge_low )
				width = ( bf_left > 0 ? bf_left : bf );
			else
				width = bf;

			// Make sure that the width does not exceed n_j. This would
			// occur if and when n_j_bf < n_way - j; that is, when the
			// matrix being partitioned is sufficiently small relative to
			// n_way such that there is not even enough work for every
			// (remaining) thread to get bf (or bf_left) columns. The
			// net effect of this safeguard is that some threads may get
			// assigned empty ranges (ie: no work), which of course must
			// happen in some situations.
			if ( width > n_j ) width = n_j;

			return width;
		}
	}

	// This block computes the width assuming that we are entirely within
	// a dense rectangle that precedes the triangular (or trapezoidal)
	// part.
	{
		// First compute the width of the current panel under the
		// assumption that the diagonal offset would not intersect.
		width = ( dim_t )bli_round( ( double )area_per_thr / ( double )m );

		// Adjust the width, if necessary. Specifically, we may need
		// to allocate the edge case to the first subpartition, if
		// requested; otherwise, we just need to ensure that the
		// subpartition is a multiple of the blocking factor.
		if ( j == 0 && handle_edge_low )
		{
			if ( width % bf != bf_left ) width += bf_left - ( width % bf );
		}
		else // if interior case
		{
			// Round up to the next multiple of the blocking factor.
			//if ( width % bf != 0       ) width += bf      - ( width % bf );
			// Round to the nearest multiple of the blocking factor.
			if ( width % bf != 0       ) width = bli_round_to_mult( width, bf );
		}
	}

	// We need to recompute width if the panel, according to the width
	// as currently computed, would intersect the diagonal.
	if ( diagoff_j < width )
	{
		dim_t offm_inc, offn_inc;

		// Prune away the unstored region above the diagonal, if it exists.
		// Note that the entire region was pruned initially, so we know that
		// we don't need to try to prune the right side. (Also, we discard
		// the offset deltas since we don't need to actually index into the
		// subpartition.)
		bli_prune_unstored_region_top_l( &diagoff_j, &m, &n_j, &offm_inc );
		//bli_prune_unstored_region_right_l( &diagoff_j, &m, &n_j, &offn_inc );

		// We don't need offm_inc, offn_inc here. These statements should
		// prevent compiler warnings.
		( void )offm_inc;
		( void )offn_inc;

		// Prepare to solve a quadratic equation to find the width of the
		// current (jth) subpartition given the m dimension, diagonal offset,
		// and area.
		// NOTE: We know that the +/- in the quadratic formula must be a +
		// here because we know that the desired solution (the subpartition
		// width) will be smaller than (m + diagoff), not larger. If you
		// don't believe me, draw a picture!
		const double a = -0.5;
		const double b = ( double )m + ( double )diagoff_j + 0.5;
		const double c = -0.5 * (   ( double )diagoff_j *
		                          ( ( double )diagoff_j + 1.0 )
		                        ) - area_per_thr;
		const double r = b * b - 4.0 * a * c;

		// If the quadratic solution is not imaginary, round it and use that
		// as our width, but make sure it didn't round to zero. Otherwise,
		// discard the quadratic solution and leave width, as previously
		// computed, unchanged.
		if ( r >= 0.0 )
		{
			const double x = ( -b + sqrt( r ) ) / ( 2.0 * a );

			width = ( dim_t )bli_round( x );
			if ( width == 0 ) width = 1;
		}

		// Adjust the width, if necessary.
		if ( j == 0 && handle_edge_low )
		{
			if ( width % bf != bf_left ) width += bf_left - ( width % bf );
		}
		else // if interior case
		{
			// Round up to the next multiple of the blocking factor.
			//if ( width % bf != 0       ) width += bf      - ( width % bf );
			// Round to the nearest multiple of the blocking factor.
			if ( width % bf != 0       ) width = bli_round_to_mult( width, bf );
		}
	}

	// Make sure that the width, after being adjusted, does not cause the
	// subpartition to exceed n_j.
	if ( width > n_j ) width = n_j;

	return width;
}

siz_t bli_find_area_trap_l
     (
       dim_t  m,
       dim_t  n,
       doff_t diagoff
     )
{
	dim_t  offm_inc = 0;
	dim_t  offn_inc = 0;
	double tri_area;
	double area;

	// Prune away any rectangular region above where the diagonal
	// intersects the left edge of the subpartition, if it exists.
	bli_prune_unstored_region_top_l( &diagoff, &m, &n, &offm_inc );

	// Prune away any rectangular region to the right of where the
	// diagonal intersects the bottom edge of the subpartition, if
	// it exists. (This shouldn't ever be needed, since the caller
	// would presumably have already performed rightward pruning,
	// but it's here just in case.)
	bli_prune_unstored_region_right_l( &diagoff, &m, &n, &offn_inc );

	( void )offm_inc;
	( void )offn_inc;

