1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Copyright (C) 2018 - 2019, Advanced Micro Devices, Inc.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "blis.h"
void bli_thrinfo_sup_grow
(
rntm_t* rntm,
bszid_t* bszid_par,
thrinfo_t* thread
)
{
if ( thread == &BLIS_GEMM_SINGLE_THREADED ||
thread == &BLIS_PACKM_SINGLE_THREADED ) return;
// NOTE: If bli_thrinfo_sup_rgrow() is being called, the sub_node field will
// always be non-NULL, and so there's no need to check it.
//if ( bli_cntl_sub_node( cntl ) != NULL )
{
// We only need to take action if the thrinfo_t sub-node is NULL; if it
// is non-NULL, then it has already been created and we'll use it as-is.
if ( bli_thrinfo_sub_node( thread ) == NULL )
{
// Create a new node (or, if needed, multiple nodes) along the
// main sub-node branch of the tree and return the pointer to the
// (highest) child.
thrinfo_t* thread_child = bli_thrinfo_sup_rgrow
(
rntm,
bszid_par,
&bszid_par[1],
thread
);
// Attach the child thrinfo_t node for the primary branch to its
// parent structure.
bli_thrinfo_set_sub_node( thread_child, thread );
}
}
}
// -----------------------------------------------------------------------------
thrinfo_t* bli_thrinfo_sup_rgrow
(
rntm_t* rntm,
bszid_t* bszid_par,
bszid_t* bszid_cur,
thrinfo_t* thread_par
)
{
thrinfo_t* thread_cur;
// We must handle two cases: those where the next node in the
// control tree is a partitioning node, and those where it is
// a non-partitioning (ie: packing) node.
if ( *bszid_cur != BLIS_NO_PART )
{
// Create the child thrinfo_t node corresponding to cntl_cur,
// with cntl_par being the parent.
thread_cur = bli_thrinfo_sup_create_for_cntl
(
rntm,
bszid_par,
bszid_cur,
thread_par
);
}
else // if ( *bszid_cur == BLIS_NO_PART )
{
// Recursively grow the thread structure and return the top-most
// thrinfo_t node of that segment.
thrinfo_t* thread_seg = bli_thrinfo_sup_rgrow
(
rntm,
bszid_par,
&bszid_cur[1],
thread_par
);
// Create a thrinfo_t node corresponding to cntl_cur. Since the
// corresponding cntl node, cntl_cur, is a non-partitioning node
// (bszid = BLIS_NO_PART), this means it's a packing node. Packing
// thrinfo_t nodes are formed differently than those corresponding to
// partitioning nodes; specifically, their work_id's are set equal to
// the their comm_id's. Also, notice that the free_comm field is set
// to FALSE since cntl_cur is a non-partitioning node. The reason:
// the communicator used here will be freed when thread_seg, or one
// of its descendents, is freed.
thread_cur = bli_thrinfo_create
(
rntm, // rntm
bli_thrinfo_ocomm( thread_seg ), // ocomm
bli_thread_ocomm_id( thread_seg ), // ocomm_id
bli_rntm_calc_num_threads_in( bszid_cur, rntm ), // n_way
bli_thread_ocomm_id( thread_seg ), // work_id
FALSE, // free_comm
BLIS_NO_PART, // bszid
thread_seg // sub_node
);
}
return thread_cur;
}
#define BLIS_NUM_STATIC_COMMS 80
thrinfo_t* bli_thrinfo_sup_create_for_cntl
(
rntm_t* rntm,
bszid_t* bszid_par,
bszid_t* bszid_chl,
thrinfo_t* thread_par
)
{
// If we are running with a single thread, all of the code can be reduced
// and simplified to this.
if ( bli_rntm_calc_num_threads( rntm ) == 1 )
{
thrinfo_t* thread_chl = bli_thrinfo_create
(
rntm, // rntm
&BLIS_SINGLE_COMM, // ocomm
0, // ocomm_id
1, // n_way
0, // work_id
FALSE, // free_comm
BLIS_NO_PART, // bszid
NULL // sub_node
);
return thread_chl;
}
// The remainder of this function handles the cases involving the use of
// multiple BLIS threads.
if ( bli_rntm_pack_a( rntm ) == FALSE &&
bli_rntm_pack_b( rntm ) == FALSE )
{
// If we are packing neither A nor B, there are no broadcasts or barriers
// needed to synchronize threads (since all threads can work completely
// independently). In this special case situation, the thrinfo_t can be
// created with much simpler logic.
