1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
OF TEXAS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "blis.h"
#undef restrict
#include <complex.h>
#include <assert.h>
/*
* Here is dgemm kernel for QPX.
* Instruction mix was divined by a statement in an email from John Gunnels when asked about the peak performance with a single thread:
* "Achievable peak can either be:
* 1) 12.8 GF 8 FMAs cycle * 1.6 GHz
* 2) 8.53 GF Takes intoo account the instruction mix in DGEMM and the fact that you can only do an FMA or a load/store in a single cycle with just one thread
* 3) 7.58 GF (2) + the fact that we can only issue 8 instructions in 9 cycles with one thread"
*
* Which I have taken to mean: 8.53 GFLOPS implies on average 5.33 flops/cycle.
* I know the kernel John uses is 8x8, so 16 flops per loop iteration.
* Thus there must be 24 total instructions per iteration because 16/24 = 5.33.
*
* Here, we have 6 loads per iteration. These are executed on a different pipeline from FMAs so
* we could (maybe) theoretically hit 100% of peak with this instruction mix
*/
void bli_dgemm_bgq_int_8x8
(
dim_t m,
dim_t n,
dim_t k,
double* restrict alpha,
double* restrict a,
double* restrict b,
double* restrict beta,
double* restrict c, inc_t rs_c, inc_t cs_c,
auxinfo_t* restrict data,
cntx_t* restrict cntx
)
{
GEMM_UKR_SETUP_CT_ANY( d, 8, 8, false );
//Registers for storing C.
//4 4x4 subblocks of C, c00, c01, c10, c11
//4 registers per subblock: a, b, c, d
//There is an excel file that details which register ends up storing what
vector4double c00a = vec_splats( 0.0 );
vector4double c00b = vec_splats( 0.0 );
vector4double c00c = vec_splats( 0.0 );
vector4double c00d = vec_splats( 0.0 );
vector4double c01a = vec_splats( 0.0 );
vector4double c01b = vec_splats( 0.0 );
vector4double c01c = vec_splats( 0.0 );
vector4double c01d = vec_splats( 0.0 );
vector4double c10a = vec_splats( 0.0 );
vector4double c10b = vec_splats( 0.0 );
vector4double c10c = vec_splats( 0.0 );
vector4double c10d = vec_splats( 0.0 );
vector4double c11a = vec_splats( 0.0 );
vector4double c11b = vec_splats( 0.0 );
vector4double c11c = vec_splats( 0.0 );
vector4double c11d = vec_splats( 0.0 );
vector4double b0a, b1a;
vector4double b0b, b1b;
vector4double a0, a1;
for( dim_t i = 0; i < k; i++ )
{
b0a = vec_ld2a( 0 * sizeof(double), &b[8*i] );
b0b = vec_ld2a( 2 * sizeof(double), &b[8*i] );
b1a = vec_ld2a( 4 * sizeof(double), &b[8*i] );
b1b = vec_ld2a( 6 * sizeof(double), &b[8*i] );
a0 = vec_lda ( 0 * sizeof(double), &a[8*i] );
a1 = vec_lda ( 4 * sizeof(double), &a[8*i] );
c00a = vec_xmadd ( b0a, a0, c00a );
c00b = vec_xxmadd( a0, b0a, c00b );
c00c = vec_xmadd ( b0b, a0, c00c );
c00d = vec_xxmadd( a0, b0b, c00d );
c01a = vec_xmadd ( b1a, a0, c01a );
c01b = vec_xxmadd( a0, b1a, c01b );
c01c = vec_xmadd ( b1b, a0, c01c );
c01d = vec_xxmadd( a0, b1b, c01d );
c10a = vec_xmadd ( b0a, a1, c10a );
c10b = vec_xxmadd( a1, b0a, c10b );
c10c = vec_xmadd ( b0b, a1, c10c );
c10d = vec_xxmadd( a1, b0b, c10d );
c11a = vec_xmadd ( b1a, a1, c11a );
c11b = vec_xxmadd( a1, b1a, c11b );
c11c = vec_xmadd ( b1b, a1, c11c );
c11d = vec_xxmadd( a1, b1b, c11d );
}
// Create patterns for permuting Cb and Cd
vector4double pattern = vec_gpci( 01032 );
vector4double AB;
vector4double C = vec_splats( 0.0 );
vector4double betav = vec_lds( 0, ( double* )beta );
vector4double alphav = vec_lds( 0, ( double* )alpha );
double ct;
//Macro to update 4 elements of C in a column.