	// Compute the area of the empty triangle so we can subtract it
	// from the area of the rectangle that bounds the subpartition.
	if ( bli_intersects_diag_n( diagoff, m, n ) )
	{
		double tri_dim = ( double )( n - diagoff - 1 );
		tri_area = tri_dim * ( tri_dim + 1.0 ) / 2.0;
	}
	else
	{
		// If the diagonal does not intersect the trapezoid, then
		// we can compute the area as a simple rectangle.
		tri_area = 0.0;
	}

	area = ( double )m * ( double )n - tri_area;

	return ( siz_t )area;
}

// -----------------------------------------------------------------------------

siz_t bli_thread_range_weighted_sub
     (
       thrinfo_t* restrict thread,
       doff_t              diagoff,
       uplo_t              uplo,
       dim_t               m,
       dim_t               n,
       dim_t               bf,
       bool                handle_edge_low,
       dim_t*     restrict j_start_thr,
       dim_t*     restrict j_end_thr
     )
{
	dim_t      n_way   = bli_thread_n_way( thread );
	dim_t      my_id   = bli_thread_work_id( thread );

	dim_t      bf_left = n % bf;

	dim_t      j;

	dim_t      off_j;
	doff_t     diagoff_j;
	dim_t      n_left;

	dim_t      width_j;

	dim_t      offm_inc, offn_inc;

	double     tri_dim, tri_area;
	double     area_total, area_per_thr;

	siz_t      area = 0;

	// In this function, we assume that the caller has already determined
	// that (a) the diagonal intersects the submatrix, and (b) the submatrix
	// is either lower- or upper-stored.

	if ( bli_is_lower( uplo ) )
	{
		// Prune away the unstored region above the diagonal, if it exists,
		// and then to the right of where the diagonal intersects the bottom,
		// if it exists. (Also, we discard the offset deltas since we don't
		// need to actually index into the subpartition.)
		bli_prune_unstored_region_top_l( &diagoff, &m, &n, &offm_inc );
		bli_prune_unstored_region_right_l( &diagoff, &m, &n, &offn_inc );

		// We don't need offm_inc, offn_inc here. These statements should
		// prevent compiler warnings.
		( void )offm_inc;
		( void )offn_inc;

		// Now that pruning has taken place, we know that diagoff >= 0.

		// Compute the total area of the submatrix, accounting for the
		// location of the diagonal, and divide it by the number of ways
		// of parallelism.
		tri_dim      = ( double )( n - diagoff - 1 );
		tri_area     = tri_dim * ( tri_dim + 1.0 ) / 2.0;
		area_total   = ( double )m * ( double )n - tri_area;
		area_per_thr = area_total / ( double )n_way;

		// Initialize some variables prior to the loop: the offset to the
		// current subpartition, the remainder of the n dimension, and
		// the diagonal offset of the current subpartition.
		off_j     = 0;
		diagoff_j = diagoff;
		n_left    = n;

		// Iterate over the subpartition indices corresponding to each
		// thread/caucus participating in the n_way parallelism.
		for ( j = 0; j < n_way; ++j )
		{
			// Compute the width of the jth subpartition, taking the
			// current diagonal offset into account, if needed.
			width_j =
			bli_thread_range_width_l
			(
			  diagoff_j, m, n_left,
			  j, n_way,
			  bf, bf_left,
			  area_per_thr,
			  handle_edge_low
			);

			// If the current thread belongs to caucus j, this is his
			// subpartition. So we compute the implied index range and
			// end our search.
			if ( j == my_id )
			{
				*j_start_thr = off_j;
				*j_end_thr   = off_j + width_j;

				area = bli_find_area_trap_l( m, width_j, diagoff_j );

				break;
			}

			// Shift the current subpartition's starting and diagonal offsets,
			// as well as the remainder of the n dimension, according to the
			// computed width, and then iterate to the next subpartition.
			off_j     += width_j;
			diagoff_j -= width_j;
			n_left    -= width_j;
		}
	}
	else // if ( bli_is_upper( uplo ) )
	{
		// Express the upper-stored case in terms of the lower-stored case.

		// First, we convert the upper-stored trapezoid to an equivalent
		// lower-stored trapezoid by rotating it 180 degrees.
		bli_rotate180_trapezoid( &diagoff, &uplo, &m, &n );

		// Now that the trapezoid is "flipped" in the n dimension, negate
		// the bool that encodes whether to handle the edge case at the
		// low (or high) end of the index range.
		bli_toggle_bool( &handle_edge_low );

		// Compute the appropriate range for the rotated trapezoid.
		area = bli_thread_range_weighted_sub
		(
		  thread, diagoff, uplo, m, n, bf,
		  handle_edge_low,
		  j_start_thr, j_end_thr
		);

		// Reverse the indexing basis for the subpartition ranges so that
		// the indices, relative to left-to-right iteration through the
		// unrotated upper-stored trapezoid, map to the correct columns
		// (relative to the diagonal). This amounts to subtracting the
		// range from n.
		bli_reverse_index_direction( n, j_start_thr, j_end_thr );
	}

	return area;
}

siz_t bli_thread_range_mdim
     (
       dir_t      direct,
       thrinfo_t* thr,
       obj_t*     a,
       obj_t*     b,
       obj_t*     c,
       cntl_t*    cntl,
       cntx_t*    cntx,
       dim_t*     start,
       dim_t*     end
     )
{
	bszid_t  bszid  = bli_cntl_bszid( cntl );
	opid_t   family = bli_cntl_family( cntl );

