1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2014, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "vector_int_macros.h"
#define D_ASSEMBLE_VEC_PAIR \
__builtin_mma_assemble_pair (&colA_1, ca[1], ca[0]); \
__builtin_mma_assemble_pair (&colA_2, ca[3], ca[2]);
#define D_ACCUMULATE \
__builtin_mma_xvf64gerpp (&acc0, colA_1, rb[0]); \
__builtin_mma_xvf64gerpp (&acc1, colA_1, rb[1]); \
__builtin_mma_xvf64gerpp (&acc2, colA_1, rb[2]); \
__builtin_mma_xvf64gerpp (&acc3, colA_1, rb[3]); \
__builtin_mma_xvf64gerpp (&acc4, colA_2, rb[0]); \
__builtin_mma_xvf64gerpp (&acc5, colA_2, rb[1]); \
__builtin_mma_xvf64gerpp (&acc6, colA_2, rb[2]); \
__builtin_mma_xvf64gerpp (&acc7, colA_2, rb[3]);
#define D_INCREMENT \
A0+=8; \
B0+=8;
#define D_AB_PRODUCT \
LOAD_VECTORS \
D_ASSEMBLE_VEC_PAIR \
D_INCREMENT \
D_ACCUMULATE
void bli_dgemm_power10_mma_8x8
(
dim_t m,
dim_t n,
dim_t k,
double* restrict alpha,
double* restrict a,
double* restrict b,
double* restrict beta,
double* restrict c, inc_t rs_c0, inc_t cs_c,
auxinfo_t* restrict data,
cntx_t* restrict cntx
)
{
// Typecast local copies of integers in case dim_t and inc_t are a
// different size than is expected by load instructions.
// (1 is subtracted from k0 because 1 iteration of the k loop is pulled out)
uint64_t k_iter = (k-1) / 4;
uint64_t k_left = (k-1) % 4;
uint64_t rs_c = rs_c0;
GEMM_UKR_SETUP_CT( d, 8, 8, true );
double* restrict A0 = a;
double* restrict B0 = b;
double* restrict C0 = c;
double alpha_ = *alpha,
beta_ = *beta;
dv4sf_t result[4];
dv4sf_t *rowC;
/* 8 accumulator registers that will be used to store the result.
Each accumulator register is mapped to 4 vector registers.
Illustration:
acc0 = [ vs0
vs1
vs3
vs4 ]
These registers are used to store the result of an outer product
instruction (general outer product instruction syntax: xv???ger??). */
__vector_quad acc0, acc1, acc2, acc3,
acc4, acc5, acc6, acc7;
/* 2 vector pairs are necessary for a double precision outer product
instruction. */
__vector_pair colA_1,
colA_2;
/* Prefetch C so that it stays in cache */
PREFETCH1 (C0, 0);
PREFETCH1 (C0 + rs_c, 0);
PREFETCH1 (C0 + rs_c + rs_c, 0);
PREFETCH1 (C0 + rs_c + rs_c + rs_c, 0);
PREFETCH1 (C0, 128);
PREFETCH1 (C0 + rs_c, 128);
PREFETCH1 (C0 + rs_c + rs_c, 128);
PREFETCH1 (C0 + rs_c + rs_c + rs_c, 128);
/* Load elements into vector registers */
vec_t *ca = (vec_t *) A0;
vec_t *rb = (vec_t *) B0;
/* Each accumulator represents a matrix of size
4 x ( 16 / (datatype size in bytes) ) (vector register size = 16B)
Thus in the case of double, the accumulate registers represent a 4x2
matrix. However, a vector register can hold at most 2 doubles. Thus, if
we performed an outer product using 2 vector register, we can only get a
2x2 matrix. Therefore, we must create a vector register pair in order
to get the desired 4x2 matrix.
*/
D_ASSEMBLE_VEC_PAIR
/* Compute accumulate outer products and override accumulators with result */
__builtin_mma_xvf64ger (&acc0, colA_1, rb[0]);
__builtin_mma_xvf64ger (&acc1, colA_1, rb[1]);
__builtin_mma_xvf64ger (&acc2, colA_1, rb[2]);
__builtin_mma_xvf64ger (&acc3, colA_1, rb[3]);
__builtin_mma_xvf64ger (&acc4, colA_2, rb[0]);
__builtin_mma_xvf64ger (&acc5, colA_2, rb[1]);
__builtin_mma_xvf64ger (&acc6, colA_2, rb[2]);
__builtin_mma_xvf64ger (&acc7, colA_2, rb[3]);
/* Move A and B pointers */
D_INCREMENT
// k loop (unrolled by 4)
for (int k = 0; k<k_iter; k++)
{
D_AB_PRODUCT
D_AB_PRODUCT
D_AB_PRODUCT
D_AB_PRODUCT
}
// edge loop
for (int k = 0; k<k_left; k++)
{
D_AB_PRODUCT
}
// handle beta cases
if (beta_ != 0.0)
{
SAVE_ACC(dv4sf_t, &acc0, rs_c, 0 );
SAVE_ACC(dv4sf_t, &acc1, rs_c, 2 );
SAVE_ACC(dv4sf_t, &acc2, rs_c, 4 );
SAVE_ACC(dv4sf_t, &acc3, rs_c, 6 );
SAVE_ACC(dv4sf_t, &acc4, rs_c, 4*rs_c);
SAVE_ACC(dv4sf_t, &acc5, rs_c, 2+4*rs_c);
SAVE_ACC(dv4sf_t, &acc6, rs_c, 4+4*rs_c);
SAVE_ACC(dv4sf_t, &acc7, rs_c, 6+4*rs_c);
}
else
{
SAVE_ACC_bz(dv4sf_t, &acc0, rs_c, 0 );
SAVE_ACC_bz(dv4sf_t, &acc1, rs_c, 2 );
SAVE_ACC_bz(dv4sf_t, &acc2, rs_c, 4 );
SAVE_ACC_bz(dv4sf_t, &acc3, rs_c, 6 );
SAVE_ACC_bz(dv4sf_t, &acc4, rs_c, 4*rs_c);
SAVE_ACC_bz(dv4sf_t, &acc5, rs_c, 2+4*rs_c);
SAVE_ACC_bz(dv4sf_t, &acc6, rs_c, 4+4*rs_c);
SAVE_ACC_bz(dv4sf_t, &acc7, rs_c, 6+4*rs_c);
}
GEMM_UKR_FLUSH_CT( d );
}
|