File: bli_packm_haswell_asm_c8xk.c

package info (click to toggle)
python-cython-blis 1.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 43,676 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 821; cpp: 585; makefile: 14
file content (415 lines) | stat: -rw-r--r-- 12,657 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
/*

   BLIS
   An object-based framework for developing high-performance BLAS-like
   libraries.

   Copyright (C) 2014, The University of Texas at Austin
   Copyright (C) 2019 - 2020, Advanced Micro Devices, Inc.

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "blis.h"

#define BLIS_ASM_SYNTAX_ATT
#include "bli_x86_asm_macros.h"

// Prototype reference packm kernels.
PACKM_KER_PROT( scomplex, c, packm_8xk_haswell_ref )

void bli_cpackm_haswell_asm_8xk
     (
       conj_t              conja,
       pack_t              schema,
       dim_t               cdim0,
       dim_t               k0,
       dim_t               k0_max,
       scomplex*  restrict kappa,
       scomplex*  restrict a, inc_t inca0, inc_t lda0,
       scomplex*  restrict p,              inc_t ldp0,
       cntx_t*    restrict cntx
     )
{
#if 0
	bli_cpackm_8xk_haswell_ref
	(
	  conja, schema, cdim0, k0, k0_max,
	  kappa, a, inca0, lda0, p, ldp0, cntx
	);
	return;
#endif

	// This is the panel dimension assumed by the packm kernel.
	const dim_t      mnr   = 8;

	// This is the "packing" dimension assumed by the packm kernel.
	// This should be equal to ldp.
	//const dim_t    packmnr = 8;

	// Define a local copy of 1.0 so we can test for unit kappa.
	float            one_l = 1.0;
	float*  restrict one   = &one_l;

	// Typecast local copies of integers in case dim_t and inc_t are a
	// different size than is expected by load instructions.
	const uint64_t k_iter = k0 / 4;
#if 1
	const uint64_t k_left = k0 % 4;
#else
	const uint64_t k_left = k0;
#endif

	// NOTE: For the purposes of the comments in this packm kernel, we
	// interpret inca and lda as rs_a and cs_a, respectively, and similarly
	// interpret ldp as cs_p (with rs_p implicitly unit). Thus, when reading
	// this packm kernel, you should think of the operation as packing an
	// m x n micropanel, where m and n are tiny and large, respectively, and
	// where elements of each column of the packed matrix P are contiguous.
	// (This packm kernel can still be used to pack micropanels of matrix B
	// in a gemm operation.)
	const uint64_t inca   = inca0;
	const uint64_t lda    = lda0;
	const uint64_t ldp    = ldp0;

	const bool     gs     = ( inca0 != 1 && lda0 != 1 );

	// NOTE: If/when this kernel ever supports scaling by kappa within the
	// assembly region, this constraint should be lifted.
	const bool     unitk  = bli_ceq1( *kappa );


	// -------------------------------------------------------------------------

	if ( cdim0 == mnr && !gs && !conja && unitk )
	{
		begin_asm()

		mov(var(a), rax)                   // load address of a.

		mov(var(inca), r8)                 // load inca
		mov(var(lda), r10)                 // load lda
		lea(mem(, r8,  8), r8)             // inca *= sizeof(scomplex)
		lea(mem(, r10, 8), r10)            // lda *= sizeof(scomplex)

		mov(var(p), rbx)                   // load address of p.

		lea(mem(   , r10, 4), r14)         // r14 = 4*lda

		mov(var(one), rdx)                 // load address of 1.0 constant
		vbroadcastss(mem(rdx, 0), ymm1)    // load 1.0 and duplicate
		vxorps(ymm0, ymm0, ymm0)           // set ymm0 to 0.0.

		mov(var(kappa), rcx)               // load address of kappa
		vbroadcastss(mem(rcx, 0), ymm10)   // load kappa_r and duplicate
		vbroadcastss(mem(rcx, 4), ymm11)   // load kappa_i and duplicate


										   // now branch on kappa == 1.0

		vucomiss(xmm1, xmm10)              // set ZF if kappa_r == 1.0.
		sete(r12b)                         // r12b = ( ZF == 1 ? 1 : 0 );
		vucomiss(xmm0, xmm11)              // set ZF if kappa_i == 0.0.
		sete(r13b)                         // r13b = ( ZF == 1 ? 1 : 0 );
		and(r12b, r13b)                    // set ZF if r12b & r13b == 1.
		jne(.CKAPPAUNIT)                   // if ZF = 1, jump to beta == 0 case



		label(.CKAPPANONU)

		cmp(imm(8), r8)                    // set ZF if (8*inca) == 8.
		jz(.CCOLNONU)                      // jump to column storage case

		// -- kappa non-unit, row storage on A -------------------------------------

		label(.CROWNONU)

		jmp(.CDONE)                        // jump to end.