//REG is the register holding those 4 elements
//ADDR is the address to write them to
//OFFSET is the number of rows from ADDR to write to
#define UPDATE( REG, ADDR, OFFSET ) \
{ \
ct = *(ADDR + (OFFSET + 0) * rs_c); \
C = vec_insert( ct, C, 0 ); \
ct = *(ADDR + (OFFSET + 1) * rs_c); \
C = vec_insert( ct, C, 1 ); \
ct = *(ADDR + (OFFSET + 2) * rs_c); \
C = vec_insert( ct, C, 2 ); \
ct = *(ADDR + (OFFSET + 3) * rs_c); \
C = vec_insert( ct, C, 3 ); \
\
AB = vec_mul( REG, alphav ); \
AB = vec_madd( C, betav, AB); \
\
ct = vec_extract( AB, 0 ); \
*(ADDR + (OFFSET + 0) * rs_c) = ct; \
ct = vec_extract( AB, 1 ); \
*(ADDR + (OFFSET + 1) * rs_c) = ct; \
ct = vec_extract( AB, 2 ); \
*(ADDR + (OFFSET + 2) * rs_c) = ct; \
ct = vec_extract( AB, 3 ); \
*(ADDR + (OFFSET + 3) * rs_c) = ct; \
}
//Update c00 and c10 sub-blocks
UPDATE( c00a, c, 0 );
UPDATE( c10a, c, 4 );
c = c + cs_c;
AB = vec_perm( c00b, c00b, pattern );
UPDATE( AB, c, 0 );
AB = vec_perm( c10b, c10b, pattern );
UPDATE( AB, c, 4 );
c = c + cs_c;
UPDATE( c00c, c, 0 );
UPDATE( c10c, c, 4 );
c = c + cs_c;
AB = vec_perm( c00d, c00d, pattern );
UPDATE( AB, c, 0 );
AB = vec_perm( c10d, c10d, pattern );
UPDATE( AB, c, 4 );
//Update c01 and c11 sub-blocks
c = c + cs_c;
UPDATE( c01a, c, 0 );
UPDATE( c11a, c, 4 );
c = c + cs_c;
AB = vec_perm( c01b, c01b, pattern );
UPDATE( AB, c, 0 );
AB = vec_perm( c11b, c11b, pattern );
UPDATE( AB, c, 4 );
c = c + cs_c;
UPDATE( c01c, c, 0 );
UPDATE( c11c, c, 4 );
c = c + cs_c;
AB = vec_perm( c01d, c01d, pattern );
UPDATE( AB, c, 0 );
AB = vec_perm( c11d, c11d, pattern );
UPDATE( AB, c, 4 );
GEMM_UKR_FLUSH_CT( d );
}
void printvec(vector4double v)
{
double a = vec_extract(v, 0);
double b = vec_extract(v, 1);
double c = vec_extract(v, 2);
double d = vec_extract(v, 3);
printf("%4.3f\t%4.3f\t%4.3f\t%4.3f\n", a, b, c, d);
}
void bli_zgemm_bgq_int_4x4
(
dim_t m,
dim_t n,
dim_t k,
dcomplex* restrict alpha,
dcomplex* restrict a,
dcomplex* restrict b,
dcomplex* restrict beta,
dcomplex* restrict c, inc_t rs_c, inc_t cs_c,
auxinfo_t* restrict data,
cntx_t* restrict cntx
)
{
GEMM_UKR_SETUP_CT_ANY( z, 4, 4, false );
double* a_d = ( double* )a;
double* b_d = ( double* )b;
double* c_d = ( double* )c;
//Registers for storing C.
//2 2x4 subblocks of C, c0, and c1
//Each sub-block has 4 columns, 0, 1, 2, 3
//Each column has 2 partial sum, a and b, and contains 2 complex numbers.
