File: bli_dgemm_knl_asm_24x8.c

package info (click to toggle)
python-cython-blis 1.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 43,676 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 821; cpp: 585; makefile: 14
file content (649 lines) | stat: -rw-r--r-- 19,570 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*

   BLIS
   An object-based framework for developing high-performance BLAS-like
   libraries.

   Copyright (C) 2014, The University of Texas at Austin

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
   OF TEXAS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
   OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#include "blis.h"
#include <assert.h>

#define BLIS_ASM_SYNTAX_INTEL
#include "bli_x86_asm_macros.h"

#define UNROLL_K 32

#define SCATTER_PREFETCH_C 1

#define PREFETCH_A_L2 0
#define PREFETCH_B_L2 0
#define L2_PREFETCH_DIST 64

#define A_L1_PREFETCH_DIST 18
#define B_L1_PREFETCH_DIST 18

#define LOOP_ALIGN ALIGN16

#define UPDATE_C_FOUR_ROWS(R1,R2,R3,R4) \
\
    VMULPD(ZMM(R1), ZMM(R1), ZMM(0)) \
    VMULPD(ZMM(R2), ZMM(R2), ZMM(0)) \
    VMULPD(ZMM(R3), ZMM(R3), ZMM(0)) \
    VMULPD(ZMM(R4), ZMM(R4), ZMM(0)) \
    VFMADD231PD(ZMM(R1), ZMM(1), MEM(RCX      )) \
    VFMADD231PD(ZMM(R2), ZMM(1), MEM(RCX,RAX,1)) \
    VFMADD231PD(ZMM(R3), ZMM(1), MEM(RCX,RAX,2)) \
    VFMADD231PD(ZMM(R4), ZMM(1), MEM(RCX,RDI,1)) \
    VMOVUPD(MEM(RCX      ), ZMM(R1)) \
    VMOVUPD(MEM(RCX,RAX,1), ZMM(R2)) \
    VMOVUPD(MEM(RCX,RAX,2), ZMM(R3)) \
    VMOVUPD(MEM(RCX,RDI,1), ZMM(R4)) \
    LEA(RCX, MEM(RCX,RAX,4))

#define UPDATE_C_BZ_FOUR_ROWS(R1,R2,R3,R4) \
\
    VMULPD(ZMM(R1), ZMM(R1), ZMM(0)) \
    VMULPD(ZMM(R2), ZMM(R2), ZMM(0)) \
    VMULPD(ZMM(R3), ZMM(R3), ZMM(0)) \
    VMULPD(ZMM(R4), ZMM(R4), ZMM(0)) \
    VMOVUPD(MEM(RCX      ), ZMM(R1)) \
    VMOVUPD(MEM(RCX,RAX,1), ZMM(R2)) \
    VMOVUPD(MEM(RCX,RAX,2), ZMM(R3)) \
    VMOVUPD(MEM(RCX,RDI,1), ZMM(R4)) \
    LEA(RCX, MEM(RCX,RAX,4))

#define UPDATE_C_ROW_SCATTERED(NUM) \
\
    KXNORW(K(1), K(0), K(0)) \
    KXNORW(K(2), K(0), K(0)) \
    VMULPD(ZMM(NUM), ZMM(NUM), ZMM(0)) \
    VGATHERDPD(ZMM(3) MASK_K(1), MEM(RCX,YMM(2),8)) \
    VFMADD231PD(ZMM(NUM), ZMM(3), ZMM(1)) \
    VSCATTERDPD(MEM(RCX,YMM(2),8) MASK_K(2), ZMM(NUM)) \
    ADD(RCX, RAX)

#define UPDATE_C_BZ_ROW_SCATTERED(NUM) \
\
    KXNORW(K(1), K(0), K(0)) \
    VMULPD(ZMM(NUM), ZMM(NUM), ZMM(0)) \
    VSCATTERDPD(MEM(RCX,YMM(2),8) MASK_K(1), ZMM(NUM)) \
    ADD(RCX, RAX)