	// This is part of trsm's current implementation, whereby right side
	// cases are implemented in left-side micro-kernels, which requires
	// we swap the usage of the register blocksizes for the purposes of
	// packing A and B.
	if ( family == BLIS_TRSM )
	{
		if ( bli_obj_root_is_triangular( a ) ) bszid = BLIS_MR;
		else                                   bszid = BLIS_NR;
	}

	blksz_t* bmult  = bli_cntx_get_bmult( bszid, cntx );
	obj_t*   x;
	bool     use_weighted;

	// Use the operation family to choose the one of the two matrices
	// being partitioned that potentially has structure, and also to
	// decide whether or not we need to use weighted range partitioning.
	// NOTE: It's important that we use non-weighted range partitioning
	// for hemm and symm (ie: the gemm family) because the weighted
	// function will mistakenly skip over unstored regions of the
	// structured matrix, even though they represent part of that matrix
	// that will be dense and full (after packing).
	if      ( family == BLIS_GEMM ) { x = a; use_weighted = FALSE; }
	else if ( family == BLIS_GEMMT ) { x = c; use_weighted = TRUE;  }
	else if ( family == BLIS_TRMM ) { x = a; use_weighted = TRUE;  }
	else    /*family == BLIS_TRSM*/ { x = a; use_weighted = FALSE; }

	if ( use_weighted )
	{
		if ( direct == BLIS_FWD )
			return bli_thread_range_weighted_t2b( thr, x, bmult, start, end );
		else
			return bli_thread_range_weighted_b2t( thr, x, bmult, start, end );
	}
	else
	{
		if ( direct == BLIS_FWD )
			return bli_thread_range_t2b( thr, x, bmult, start, end );
		else
			return bli_thread_range_b2t( thr, x, bmult, start, end );
	}
}

siz_t bli_thread_range_ndim
     (
       dir_t      direct,
       thrinfo_t* thr,
       obj_t*     a,
       obj_t*     b,
       obj_t*     c,
       cntl_t*    cntl,
       cntx_t*    cntx,
       dim_t*     start,
       dim_t*     end
     )
{
	bszid_t  bszid  = bli_cntl_bszid( cntl );
	opid_t   family = bli_cntl_family( cntl );

	// This is part of trsm's current implementation, whereby right side
	// cases are implemented in left-side micro-kernels, which requires
	// we swap the usage of the register blocksizes for the purposes of
	// packing A and B.
	if ( family == BLIS_TRSM )
	{
		if ( bli_obj_root_is_triangular( b ) ) bszid = BLIS_MR;
		else                                   bszid = BLIS_NR;
	}

	blksz_t* bmult  = bli_cntx_get_bmult( bszid, cntx );
	obj_t*   x;
	bool     use_weighted;

	// Use the operation family to choose the one of the two matrices
	// being partitioned that potentially has structure, and also to
	// decide whether or not we need to use weighted range partitioning.
	// NOTE: It's important that we use non-weighted range partitioning
	// for hemm and symm (ie: the gemm family) because the weighted
	// function will mistakenly skip over unstored regions of the
	// structured matrix, even though they represent part of that matrix
	// that will be dense and full (after packing).
	if      ( family == BLIS_GEMM ) { x = b; use_weighted = FALSE; }
	else if ( family == BLIS_GEMMT ) { x = c; use_weighted = TRUE;  }
	else if ( family == BLIS_TRMM ) { x = b; use_weighted = TRUE;  }
	else    /*family == BLIS_TRSM*/ { x = b; use_weighted = FALSE; }

	if ( use_weighted )
	{
		if ( direct == BLIS_FWD )
			return bli_thread_range_weighted_l2r( thr, x, bmult, start, end );
		else
			return bli_thread_range_weighted_r2l( thr, x, bmult, start, end );
	}
	else
	{
		if ( direct == BLIS_FWD )
			return bli_thread_range_l2r( thr, x, bmult, start, end );
		else
			return bli_thread_range_r2l( thr, x, bmult, start, end );
	}
}

siz_t bli_thread_range_weighted_l2r
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	siz_t area;

	// This function assigns area-weighted ranges in the n dimension
	// where the total range spans 0 to n-1 with 0 at the left end and
	// n-1 at the right end.

	if ( bli_obj_intersects_diag( a ) &&
	     bli_obj_is_upper_or_lower( a ) )
	{
		num_t  dt      = bli_obj_dt( a );
		doff_t diagoff = bli_obj_diag_offset( a );
		uplo_t uplo    = bli_obj_uplo( a );
		dim_t  m       = bli_obj_length( a );
		dim_t  n       = bli_obj_width( a );
		dim_t  bf      = bli_blksz_get_def( dt, bmult );

		// Support implicit transposition.
		if ( bli_obj_has_trans( a ) )
		{
			bli_reflect_about_diag( &diagoff, &uplo, &m, &n );
		}

		area =
		bli_thread_range_weighted_sub
		(
		  thr, diagoff, uplo, m, n, bf,
		  FALSE, start, end
		);
	}
	else // if dense or zeros
	{
		area = bli_thread_range_l2r
		(
		  thr, a, bmult,
		  start, end
		);
	}

	return area;
}

siz_t bli_thread_range_weighted_r2l
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	siz_t area;