vector4double c00a = vec_splats( 0.0 );
vector4double c00b = vec_splats( 0.0 );
vector4double c01a = vec_splats( 0.0 );
vector4double c01b = vec_splats( 0.0 );
vector4double c02a = vec_splats( 0.0 );
vector4double c02b = vec_splats( 0.0 );
vector4double c03a = vec_splats( 0.0 );
vector4double c03b = vec_splats( 0.0 );
vector4double c10a = vec_splats( 0.0 );
vector4double c10b = vec_splats( 0.0 );
vector4double c11a = vec_splats( 0.0 );
vector4double c11b = vec_splats( 0.0 );
vector4double c12a = vec_splats( 0.0 );
vector4double c12b = vec_splats( 0.0 );
vector4double c13a = vec_splats( 0.0 );
vector4double c13b = vec_splats( 0.0 );
vector4double b0, b1, b2, b3;
vector4double a0, a1;
for( dim_t i = 0; i < k; i++ )
{
b0 = vec_ld2a( 0 * sizeof(double), &b_d[8*i] );
b1 = vec_ld2a( 2 * sizeof(double), &b_d[8*i] );
b2 = vec_ld2a( 4 * sizeof(double), &b_d[8*i] );
b3 = vec_ld2a( 6 * sizeof(double), &b_d[8*i] );
a0 = vec_lda ( 0 * sizeof(double), &a_d[8*i] );
a1 = vec_lda ( 4 * sizeof(double), &a_d[8*i] );
c00a = vec_xmadd ( b0, a0, c00a );
c00b = vec_xxcpnmadd( a0, b0, c00b );
c01a = vec_xmadd ( b1, a0, c01a );
c01b = vec_xxcpnmadd( a0, b1, c01b );
c02a = vec_xmadd ( b2, a0, c02a );
c02b = vec_xxcpnmadd( a0, b2, c02b );
c03a = vec_xmadd ( b3, a0, c03a );
c03b = vec_xxcpnmadd( a0, b3, c03b );
c10a = vec_xmadd ( b0, a1, c10a );
c10b = vec_xxcpnmadd( a1, b0, c10b );
c11a = vec_xmadd ( b1, a1, c11a );
c11b = vec_xxcpnmadd( a1, b1, c11b );
c12a = vec_xmadd ( b2, a1, c12a );
c12b = vec_xxcpnmadd( a1, b2, c12b );
c13a = vec_xmadd ( b3, a1, c13a );
c13b = vec_xxcpnmadd( a1, b3, c13b );
}
// Create patterns for permuting the "b" parts of each vector
vector4double pattern = vec_gpci( 01032 );
vector4double zed = vec_splats( 0.0 );
vector4double AB;
vector4double C = vec_splats( 0.0 );
vector4double C1 = vec_splats( 0.0 );
vector4double C2 = vec_splats( 0.0 );
double alphar = bli_zreal( *alpha );
double alphai = bli_zimag( *alpha );
double betar = bli_zreal( *beta );
double betai = bli_zimag( *beta );
vector4double alphav = vec_splats( 0.0 );
vector4double betav = vec_splats( 0.0 );
alphav = vec_insert( alphar, alphav, 0);
alphav = vec_insert( alphai, alphav, 1);
alphav = vec_insert( alphar, alphav, 2);
alphav = vec_insert( alphai, alphav, 3);
betav = vec_insert( betar, betav, 0);
betav = vec_insert( betai, betav, 1);
betav = vec_insert( betar, betav, 2);
betav = vec_insert( betai, betav, 3);
double ct;
//Macro to update 2 elements of C in a column.
//REG1 is the register holding the first partial sum of those 2 elements
//REG2 is the register holding the second partial sum of those 2 elements
//ADDR is the address to write them to
//OFFSET is the number of rows from ADDR to write to
#define ZUPDATE( REG1, REG2, ADDR, OFFSET ) \
{ \
ct = *(ADDR + (OFFSET + 0) * rs_c); \
C = vec_insert( ct, C, 0 ); \
ct = *(ADDR + (OFFSET + 0) * rs_c + 1); \
C = vec_insert( ct, C, 1 ); \
ct = *(ADDR + (OFFSET + 2) * rs_c); \
C = vec_insert( ct, C, 2 ); \
ct = *(ADDR + (OFFSET + 2) * rs_c + 1); \
C = vec_insert( ct, C, 3 ); \
\
AB = vec_sub(REG1, REG2 ); \
\
/* Scale by alpha */ \
REG1 = vec_xmadd( alphav, AB, zed ); \
REG2 = vec_xxcpnmadd( AB, alphav, zed ); \
AB = vec_sub(REG1, REG2 ); \
\
\
/* Scale by beta */ \
REG1 = vec_xmadd( betav, C, zed ); \
REG2 = vec_xxcpnmadd( C, betav, zed ); \
C = vec_sub(REG1, REG2 ); \
\
/* Add AB to C */ \
C = vec_add( AB, C ); \
\
ct = vec_extract( C, 0 ); \
*(ADDR + (OFFSET + 0) * rs_c) = ct; \
ct = vec_extract( C, 1 ); \
*(ADDR + (OFFSET + 0) * rs_c + 1) = ct; \
ct = vec_extract( C, 2 ); \
*(ADDR + (OFFSET + 2) * rs_c) = ct; \
ct = vec_extract( C, 3 ); \
*(ADDR + (OFFSET + 2) * rs_c + 1) = ct; \
}
ZUPDATE( c00a, c00b, c_d, 0 );
ZUPDATE( c10a, c10b, c_d, 4 );
c_d += 2*cs_c;
ZUPDATE( c01a, c01b, c_d, 0 );
ZUPDATE( c11a, c11b, c_d, 4 );
c_d += 2*cs_c;
ZUPDATE( c02a, c02b, c_d, 0 );
ZUPDATE( c12a, c12b, c_d, 4 );
c_d += 2*cs_c;
ZUPDATE( c03a, c03b, c_d, 0 );
ZUPDATE( c13a, c13b, c_d, 4 );
GEMM_UKR_FLUSH_CT( z );
}
|