#define PREFETCH_A_L1_1(n) PREFETCH(0, MEM(RAX,(A_L1_PREFETCH_DIST+n)*24*8))
#define PREFETCH_A_L1_2(n) PREFETCH(0, MEM(RAX,(A_L1_PREFETCH_DIST+n)*24*8+64))
#define PREFETCH_A_L1_3(n) PREFETCH(0, MEM(RAX,(A_L1_PREFETCH_DIST+n)*24*8+128))

#if PREFETCH_A_L2
#undef PREFETCH_A_L2

#define PREFETCH_A_L2(n) \
\
    PREFETCH(1, MEM(RAX,(L2_PREFETCH_DIST+n)*24*8)) \
    PREFETCH(1, MEM(RAX,(L2_PREFETCH_DIST+n)*24*8+64)) \
    PREFETCH(1, MEM(RAX,(L2_PREFETCH_DIST+n)*24*8+128))

#else
#undef PREFETCH_A_L2
#define PREFETCH_A_L2(...)
#endif

#define PREFETCH_B_L1(n) PREFETCH(0, MEM(RBX,(B_L1_PREFETCH_DIST+n)*8*8))

#if PREFETCH_B_L2
#undef PREFETCH_B_L2

#define PREFETCH_B_L2(n) PREFETCH(1, MEM(RBX,(L2_PREFETCH_DIST+n)*8*8))

#else
#undef PREFETCH_B_L2
#define PREFETCH_B_L2(...)
#endif

#define PREFETCH_C_L1_1
#define PREFETCH_C_L1_2
#define PREFETCH_C_L1_3

//
// n: index in unrolled loop
//
// a: ZMM register to load into
// b: ZMM register to read from
//
// ...: addressing for A, except for offset
//
#define SUBITER(n,a,b,...) \
\
        PREFETCH_A_L2(n) \
\
        VMOVAPD(ZMM(a), MEM(RBX,(n+1)*64)) \
        VFMADD231PD(ZMM( 8), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 0)*8)) \
        VFMADD231PD(ZMM( 9), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 1)*8)) \
        VFMADD231PD(ZMM(10), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 2)*8)) \
        PREFETCH_A_L1_1(n) \
        VFMADD231PD(ZMM(11), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 3)*8)) \
        VFMADD231PD(ZMM(12), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 4)*8)) \
        VFMADD231PD(ZMM(13), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 5)*8)) \
        PREFETCH_C_L1_1 \
        VFMADD231PD(ZMM(14), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 6)*8)) \
        VFMADD231PD(ZMM(15), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 7)*8)) \
        VFMADD231PD(ZMM(16), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 8)*8)) \
        PREFETCH_A_L1_2(n) \
        VFMADD231PD(ZMM(17), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+ 9)*8)) \
        VFMADD231PD(ZMM(18), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+10)*8)) \
        VFMADD231PD(ZMM(19), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+11)*8)) \
        PREFETCH_C_L1_2 \
        VFMADD231PD(ZMM(20), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+12)*8)) \
        VFMADD231PD(ZMM(21), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+13)*8)) \
        VFMADD231PD(ZMM(22), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+14)*8)) \
        PREFETCH_A_L1_3(n) \
        VFMADD231PD(ZMM(23), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+15)*8)) \
        VFMADD231PD(ZMM(24), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+16)*8)) \
        VFMADD231PD(ZMM(25), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+17)*8)) \
        PREFETCH_C_L1_3 \
        VFMADD231PD(ZMM(26), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+18)*8)) \
        VFMADD231PD(ZMM(27), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+19)*8)) \
        VFMADD231PD(ZMM(28), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+20)*8)) \
        PREFETCH_B_L1(n) \
        VFMADD231PD(ZMM(29), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+21)*8)) \
        VFMADD231PD(ZMM(30), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+22)*8)) \
        VFMADD231PD(ZMM(31), ZMM(b), MEM_1TO8(__VA_ARGS__,((n%%4)*24+23)*8)) \
        PREFETCH_B_L2(n)