	// This function assigns area-weighted ranges in the n dimension
	// where the total range spans 0 to n-1 with 0 at the right end and
	// n-1 at the left end.

	if ( bli_obj_intersects_diag( a ) &&
	     bli_obj_is_upper_or_lower( a ) )
	{
		num_t  dt      = bli_obj_dt( a );
		doff_t diagoff = bli_obj_diag_offset( a );
		uplo_t uplo    = bli_obj_uplo( a );
		dim_t  m       = bli_obj_length( a );
		dim_t  n       = bli_obj_width( a );
		dim_t  bf      = bli_blksz_get_def( dt, bmult );

		// Support implicit transposition.
		if ( bli_obj_has_trans( a ) )
		{
			bli_reflect_about_diag( &diagoff, &uplo, &m, &n );
		}

		bli_rotate180_trapezoid( &diagoff, &uplo, &m, &n );

		area =
		bli_thread_range_weighted_sub
		(
		  thr, diagoff, uplo, m, n, bf,
		  TRUE, start, end
		);
	}
	else // if dense or zeros
	{
		area = bli_thread_range_r2l
		(
		  thr, a, bmult,
		  start, end
		);
	}

	return area;
}

siz_t bli_thread_range_weighted_t2b
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	siz_t area;

	// This function assigns area-weighted ranges in the m dimension
	// where the total range spans 0 to m-1 with 0 at the top end and
	// m-1 at the bottom end.

	if ( bli_obj_intersects_diag( a ) &&
	     bli_obj_is_upper_or_lower( a ) )
	{
		num_t  dt      = bli_obj_dt( a );
		doff_t diagoff = bli_obj_diag_offset( a );
		uplo_t uplo    = bli_obj_uplo( a );
		dim_t  m       = bli_obj_length( a );
		dim_t  n       = bli_obj_width( a );
		dim_t  bf      = bli_blksz_get_def( dt, bmult );

		// Support implicit transposition.
		if ( bli_obj_has_trans( a ) )
		{
			bli_reflect_about_diag( &diagoff, &uplo, &m, &n );
		}

		bli_reflect_about_diag( &diagoff, &uplo, &m, &n );

		area =
		bli_thread_range_weighted_sub
		(
		  thr, diagoff, uplo, m, n, bf,
		  FALSE, start, end
		);
	}
	else // if dense or zeros
	{
		area = bli_thread_range_t2b
		(
		  thr, a, bmult,
		  start, end
		);
	}

	return area;
}

siz_t bli_thread_range_weighted_b2t
     (
       thrinfo_t* thr,
       obj_t*     a,
       blksz_t*   bmult,
       dim_t*     start,
       dim_t*     end
     )
{
	siz_t area;

	// This function assigns area-weighted ranges in the m dimension
	// where the total range spans 0 to m-1 with 0 at the bottom end and
	// m-1 at the top end.

	if ( bli_obj_intersects_diag( a ) &&
	     bli_obj_is_upper_or_lower( a ) )
	{
		num_t  dt      = bli_obj_dt( a );
		doff_t diagoff = bli_obj_diag_offset( a );
		uplo_t uplo    = bli_obj_uplo( a );
		dim_t  m       = bli_obj_length( a );
		dim_t  n       = bli_obj_width( a );
		dim_t  bf      = bli_blksz_get_def( dt, bmult );

		// Support implicit transposition.
		if ( bli_obj_has_trans( a ) )
		{
			bli_reflect_about_diag( &diagoff, &uplo, &m, &n );
		}

		bli_reflect_about_diag( &diagoff, &uplo, &m, &n );

		bli_rotate180_trapezoid( &diagoff, &uplo, &m, &n );

		area = bli_thread_range_weighted_sub
		(
		  thr, diagoff, uplo, m, n, bf,
		  TRUE, start, end
		);
	}
	else // if dense or zeros
	{
		area = bli_thread_range_b2t
		(
		  thr, a, bmult,
		  start, end
		);
	}

	return area;
}

// -----------------------------------------------------------------------------

void bli_prime_factorization( dim_t n, bli_prime_factors_t* factors )
{
	factors->n = n;
	factors->sqrt_n = ( dim_t )sqrt( ( double )n );
	factors->f = 2;
}

dim_t bli_next_prime_factor( bli_prime_factors_t* factors )
{
	// Return the prime factorization of the original number n one-by-one.
	// Return 1 after all factors have been exhausted.