		// -- kappa non-unit, column storage on A ----------------------------------

		label(.CCOLNONU)

		jmp(.CDONE)                        // jump to end.




		label(.CKAPPAUNIT)

		cmp(imm(8), r8)                    // set ZF if (8*inca) == 8.
		jz(.CCOLUNIT)                      // jump to column storage case


		// -- kappa unit, row storage on A -----------------------------------------

		label(.CROWUNIT)

		lea(mem(r8,  r8,  2), r12)         // r12 = 3*inca
		lea(mem(r12, r8,  2), rcx)         // rcx = 5*inca
		lea(mem(r12, r8,  4), rdx)         // rdx = 7*inca

		mov(var(k_iter), rsi)              // i = k_iter;
		test(rsi, rsi)                     // check i via logical AND.
		je(.CCONKLEFTROWU)                 // if i == 0, jump to code that
		                                   // contains the k_left loop.


		label(.CKITERROWU)                 // MAIN LOOP (k_iter)

		vmovupd(mem(rax,         0), ymm0)
		vmovupd(mem(rax,  r8, 1, 0), ymm2)
		vmovupd(mem(rax,  r8, 2, 0), ymm4)
		vmovupd(mem(rax, r12, 1, 0), ymm6)

		vunpcklpd(ymm2, ymm0, ymm10)
		vunpckhpd(ymm2, ymm0, ymm11)
		vunpcklpd(ymm6, ymm4, ymm12)
		vunpckhpd(ymm6, ymm4, ymm13)
		vinsertf128(imm(0x1), xmm12, ymm10, ymm0)
		vinsertf128(imm(0x1), xmm13, ymm11, ymm2)
		vperm2f128(imm(0x31), ymm12, ymm10, ymm4)
		vperm2f128(imm(0x31), ymm13, ymm11, ymm6)

		vmovupd(ymm0, mem(rbx, 0*64))
		vmovupd(ymm2, mem(rbx, 1*64))
		vmovupd(ymm4, mem(rbx, 2*64))
		vmovupd(ymm6, mem(rbx, 3*64))

		vmovupd(mem(rax,  r8, 4, 0), ymm1)
		vmovupd(mem(rax, rcx, 1, 0), ymm3)
		vmovupd(mem(rax, r12, 2, 0), ymm5)
		vmovupd(mem(rax, rdx, 1, 0), ymm7)

		add(r14, rax)                      // a += 4*lda;

		vunpcklpd(ymm3, ymm1, ymm10)
		vunpckhpd(ymm3, ymm1, ymm11)
		vunpcklpd(ymm7, ymm5, ymm12)
		vunpckhpd(ymm7, ymm5, ymm13)
		vinsertf128(imm(0x1), xmm12, ymm10, ymm1)
		vinsertf128(imm(0x1), xmm13, ymm11, ymm3)
		vperm2f128(imm(0x31), ymm12, ymm10, ymm5)
		vperm2f128(imm(0x31), ymm13, ymm11, ymm7)

		vmovupd(ymm1, mem(rbx, 0*64+32))
		vmovupd(ymm3, mem(rbx, 1*64+32))
		vmovupd(ymm5, mem(rbx, 2*64+32))
		vmovupd(ymm7, mem(rbx, 3*64+32))

		add(imm(4*8*8), rbx)               // p += 4*ldp = 4*8;

		dec(rsi)                           // i -= 1;
		jne(.CKITERROWU)                   // iterate again if i != 0.



		label(.CCONKLEFTROWU)

		mov(var(k_left), rsi)              // i = k_left;
		test(rsi, rsi)                     // check i via logical AND.
		je(.CDONE)                         // if i == 0, we're done; jump to end.
		                                   // else, we prepare to enter k_left loop.


		label(.CKLEFTROWU)                 // EDGE LOOP (k_left)

		vmovsd(mem(rax,         0), xmm0)
		vmovsd(mem(rax,  r8, 1, 0), xmm2)
		vmovsd(mem(rax,  r8, 2, 0), xmm4)
		vmovsd(mem(rax, r12, 1, 0), xmm6)
		vmovsd(mem(rax,  r8, 4, 0), xmm1)
		vmovsd(mem(rax, rcx, 1, 0), xmm3)
		vmovsd(mem(rax, r12, 2, 0), xmm5)
		vmovsd(mem(rax, rdx, 1, 0), xmm7)

		add(r10, rax)                      // a += lda;

		vmovsd(xmm0, mem(rbx, 0*8))
		vmovsd(xmm2, mem(rbx, 1*8))
		vmovsd(xmm4, mem(rbx, 2*8))
		vmovsd(xmm6, mem(rbx, 3*8))
		vmovsd(xmm1, mem(rbx, 4*8))
		vmovsd(xmm3, mem(rbx, 5*8))
		vmovsd(xmm5, mem(rbx, 6*8))
		vmovsd(xmm7, mem(rbx, 7*8))

		add(imm(8*8), rbx)                 // p += ldp = 8;

		dec(rsi)                           // i -= 1;
		jne(.CKLEFTROWU)                   // iterate again if i != 0.


		jmp(.CDONE)                        // jump to end.