//This is an array used for the scatter/gather instructions.
static int32_t offsets[32] __attribute__((aligned(64))) =
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,
     16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31};

//#define MONITORS
//#define LOOPMON
void bli_dgemm_knl_asm_24x8
     (
       dim_t               m,
       dim_t               n,
       dim_t               k_,
       double*    restrict alpha,
       double*    restrict a,
       double*    restrict b,
       double*    restrict beta,
       double*    restrict c, inc_t rs_c_, inc_t cs_c_,
       auxinfo_t* restrict data,
       cntx_t*    restrict cntx
     )
{
    (void)data;
    (void)cntx;

    const double * a_next = bli_auxinfo_next_a( data );
    const double * b_next = bli_auxinfo_next_b( data );

    int32_t * offsetPtr = &offsets[0];
    int64_t k = k_;
    int64_t rs_c = rs_c_;
    int64_t cs_c = cs_c_;

    GEMM_UKR_SETUP_CT( d, 24, 8, true );

#ifdef MONITORS
    int toph, topl, both, botl, midl, midh, mid2l, mid2h;
#endif
#ifdef LOOPMON
    int tlooph, tloopl, blooph, bloopl;
#endif

    BEGIN_ASM()

#ifdef MONITORS
    RDTSC
    MOV(VAR(topl), EAX)
    MOV(VAR(toph), EDX)
#endif

    VPXORD(ZMM(8), ZMM(8), ZMM(8)) //clear out registers
    VMOVAPS(ZMM( 9), ZMM(8))   MOV(R12, VAR(rs_c))
    VMOVAPS(ZMM(10), ZMM(8))   MOV(RSI, VAR(k)) //loop index
    VMOVAPS(ZMM(11), ZMM(8))   MOV(RAX, VAR(a)) //load address of a
    VMOVAPS(ZMM(12), ZMM(8))   MOV(RBX, VAR(b)) //load address of b
    VMOVAPS(ZMM(13), ZMM(8))   MOV(RCX, VAR(c)) //load address of c
    VMOVAPS(ZMM(14), ZMM(8))   VMOVAPD(ZMM(0), MEM(RBX)) //pre-load b
    VMOVAPS(ZMM(15), ZMM(8))   MOV(RDI, VAR(offsetPtr))
    VMOVAPS(ZMM(16), ZMM(8))   VMOVAPS(ZMM(4), MEM(RDI))
#if SCATTER_PREFETCH_C
    VMOVAPS(ZMM(17), ZMM(8))
    VMOVAPS(ZMM(18), ZMM(8))
    VMOVAPS(ZMM(19), ZMM(8))   VBROADCASTSS(ZMM(5), VAR(rs_c))
    VMOVAPS(ZMM(20), ZMM(8))
    VMOVAPS(ZMM(21), ZMM(8))   VPMULLD(ZMM(2), ZMM(4), ZMM(5))
    VMOVAPS(ZMM(22), ZMM(8))   VMOVAPS(YMM(3), MEM(RDI,64))
    VMOVAPS(ZMM(23), ZMM(8))   VPMULLD(YMM(3), YMM(3), YMM(5))
#else
    VMOVAPS(ZMM(17), ZMM(8))
    VMOVAPS(ZMM(18), ZMM(8))   LEA(R13, MEM(R12,R12,2))
    VMOVAPS(ZMM(19), ZMM(8))   LEA(R14, MEM(R12,R12,4))
    VMOVAPS(ZMM(20), ZMM(8))   LEA(R15, MEM(R13,R12,4))
    VMOVAPS(ZMM(21), ZMM(8))
    VMOVAPS(ZMM(22), ZMM(8))
    VMOVAPS(ZMM(23), ZMM(8))
#endif
    VMOVAPS(ZMM(24), ZMM(8))   VPSLLD(ZMM(4), ZMM(4), IMM(3))
    VMOVAPS(ZMM(25), ZMM(8))   MOV(R8, IMM(4*24*8))     //offset for 4 iterations
    VMOVAPS(ZMM(26), ZMM(8))   LEA(R9, MEM(R8,R8,2))    //*3
    VMOVAPS(ZMM(27), ZMM(8))   LEA(R10, MEM(R8,R8,4))   //*5
    VMOVAPS(ZMM(28), ZMM(8))   LEA(R11, MEM(R9,R8,4))   //*7
    VMOVAPS(ZMM(29), ZMM(8))
    VMOVAPS(ZMM(30), ZMM(8))
    VMOVAPS(ZMM(31), ZMM(8))