	// Looping over possible factors in increasing order assures we will
	// only return prime factors (a la the Sieve of Eratosthenes).
	while ( factors->f <= factors->sqrt_n )
	{
		// Special cases for factors 2-7 handle all numbers not divisible by 11
		// or another larger prime. The slower loop version is used after that.
		// If you use a number of threads with large prime factors you get
		// what you deserve.
		if ( factors->f == 2 )
		{
			if ( factors->n % 2 == 0 )
			{
				factors->n /= 2;
				return 2;
			}
			factors->f = 3;
		}
		else if ( factors->f == 3 )
		{
			if ( factors->n % 3 == 0 )
			{
				factors->n /= 3;
				return 3;
			}
			factors->f = 5;
		}
		else if ( factors->f == 5 )
		{
			if ( factors->n % 5 == 0 )
			{
				factors->n /= 5;
				return 5;
			}
			factors->f = 7;
		}
		else if ( factors->f == 7 )
		{
			if ( factors->n % 7 == 0 )
			{
				factors->n /= 7;
				return 7;
			}
			factors->f = 11;
		}
		else
		{
			if ( factors->n % factors->f == 0 )
			{
				factors->n /= factors->f;
				return factors->f;
			}
			factors->f++;
		}
	}

	// To get here we must be out of prime factors, leaving only n (if it is
	// prime) or an endless string of 1s.
	dim_t tmp = factors->n;
	factors->n = 1;
	return tmp;
}

bool bli_is_prime( dim_t n )
{
	bli_prime_factors_t factors;

	bli_prime_factorization( n, &factors );

	dim_t f = bli_next_prime_factor( &factors );

	if ( f == n ) return TRUE;
	else          return FALSE;
}

void bli_thread_partition_2x2
     (
       dim_t           n_thread,
       dim_t           work1,
       dim_t           work2,
       dim_t* restrict nt1,
       dim_t* restrict nt2
     )
{
	// Partition a number of threads into two factors nt1 and nt2 such that
	// nt1/nt2 ~= work1/work2. There is a fast heuristic algorithm and a
	// slower optimal algorithm (which minimizes |nt1*work2 - nt2*work1|).

	// Return early small prime numbers of threads.
	if ( n_thread < 4 )
	{
		*nt1 = ( work1 >= work2 ? n_thread : 1 );
		*nt2 = ( work1 <  work2 ? n_thread : 1 );

		return;
	}

#if 1
	bli_thread_partition_2x2_fast( n_thread, work1, work2, nt1, nt2 );
#else
	bli_thread_partition_2x2_slow( n_thread, work1, work2, nt1, nt2 );
#endif
}

//#define PRINT_FACTORS

void bli_thread_partition_2x2_fast
     (
       dim_t           n_thread,
       dim_t           work1,
       dim_t           work2,
       dim_t* restrict nt1,
       dim_t* restrict nt2
     )
{
	// Compute with these local variables until the end of the function, at
	// which time we will save the values back to nt1 and nt2.
	dim_t tn1 = 1;
	dim_t tn2 = 1;

	// Both algorithms need the prime factorization of n_thread.
	bli_prime_factors_t factors;
	bli_prime_factorization( n_thread, &factors );

	// Fast algorithm: assign prime factors in increasing order to whichever
	// partition has more work to do. The work is divided by the number of
	// threads assigned at each iteration. This algorithm is sub-optimal in
	// some cases. We attempt to mitigate the cases that involve at least one
	// factor of 2. For example, in the partitioning of 12 with equal work
	// this algorithm tentatively finds 6x2. This factorization involves a
	// factor of 2 that can be reallocated, allowing us to convert it to the
	// optimal solution of 4x3. But some cases cannot be corrected this way
	// because they do not contain a factor of 2. For example, this algorithm
	// factors 105 (with equal work) into 21x5 whereas 7x15 would be optimal.

	#ifdef PRINT_FACTORS
	printf( "w1 w2 = %d %d (initial)\n", (int)work1, (int)work2 );
	#endif

	dim_t f;
	while ( ( f = bli_next_prime_factor( &factors ) ) > 1 )
	{
		#ifdef PRINT_FACTORS
		printf( "w1 w2 = %4d %4d nt1 nt2 = %d %d ... f = %d\n",
		        (int)work1, (int)work2, (int)tn1, (int)tn2, (int)f );
		#endif

		if ( work1 > work2 ) { work1 /= f; tn1 *= f; }
		else                 { work2 /= f; tn2 *= f; }
	}

	#ifdef PRINT_FACTORS
	printf( "w1 w2 = %4d %4d nt1 nt2 = %d %d\n",
	        (int)work1, (int)work2, (int)tn1, (int)tn2 );
	#endif

	// Sometimes the last factor applied is prime. For example, on a square
	// matrix, we tentatively arrive (from the logic above) at:
	// - a 2x6 factorization when given 12 ways of parallelism
	// - a 2x10 factorization when given 20 ways of parallelism
	// - a 2x14 factorization when given 28 ways of parallelism
	// These factorizations are suboptimal under the assumption that we want
	// the parallelism to be as balanced as possible. Below, we make a final
	// attempt at rebalancing nt1 and nt2 by checking to see if the gap between
	// work1 and work2 is narrower if we reallocate a factor of 2.
	if ( work1 > work2 )
	{
		// Example: nt = 12
		//          w1 w2 (initial)   = 3600 3600; nt1 nt2 =  1 1
		//          w1 w2 (tentative) = 1800  600; nt1 nt2 =  2 6
		//          w1 w2 (ideal)     =  900 1200; nt1 nt2 =  4 3
		if ( tn2 % 2 == 0 )
		{
			dim_t diff     =          work1   - work2;
			dim_t diff_mod = bli_abs( work1/2 - work2*2 );

			if ( diff_mod < diff ) { tn1 *= 2; tn2 /= 2; }
		}
	}
	else if ( work1 < work2 )
	{
		// Example: nt = 40
		//          w1 w2 (initial)   = 3600 3600; nt1 nt2 =  1 1
		//          w1 w2 (tentative) =  360  900; nt1 nt2 = 10 4
		//          w1 w2 (ideal)     =  720  450; nt1 nt2 =  5 8
		if ( tn1 % 2 == 0 )
		{
			dim_t diff     =          work2   - work1;
			dim_t diff_mod = bli_abs( work2/2 - work1*2 );

			if ( diff_mod < diff ) { tn1 /= 2; tn2 *= 2; }
		}
	}

	#ifdef PRINT_FACTORS
	printf( "w1 w2 = %4d %4d nt1 nt2 = %d %d (final)\n",
	        (int)work1, (int)work2, (int)tn1, (int)tn2 );
	#endif