const dim_t parent_comm_id = bli_thread_ocomm_id( thread_par );
// Compute:
// - the number of threads inside the new child comm,
// - the current thread's id within the new communicator,
// - the current thread's work id, given the ways of parallelism
// to be obtained within the next loop.
const dim_t child_nt_in = bli_rntm_calc_num_threads_in( bszid_chl, rntm );
const dim_t child_n_way = bli_rntm_ways_for( *bszid_chl, rntm );
const dim_t child_comm_id = parent_comm_id % child_nt_in;
const dim_t child_work_id = child_comm_id / ( child_nt_in / child_n_way );
// All threads create a new thrinfo_t node using the communicator
// that was created by their chief, as identified by parent_work_id.
thrinfo_t* thread_chl = bli_thrinfo_create
(
rntm, // rntm
NULL, // ocomm
child_comm_id, // ocomm_id
child_n_way, // n_way
child_work_id, // work_id
TRUE, // free_comm
*bszid_chl, // bszid
NULL // sub_node
);
return thread_chl;
}
else
{
// If we are packing at least one of A or B, then we use the general
// approach that employs broadcasts and barriers.
thrcomm_t* static_comms[ BLIS_NUM_STATIC_COMMS ];
thrcomm_t** new_comms = NULL;
const dim_t parent_nt_in = bli_thread_num_threads( thread_par );
const dim_t parent_n_way = bli_thread_n_way( thread_par );
const dim_t parent_comm_id = bli_thread_ocomm_id( thread_par );
const dim_t parent_work_id = bli_thread_work_id( thread_par );
// Sanity check: make sure the number of threads in the parent's
// communicator is divisible by the number of new sub-groups.
if ( parent_nt_in % parent_n_way != 0 )
{
printf( "Assertion failed: parent_nt_in <mod> parent_n_way != 0\n" );
bli_abort();
}
// Compute:
// - the number of threads inside the new child comm,
// - the current thread's id within the new communicator,
// - the current thread's work id, given the ways of parallelism
// to be obtained within the next loop.
const dim_t child_nt_in = bli_rntm_calc_num_threads_in( bszid_chl, rntm );
const dim_t child_n_way = bli_rntm_ways_for( *bszid_chl, rntm );
const dim_t child_comm_id = parent_comm_id % child_nt_in;
const dim_t child_work_id = child_comm_id / ( child_nt_in / child_n_way );
//printf( "thread %d: child_n_way = %d child_nt_in = %d parent_n_way = %d (bszid = %d->%d)\n", (int)child_comm_id, (int)child_nt_in, (int)child_n_way, (int)parent_n_way, (int)bli_cntl_bszid( cntl_par ), (int)bszid_chl );
// The parent's chief thread creates a temporary array of thrcomm_t
// pointers.
if ( bli_thread_am_ochief( thread_par ) )
{
err_t r_val;
if ( parent_n_way > BLIS_NUM_STATIC_COMMS )
new_comms = bli_malloc_intl( parent_n_way * sizeof( thrcomm_t* ), &r_val );
else
new_comms = static_comms;
}
// Broadcast the temporary array to all threads in the parent's
// communicator.
new_comms = bli_thread_broadcast( thread_par, new_comms );
// Chiefs in the child communicator allocate the communicator
// object and store it in the array element corresponding to the
// parent's work id.
if ( child_comm_id == 0 )
new_comms[ parent_work_id ] = bli_thrcomm_create( rntm, child_nt_in );
bli_thread_barrier( thread_par );
// All threads create a new thrinfo_t node using the communicator
// that was created by their chief, as identified by parent_work_id.
thrinfo_t* thread_chl = bli_thrinfo_create
(
rntm, // rntm
new_comms[ parent_work_id ], // ocomm
child_comm_id, // ocomm_id
child_n_way, // n_way
child_work_id, // work_id
TRUE, // free_comm
*bszid_chl, // bszid
NULL // sub_node
);
bli_thread_barrier( thread_par );
// The parent's chief thread frees the temporary array of thrcomm_t
// pointers.
if ( bli_thread_am_ochief( thread_par ) )
{
if ( parent_n_way > BLIS_NUM_STATIC_COMMS )
bli_free_intl( new_comms );
}
return thread_chl;
}
}
|