#ifdef MONITORS
    RDTSC
    MOV(VAR(midl), EAX)
    MOV(VAR(midh), EDX)
#endif

    SUB(RSI, IMM(32))
    JLE(TAIL)

    //prefetch C into L2
#if SCATTER_PREFETCH_C
    ADD(RSI, IMM(24))
    KXNORW(K(1), K(0), K(0))
    KXNORW(K(2), K(0), K(0))
    VSCATTERPFDPS(1, MEM(RCX,ZMM(2),8) MASK_K(1))
    VSCATTERPFDPD(1, MEM(RCX,YMM(3),8) MASK_K(2))
#else
    PREFETCHW1(MEM(RCX      ))
    SUBITER( 0,1,0,RAX      )
    PREFETCHW1(MEM(RCX,R12,1))
    SUBITER( 1,0,1,RAX      )
    PREFETCHW1(MEM(RCX,R12,2))
    SUBITER( 2,1,0,RAX      )
    PREFETCHW1(MEM(RCX,R13,1))
    SUBITER( 3,0,1,RAX      )
    PREFETCHW1(MEM(RCX,R12,4))
    SUBITER( 4,1,0,RAX,R8, 1)
    PREFETCHW1(MEM(RCX,R14,1))
    SUBITER( 5,0,1,RAX,R8, 1)
    PREFETCHW1(MEM(RCX,R13,2))
    SUBITER( 6,1,0,RAX,R8, 1)
    PREFETCHW1(MEM(RCX,R15,1))
    SUBITER( 7,0,1,RAX,R8, 1)

    LEA(RDX, MEM(RCX,R12,8))

    PREFETCHW1(MEM(RDX      ))
    SUBITER( 8,1,0,RAX,R8, 2)
    PREFETCHW1(MEM(RDX,R12,1))
    SUBITER( 9,0,1,RAX,R8, 2)
    PREFETCHW1(MEM(RDX,R12,2))
    SUBITER(10,1,0,RAX,R8, 2)
    PREFETCHW1(MEM(RDX,R13,1))
    SUBITER(11,0,1,RAX,R8, 2)
    PREFETCHW1(MEM(RDX,R12,4))
    SUBITER(12,1,0,RAX,R9, 1)
    PREFETCHW1(MEM(RDX,R14,1))
    SUBITER(13,0,1,RAX,R9, 1)
    PREFETCHW1(MEM(RDX,R13,2))
    SUBITER(14,1,0,RAX,R9, 1)
    PREFETCHW1(MEM(RDX,R15,1))
    SUBITER(15,0,1,RAX,R9, 1)

    LEA(RDI, MEM(RDX,R12,8))

    PREFETCHW1(MEM(RDI      ))
    SUBITER(16,1,0,RAX,R8, 4)
    PREFETCHW1(MEM(RDI,R12,1))
    SUBITER(17,0,1,RAX,R8, 4)
    PREFETCHW1(MEM(RDI,R12,2))
    SUBITER(18,1,0,RAX,R8, 4)
    PREFETCHW1(MEM(RDI,R13,1))
    SUBITER(19,0,1,RAX,R8, 4)
    PREFETCHW1(MEM(RDI,R12,4))
    SUBITER(20,1,0,RAX,R10,1)
    PREFETCHW1(MEM(RDI,R14,1))
    SUBITER(21,0,1,RAX,R10,1)
    PREFETCHW1(MEM(RDI,R13,2))
    SUBITER(22,1,0,RAX,R10,1)
    PREFETCHW1(MEM(RDI,R15,1))
    SUBITER(23,0,1,RAX,R10,1)