		// -- kappa unit, column storage on A --------------------------------------

		label(.CCOLUNIT)

		lea(mem(r10, r10, 2), r13)         // r13 = 3*lda

		mov(var(k_iter), rsi)              // i = k_iter;
		test(rsi, rsi)                     // check i via logical AND.
		je(.CCONKLEFTCOLU)                 // if i == 0, jump to code that
		                                   // contains the k_left loop.


		label(.CKITERCOLU)                 // MAIN LOOP (k_iter)

		vmovupd(mem(rax,          0), ymm0)
		vmovupd(mem(rax,         32), ymm1)
		vmovupd(ymm0, mem(rbx, 0*64+ 0))
		vmovupd(ymm1, mem(rbx, 0*64+32))

		vmovupd(mem(rax, r10, 1,  0), ymm2)
		vmovupd(mem(rax, r10, 1, 32), ymm3)
		vmovupd(ymm2, mem(rbx, 1*64+ 0))
		vmovupd(ymm3, mem(rbx, 1*64+32))

		vmovupd(mem(rax, r10, 2,  0), ymm4)
		vmovupd(mem(rax, r10, 2, 32), ymm5)
		vmovupd(ymm4, mem(rbx, 2*64+ 0))
		vmovupd(ymm5, mem(rbx, 2*64+32))

		vmovupd(mem(rax, r13, 1,  0), ymm6)
		vmovupd(mem(rax, r13, 1, 32), ymm7)
		add(r14, rax)                      // a += 4*lda;
		vmovupd(ymm6, mem(rbx, 3*64+ 0))
		vmovupd(ymm7, mem(rbx, 3*64+32))
		add(imm(4*8*8), rbx)               // p += 4*ldp = 4*8;

		dec(rsi)                           // i -= 1;
		jne(.CKITERCOLU)                   // iterate again if i != 0.



		label(.CCONKLEFTCOLU)

		mov(var(k_left), rsi)              // i = k_left;
		test(rsi, rsi)                     // check i via logical AND.
		je(.CDONE)                         // if i == 0, we're done; jump to end.
		                                   // else, we prepare to enter k_left loop.


		label(.CKLEFTCOLU)                 // EDGE LOOP (k_left)

		vmovupd(mem(rax,          0), ymm0)
		vmovupd(mem(rax,         32), ymm1)
		add(r10, rax)                      // a += lda;
		vmovupd(ymm0, mem(rbx, 0*64+ 0))
		vmovupd(ymm1, mem(rbx, 0*64+32))
		add(imm(8*8), rbx)                 // p += ldp = 8;

		dec(rsi)                           // i -= 1;
		jne(.CKLEFTCOLU)                   // iterate again if i != 0.


		//jmp(.CDONE)                        // jump to end.



		label(.CDONE)



		end_asm(
		: // output operands (none)
		: // input operands
		  [k_iter] "m" (k_iter),
		  [k_left] "m" (k_left),
		  [a]      "m" (a),
		  [inca]   "m" (inca),
		  [lda]    "m" (lda),
		  [p]      "m" (p),
		  [ldp]    "m" (ldp),
		  [kappa]  "m" (kappa),
		  [one]    "m" (one)
		: // register clobber list
		  "rax", "rbx", "rcx", "rdx", "rsi", "rdi",
		  "r8", /*"r9",*/ "r10", /*"r11",*/ "r12", "r13", "r14", "r15",
		  "xmm0", "xmm1", "xmm2", "xmm3",
		  "xmm4", "xmm5", "xmm6", "xmm7",
		  "xmm8", "xmm9", "xmm10", "xmm11",
		  "xmm12", "xmm13", "xmm14", "xmm15",
		  "memory"
		)
	}
	else // if ( cdim0 < mnr || gs || bli_does_conj( conja ) || !unitk )
	{
		PASTEMAC(cscal2m,BLIS_TAPI_EX_SUF)
		(
		  0,
		  BLIS_NONUNIT_DIAG,
		  BLIS_DENSE,
		  ( trans_t )conja,
		  cdim0,
		  k0,
		  kappa,
		  a, inca0, lda0,
		  p,     1, ldp0,
		  cntx,
		  NULL
		);

		if ( cdim0 < mnr )
		{
			// Handle zero-filling along the "long" edge of the micropanel.

			const dim_t        i      = cdim0;
			const dim_t        m_edge = mnr - cdim0;
			const dim_t        n_edge = k0_max;
			scomplex* restrict p_edge = p + (i  )*1;

			bli_cset0s_mxn
			(
			  m_edge,
			  n_edge,
			  p_edge, 1, ldp
			);
		}
	}

	if ( k0 < k0_max )
	{
		// Handle zero-filling along the "short" (far) edge of the micropanel.

		const dim_t        j      = k0;
		const dim_t        m_edge = mnr;
		const dim_t        n_edge = k0_max - k0;
		scomplex* restrict p_edge = p + (j  )*ldp;

		bli_cset0s_mxn
		(
		  m_edge,
		  n_edge,
		  p_edge, 1, ldp
		);
	}
}