	// Save the final result.
	*nt1 = tn1;
	*nt2 = tn2;
}

#include "limits.h"

void bli_thread_partition_2x2_slow
     (
       dim_t           n_thread,
       dim_t           work1,
       dim_t           work2,
       dim_t* restrict nt1,
       dim_t* restrict nt2
     )
{
	// Slow algorithm: exhaustively constructs all factor pairs of n_thread and
	// chooses the best one.

	// Compute with these local variables until the end of the function, at
	// which time we will save the values back to nt1 and nt2.
	dim_t tn1 = 1;
	dim_t tn2 = 1;

	// Both algorithms need the prime factorization of n_thread.
	bli_prime_factors_t factors;
	bli_prime_factorization( n_thread, &factors );

	// Eight prime factors handles n_thread up to 223092870.
	dim_t fact[8];
	dim_t mult[8];

	// There is always at least one prime factor, so use if for initialization.
	dim_t nfact = 1;
	fact[0] = bli_next_prime_factor( &factors );
	mult[0] = 1;

	// Collect the remaining prime factors, accounting for multiplicity of
	// repeated factors.
	dim_t f;
	while ( ( f = bli_next_prime_factor( &factors ) ) > 1 )
	{
		if ( f == fact[nfact-1] )
		{
			mult[nfact-1]++;
		}
		else
		{
			nfact++;
			fact[nfact-1] = f;
			mult[nfact-1] = 1;
		}
	}

	// Now loop over all factor pairs. A single factor pair is denoted by how
	// many of each prime factor are included in the first factor (ntaken).
	dim_t ntake[8] = {0};
	dim_t min_diff = INT_MAX;

	// Loop over how many prime factors to assign to the first factor in the
	// pair, for each prime factor. The total number of iterations is
	// \Prod_{i=0}^{nfact-1} mult[i].
	bool done = FALSE;
	while ( !done )
	{
		dim_t x = 1;
		dim_t y = 1;

		// Form the factors by integer exponentiation and accumulation.
		for ( dim_t i = 0 ; i < nfact ; i++ )
		{
			x *= bli_ipow( fact[i], ntake[i] );
			y *= bli_ipow( fact[i], mult[i]-ntake[i] );
		}

		// Check if this factor pair is optimal by checking
		// |nt1*work2 - nt2*work1|.
		dim_t diff = llabs( x*work2 - y*work1 );
		if ( diff < min_diff )
		{
			min_diff = diff;
			tn1 = x;
			tn2 = y;
		}

		// Go to the next factor pair by doing an "odometer loop".
		for ( dim_t i = 0 ; i < nfact ; i++ )
		{
			if ( ++ntake[i] > mult[i] )
			{
				ntake[i] = 0;
				if ( i == nfact-1 ) done = TRUE;
				else continue;
			}
			break;
		}
	}

	// Save the final result.
	*nt1 = tn1;
	*nt2 = tn2;
}

#if 0
void bli_thread_partition_2x2_orig
     (
       dim_t           n_thread,
       dim_t           work1,
       dim_t           work2,
       dim_t* restrict nt1,
       dim_t* restrict nt2
     )
{
	// Copy nt1 and nt2 to local variables and then compute with those local
	// variables until the end of the function, at which time we will save the
	// values back to nt1 and nt2.
	dim_t tn1; // = *nt1;
	dim_t tn2; // = *nt2;

    // Partition a number of threads into two factors nt1 and nt2 such that
    // nt1/nt2 ~= work1/work2. There is a fast heuristic algorithm and a
    // slower optimal algorithm (which minimizes |nt1*work2 - nt2*work1|).

    // Return early small prime numbers of threads.
    if ( n_thread < 4 )
    {
        tn1 = ( work1 >= work2 ? n_thread : 1 );
        tn2 = ( work1 <  work2 ? n_thread : 1 );

		return;
    }

    tn1 = 1;
    tn2 = 1;

    // Both algorithms need the prime factorization of n_thread.
    bli_prime_factors_t factors;
    bli_prime_factorization( n_thread, &factors );

#if 1

    // Fast algorithm: assign prime factors in increasing order to whichever
    // partition has more work to do. The work is divided by the number of
    // threads assigned at each iteration. This algorithm is sub-optimal in
	// some cases. We attempt to mitigate the cases that involve at least one
	// factor of 2. For example, in the partitioning of 12 with equal work
	// this algorithm tentatively finds 6x2. This factorization involves a
	// factor of 2 that can be reallocated, allowing us to convert it to the
	// optimal solution of 4x3. But some cases cannot be corrected this way
	// because they do not contain a factor of 2. For example, this algorithm
	// factors 105 (with equal work) into 21x5 whereas 7x15 would be optimal.