    ADD(RAX, IMM(24*24*8))
    ADD(RBX, IMM(24* 8*8))
#endif

    MOV(RDI, RSI)
    AND(RDI, IMM(31))
    SAR(RSI, IMM(5))
    JZ(REM_1)

    LOOP_ALIGN
    LABEL(MAIN_LOOP)

        SUBITER( 0,1,0,RAX      )
        SUBITER( 1,0,1,RAX      )
        SUBITER( 2,1,0,RAX      )
        SUBITER( 3,0,1,RAX      )
        SUBITER( 4,1,0,RAX,R8, 1)
        SUBITER( 5,0,1,RAX,R8, 1)
        SUBITER( 6,1,0,RAX,R8, 1)
        SUBITER( 7,0,1,RAX,R8, 1)
        SUBITER( 8,1,0,RAX,R8, 2)
        SUBITER( 9,0,1,RAX,R8, 2)
        SUBITER(10,1,0,RAX,R8, 2)
        SUBITER(11,0,1,RAX,R8, 2)
        SUBITER(12,1,0,RAX,R9, 1)
        SUBITER(13,0,1,RAX,R9, 1)
        SUBITER(14,1,0,RAX,R9, 1)
        SUBITER(15,0,1,RAX,R9, 1)
        SUBITER(16,1,0,RAX,R8, 4)
        SUBITER(17,0,1,RAX,R8, 4)
        SUBITER(18,1,0,RAX,R8, 4)
        SUBITER(19,0,1,RAX,R8, 4)
        SUBITER(20,1,0,RAX,R10,1)
        SUBITER(21,0,1,RAX,R10,1)
        SUBITER(22,1,0,RAX,R10,1)
        SUBITER(23,0,1,RAX,R10,1)
        SUBITER(24,1,0,RAX,R9, 2)
        SUBITER(25,0,1,RAX,R9, 2)
        SUBITER(26,1,0,RAX,R9, 2)
        SUBITER(27,0,1,RAX,R9, 2)
        SUBITER(28,1,0,RAX,R11,1)
        SUBITER(29,0,1,RAX,R11,1)
        SUBITER(30,1,0,RAX,R11,1)
        SUBITER(31,0,1,RAX,R11,1)

        ADD(RAX, IMM(32*24*8))
        ADD(RBX, IMM(32* 8*8))

        SUB(RSI, IMM(1))

    JNZ(MAIN_LOOP)

    LABEL(REM_1)
    SAR(RDI)
    JNC(REM_2)

    SUBITER(0,1,0,RAX)
    VMOVAPD(ZMM(0), ZMM(1))
    ADD(RAX, IMM(24*8))
    ADD(RBX, IMM( 8*8))

    LABEL(REM_2)
    SAR(RDI)
    JNC(REM_4)

    SUBITER(0,1,0,RAX)
    SUBITER(1,0,1,RAX)
    ADD(RAX, IMM(2*24*8))
    ADD(RBX, IMM(2* 8*8))

    LABEL(REM_4)
    SAR(RDI)
    JNC(REM_8)

    SUBITER(0,1,0,RAX)
    SUBITER(1,0,1,RAX)
    SUBITER(2,1,0,RAX)
    SUBITER(3,0,1,RAX)
    ADD(RAX, IMM(4*24*8))
    ADD(RBX, IMM(4* 8*8))

    LABEL(REM_8)
    SAR(RDI)
    JNC(REM_16)

    SUBITER(0,1,0,RAX     )
    SUBITER(1,0,1,RAX     )
    SUBITER(2,1,0,RAX     )
    SUBITER(3,0,1,RAX     )
    SUBITER(4,1,0,RAX,R8,1)
    SUBITER(5,0,1,RAX,R8,1)
    SUBITER(6,1,0,RAX,R8,1)
    SUBITER(7,0,1,RAX,R8,1)
    ADD(RAX, IMM(8*24*8))
    ADD(RBX, IMM(8* 8*8))

    LABEL(REM_16)
    SAR(RDI)
    JNC(AFTER_LOOP)