	//printf( "w1 w2 = %d %d (initial)\n", (int)work1, (int)work2 );

    dim_t f;
    while ( ( f = bli_next_prime_factor( &factors ) ) > 1 )
    {
		//printf( "w1 w2 = %4d %4d nt1 nt2 = %d %d ... f = %d\n", (int)work1, (int)work2, (int)tn1, (int)tn2, (int)f );

        if ( work1 > work2 )
        {
            work1 /= f;
            tn1 *= f;
        }
        else
        {
            work2 /= f;
            tn2 *= f;
        }
    }

	//printf( "w1 w2 = %4d %4d nt1 nt2 = %d %d\n", (int)work1, (int)work2, (int)tn1, (int)tn2 );

	// Sometimes the last factor applied is prime. For example, on a square
	// matrix, we tentatively arrive (from the logic above) at:
	// - a 2x6 factorization when given 12 ways of parallelism
	// - a 2x10 factorization when given 20 ways of parallelism
	// - a 2x14 factorization when given 28 ways of parallelism
	// These factorizations are suboptimal under the assumption that we want
	// the parallelism to be as balanced as possible. Below, we make a final
	// attempt at rebalancing nt1 and nt2 by checking to see if the gap between
	// work1 and work2 is narrower if we reallocate a factor of 2.
	if ( work1 > work2 )
	{
		// Example: nt = 12
		//          w1 w2 (initial)   = 3600 3600; nt1 nt2 =  1 1
		//          w1 w2 (tentative) = 1800  600; nt1 nt2 =  2 6
		//          w1 w2 (ideal)     =  900 1200; nt1 nt2 =  4 3
		if ( tn2 % 2 == 0 )
		{
			dim_t diff     =          work1   - work2;
			dim_t diff_mod = bli_abs( work1/2 - work2*2 );

			if ( diff_mod < diff ) { tn1 *= 2; tn2 /= 2; }
		}
	}
	else if ( work1 < work2 )
	{
		// Example: nt = 40
		//          w1 w2 (initial)   = 3600 3600; nt1 nt2 =  1 1
		//          w1 w2 (tentative) =  360  900; nt1 nt2 = 10 4
		//          w1 w2 (ideal)     =  720  450; nt1 nt2 =  5 8
		if ( tn1 % 2 == 0 )
		{
			dim_t diff     =          work2   - work1;
			dim_t diff_mod = bli_abs( work2/2 - work1*2 );

			if ( diff_mod < diff ) { tn1 /= 2; tn2 *= 2; }
		}
	}

	//printf( "w1 w2 = %4d %4d nt1 nt2 = %d %d (final)\n", (int)work1, (int)work2, (int)tn1, (int)tn2 );

#else

    // Slow algorithm: exhaustively constructs all factor pairs of n_thread and
    // chooses the best one.

    // Eight prime factors handles n_thread up to 223092870.
    dim_t fact[8];
    dim_t mult[8];

    // There is always at least one prime factor, so use if for initialization.
    dim_t nfact = 1;
    fact[0] = bli_next_prime_factor( &factors );
    mult[0] = 1;

    // Collect the remaining prime factors, accounting for multiplicity of
    // repeated factors.
    dim_t f;
    while ( ( f = bli_next_prime_factor( &factors ) ) > 1 )
    {
        if ( f == fact[nfact-1] )
        {
            mult[nfact-1]++;
        }
        else
        {
            nfact++;
            fact[nfact-1] = f;
            mult[nfact-1] = 1;
        }
    }

    // Now loop over all factor pairs. A single factor pair is denoted by how
    // many of each prime factor are included in the first factor (ntaken).
    dim_t ntake[8] = {0};
    dim_t min_diff = INT_MAX;

    // Loop over how many prime factors to assign to the first factor in the
    // pair, for each prime factor. The total number of iterations is
    // \Prod_{i=0}^{nfact-1} mult[i].
    bool   done = FALSE;
    while ( !done )
    {
        dim_t x = 1;
        dim_t y = 1;

        // Form the factors by integer exponentiation and accumulation.
        for  (dim_t i = 0 ; i < nfact ; i++ )
        {
            x *= bli_ipow( fact[i], ntake[i] );
            y *= bli_ipow( fact[i], mult[i]-ntake[i] );
        }

        // Check if this factor pair is optimal by checking
        // |nt1*work2 - nt2*work1|.
        dim_t diff = llabs( x*work2 - y*work1 );
        if ( diff < min_diff )
        {
            min_diff = diff;
            tn1 = x;
            tn2 = y;
        }

        // Go to the next factor pair by doing an "odometer loop".
        for ( dim_t i = 0 ; i < nfact ; i++ )
        {
            if ( ++ntake[i] > mult[i] )
            {
                ntake[i] = 0;
                if ( i == nfact-1 ) done = TRUE;
                else continue;
            }
            break;
        }
    }