    SUBITER( 0,1,0,RAX      )
    SUBITER( 1,0,1,RAX      )
    SUBITER( 2,1,0,RAX      )
    SUBITER( 3,0,1,RAX      )
    SUBITER( 4,1,0,RAX,R8, 1)
    SUBITER( 5,0,1,RAX,R8, 1)
    SUBITER( 6,1,0,RAX,R8, 1)
    SUBITER( 7,0,1,RAX,R8, 1)
    SUBITER( 8,1,0,RAX,R8, 2)
    SUBITER( 9,0,1,RAX,R8, 2)
    SUBITER(10,1,0,RAX,R8, 2)
    SUBITER(11,0,1,RAX,R8, 2)
    SUBITER(12,1,0,RAX,R9, 1)
    SUBITER(13,0,1,RAX,R9, 1)
    SUBITER(14,1,0,RAX,R9, 1)
    SUBITER(15,0,1,RAX,R9, 1)
    ADD(RAX, IMM(16*24*8))
    ADD(RBX, IMM(16* 8*8))

    LABEL(AFTER_LOOP)

    //prefetch C into L1
#if SCATTER_PREFETCH_C
    KXNORW(K(1), K(0), K(0))
    KXNORW(K(2), K(0), K(0))
    VSCATTERPFDPS(0, MEM(RCX,ZMM(2),8) MASK_K(1))
    VSCATTERPFDPD(0, MEM(RCX,YMM(3),8) MASK_K(2))

    SUBITER(0,1,0,RAX     )
    SUBITER(1,0,1,RAX     )
    SUBITER(2,1,0,RAX     )
    SUBITER(3,0,1,RAX     )
    SUBITER(4,1,0,RAX,R8,1)
    SUBITER(5,0,1,RAX,R8,1)
    SUBITER(6,1,0,RAX,R8,1)
    SUBITER(7,0,1,RAX,R8,1)
#else

    LEA(RDX, MEM(RCX,R12,8))
    LEA(RDI, MEM(RDX,R12,8))

#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RCX      ))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RCX,R12,1))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RCX,R12,2))
    SUBITER(0,1,0,RAX     )
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RCX,R13,1))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RCX,R12,4))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RCX,R14,1))
    SUBITER(1,0,1,RAX     )
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RCX,R13,2))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RCX,R15,1))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDX      ))
    SUBITER(2,1,0,RAX     )
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDX,R12,1))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDX,R12,2))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDX,R13,1))
    SUBITER(3,0,1,RAX     )
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDX,R12,4))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDX,R14,1))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDX,R13,2))
    SUBITER(4,1,0,RAX,R8,1)
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDX,R15,1))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDI      ))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDI,R12,1))
    SUBITER(5,0,1,RAX,R8,1)
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDI,R12,2))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDI,R13,1))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDI,R12,4))
    SUBITER(6,1,0,RAX,R8,1)
#undef PREFETCH_C_L1_1
#undef PREFETCH_C_L1_2
#undef PREFETCH_C_L1_3
#define PREFETCH_C_L1_1 PREFETCHW0(MEM(RDI,R14,1))
#define PREFETCH_C_L1_2 PREFETCHW0(MEM(RDI,R13,2))
#define PREFETCH_C_L1_3 PREFETCHW0(MEM(RDI,R15,1))
    SUBITER(7,0,1,RAX,R8,1)
#endif

    JMP(POSTACCUM)

    LABEL(TAIL)

    MOV(RDX, RCX)
    ADD(RSI, IMM(32))
    JZ(POSTACCUM)

    LABEL(TAIL_LOOP)

        PREFETCHW0(MEM(RDX))
        ADD(RDX, R12)

        SUBITER(0,1,0,RAX)
        VMOVAPD(ZMM(0), ZMM(1))
        ADD(RAX, IMM(24*8))
        ADD(RBX, IMM( 8*8))

        SUB(RSI, IMM(1))

    JNZ(TAIL_LOOP)

    LABEL(POSTACCUM)