#endif


	// Save the final result.
	*nt1 = tn1;
	*nt2 = tn2;
}
#endif

// -----------------------------------------------------------------------------

dim_t bli_gcd( dim_t x, dim_t y )
{
	while ( y != 0 )
	{
		dim_t t = y;
		y = x % y;
		x = t;
	}
	return x;
}

dim_t bli_lcm( dim_t x, dim_t y)
{
	return x * y / bli_gcd( x, y );
}

dim_t bli_ipow( dim_t base, dim_t power )
{
	dim_t p = 1;

	for ( dim_t mask = 0x1 ; mask <= power ; mask <<= 1 )
	{
		if ( power & mask ) p *= base;
		base *= base;
	}

	return p;
}

// -----------------------------------------------------------------------------

dim_t bli_thread_get_jc_nt( void )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	return bli_rntm_jc_ways( &global_rntm );
}

dim_t bli_thread_get_pc_nt( void )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	return bli_rntm_pc_ways( &global_rntm );
}

dim_t bli_thread_get_ic_nt( void )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	return bli_rntm_ic_ways( &global_rntm );
}

dim_t bli_thread_get_jr_nt( void )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	return bli_rntm_jr_ways( &global_rntm );
}

dim_t bli_thread_get_ir_nt( void )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	return bli_rntm_ir_ways( &global_rntm );
}

dim_t bli_thread_get_num_threads( void )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	return bli_rntm_num_threads( &global_rntm );
}

// ----------------------------------------------------------------------------

void bli_thread_set_ways( dim_t jc, dim_t pc, dim_t ic, dim_t jr, dim_t ir )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	// Acquire the mutex protecting global_rntm.
	bli_pthread_mutex_lock( &global_rntm_mutex );

	bli_rntm_set_ways_only( jc, pc, ic, jr, ir, &global_rntm );

	// Release the mutex protecting global_rntm.
	bli_pthread_mutex_unlock( &global_rntm_mutex );
}

void bli_thread_set_num_threads( dim_t n_threads )
{
	// We must ensure that global_rntm has been initialized.
	bli_init_once();

	// Acquire the mutex protecting global_rntm.
	bli_pthread_mutex_lock( &global_rntm_mutex );

	bli_rntm_set_num_threads_only( n_threads, &global_rntm );

	// Release the mutex protecting global_rntm.
	bli_pthread_mutex_unlock( &global_rntm_mutex );
}

// ----------------------------------------------------------------------------

void bli_thread_init_rntm_from_env
     (
       rntm_t* rntm
     )
{
	// NOTE: We don't need to acquire the global_rntm_mutex here because this
	// function is only called from bli_thread_init(), which is only called
	// by bli_init_once().

	bool  auto_factor = FALSE;
	dim_t nt;
	dim_t jc, pc, ic, jr, ir;

#ifdef BLIS_ENABLE_MULTITHREADING

	// Try to read BLIS_NUM_THREADS first.
	nt = bli_env_get_var( "BLIS_NUM_THREADS", -1 );

	// If BLIS_NUM_THREADS was not set, try to read OMP_NUM_THREADS.
	if ( nt == -1 )
		nt = bli_env_get_var( "OMP_NUM_THREADS", -1 );

	// Read the environment variables for the number of threads (ways
	// of parallelism) for each individual loop.
	jc = bli_env_get_var( "BLIS_JC_NT", -1 );
	pc = bli_env_get_var( "BLIS_PC_NT", -1 );
	ic = bli_env_get_var( "BLIS_IC_NT", -1 );
	jr = bli_env_get_var( "BLIS_JR_NT", -1 );
	ir = bli_env_get_var( "BLIS_IR_NT", -1 );

	// If any BLIS_*_NT environment variable was set, then we ignore the
	// value of BLIS_NUM_THREADS or OMP_NUM_THREADS and use the
	// BLIS_*_NT values instead (with unset variables being treated as if
	// they contained 1).
	if ( jc != -1 || pc != -1 || ic != -1 || jr != -1 || ir != -1 )
	{
		if ( jc == -1 ) jc = 1;
		if ( pc == -1 ) pc = 1;
		if ( ic == -1 ) ic = 1;
		if ( jr == -1 ) jr = 1;
		if ( ir == -1 ) ir = 1;

		// Unset the value for nt.
		nt = -1;
	}

	// By this time, one of the following conditions holds:
	// - nt is -1 and the ways for each loop are -1.
	// - nt is -1 and the ways for each loop are all set.
	// - nt is set and the ways for each loop are -1.

	// If nt is set (ie: not -1), then we know we will perform an automatic
	// thread factorization (later, in bli_rntm.c).
	if ( nt != -1 ) auto_factor = TRUE;

#else

	// When multithreading is disabled, always set the rntm_t ways
	// values to 1.
	nt = -1;
	jc = pc = ic = jr = ir = 1;

#endif

	// Save the results back in the runtime object.
	bli_rntm_set_auto_factor_only( auto_factor, rntm );
	bli_rntm_set_num_threads_only( nt, rntm );
	bli_rntm_set_ways_only( jc, pc, ic, jr, ir, rntm );

#if 0
	printf( "bli_thread_init_rntm_from_env()\n" );
	bli_rntm_print( rntm );
#endif
}