#ifdef MONITORS
    RDTSC
    MOV(VAR(mid2l), EAX)
    MOV(VAR(mid2h), EDX)
#endif

    MOV(RAX, VAR(alpha))
    MOV(RBX, VAR(beta))
    VBROADCASTSD(ZMM(0), MEM(RAX))
    VBROADCASTSD(ZMM(1), MEM(RBX))

    // Check if C is row stride. If not, jump to the slow scattered update
    MOV(RAX, VAR(rs_c))
    LEA(RAX, MEM(,RAX,8))
    LEA(RDI, MEM(RAX,RAX,2))

    VMOVQ(RDX, XMM(1))
    SAL(RDX) //shift out sign bit
    JZ(COLSTORBZ)

    UPDATE_C_FOUR_ROWS( 8, 9,10,11)
    UPDATE_C_FOUR_ROWS(12,13,14,15)
    UPDATE_C_FOUR_ROWS(16,17,18,19)
    UPDATE_C_FOUR_ROWS(20,21,22,23)
    UPDATE_C_FOUR_ROWS(24,25,26,27)
    UPDATE_C_FOUR_ROWS(28,29,30,31)

    JMP(END)

    LABEL(COLSTORBZ)

    UPDATE_C_BZ_FOUR_ROWS( 8, 9,10,11)
    UPDATE_C_BZ_FOUR_ROWS(12,13,14,15)
    UPDATE_C_BZ_FOUR_ROWS(16,17,18,19)
    UPDATE_C_BZ_FOUR_ROWS(20,21,22,23)
    UPDATE_C_BZ_FOUR_ROWS(24,25,26,27)
    UPDATE_C_BZ_FOUR_ROWS(28,29,30,31)

    LABEL(END)

#ifdef MONITORS
    RDTSC
    MOV(VAR(botl), EAX)
    MOV(VAR(both), EDX)
#endif

    END_ASM(
    : // output operands
#ifdef MONITORS
      [topl]  "=m" (topl),
      [toph]  "=m" (toph),
      [midl]  "=m" (midl),
      [midh]  "=m" (midh),
      [mid2l] "=m" (mid2l),
      [mid2h] "=m" (mid2h),
      [botl]  "=m" (botl),
      [both]  "=m" (both)
#endif
    : // input operands
      [k]         "m" (k),
      [a]         "m" (a),
      [b]         "m" (b),
      [alpha]     "m" (alpha),
      [beta]      "m" (beta),
      [c]         "m" (c),
      [rs_c]      "m" (rs_c),
      [cs_c]      "m" (cs_c),
      [a_next]    "m" (a_next),
      [b_next]    "m" (b_next),
      [offsetPtr] "m" (offsetPtr)
    : // register clobber list
      "rax", "rbx", "rcx", "rdx", "rdi", "rsi", "r8", "r9", "r10", "r11", "r12",
      "r13", "r14", "r15", "zmm0", "zmm1", "zmm2", "zmm3", "zmm4", "zmm5",
      "zmm6", "zmm7", "zmm8", "zmm9", "zmm10", "zmm11", "zmm12", "zmm13",
      "zmm14", "zmm15", "zmm16", "zmm17", "zmm18", "zmm19", "zmm20", "zmm21",
      "zmm22", "zmm23", "zmm24", "zmm25", "zmm26", "zmm27", "zmm28", "zmm29",
      "zmm30", "zmm31", "memory"
    )

    GEMM_UKR_FLUSH_CT( d );

#ifdef LOOPMON
    printf("looptime = \t%d\n", bloopl - tloopl);
#endif
#ifdef MONITORS
    dim_t top = ((dim_t)toph << 32) | topl;
    dim_t mid = ((dim_t)midh << 32) | midl;
    dim_t mid2 = ((dim_t)mid2h << 32) | mid2l;
    dim_t bot = ((dim_t)both << 32) | botl;
    printf("setup =\t%u\tmain loop =\t%u\tcleanup=\t%u\ttotal=\t%u\n", mid - top, mid2 - mid, bot - mid2, bot - top);
#endif
}