File: bli_gemm_power7_int_8x4.c

package info (click to toggle)
python-cython-blis 1.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 43,676 kB
  • sloc: ansic: 645,510; sh: 2,354; asm: 1,466; python: 821; cpp: 585; makefile: 14
file content (546 lines) | stat: -rw-r--r-- 21,458 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*

   (C) Copyright IBM Corporation 2013

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions are
   met:
    - Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    - Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    - Neither the name(s) of the copyright holder(s) nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#ifdef UTEST
#include "blis_utest.h"
#else
#include "blis.h"
#endif
#include <altivec.h>

#define COLMAJ_INDEX(row,col,ld) ((col*ld)+row)
#define ROWMAJ_INDEX(row,col,ld) ((row*ld)+col)
#define BLIS_INDEX(row,col,rs,cs) ((row*rs)+(col*cs))

/*
 * Perform
 *   c = beta * c + alpha * a * b
 * where
 *   alpha & beta are scalars
 *   c is mr x nr in blis-format, (col-stride & row-stride)
 *   a is mr x k in packed col-maj format (leading dim is mr)
 *   b is k x nr in packed row-maj format (leading dim is nr)
 */
void bli_sgemm_power7_int_8x4
     (
       dim_t               m,
       dim_t               n,
       dim_t               k,
       float*     restrict alpha,
       float*     restrict a,
       float*     restrict b,
       float*     restrict beta,
       float*     restrict c, inc_t rs_c, inc_t cs_c,
       auxinfo_t* restrict data,
       cntx_t*    restrict cntx
     )
{
#if 1 || defined(UTEST)
    const long MR = BLIS_DEFAULT_MR_S, NR = BLIS_DEFAULT_NR_S;
    const long LDA = MR, LDB = NR;
    long i, j, kk;
    float c00;

    for (i=0; i < m; i++) {
        for (j=0; j < n; j++) {
            c00 = c[BLIS_INDEX(i,j,rs_c,cs_c)] * *beta;
            for (kk=0; kk < k; kk++)
                c00 += *alpha * (a[COLMAJ_INDEX(i,kk,LDA)] * b[ROWMAJ_INDEX(kk,j,LDB)]);
            c[BLIS_INDEX(i,j,rs_c,cs_c)] = c00;
        }
    }
#else
    //BLIS_SGEMM_UKERNEL_REF(k, alpha, a, b, beta, c, rs_c, cs_c, data);
#endif
}

/*
 * Perform
 *   c = beta * c + alpha * a * b
 * where
 *   alpha & beta are scalars
 *   c is mr x nr in blis-format, (col-stride & row-stride)
 *   a is mr x k in packed col-maj format (leading dim is mr)
 *   b is k x nr in packed row-maj format (leading dim is nr)
 */
void bli_dgemm_power7_int_8x4
     (
       dim_t               m,
       dim_t               n,
       dim_t               k,
       double*    restrict alpha,
       double*    restrict a,
       double*    restrict b,
       double*    restrict beta,
       double*    restrict c, inc_t rs_c, inc_t cs_c,
       auxinfo_t* restrict data,
       cntx_t*    restrict cntx
     )
{
    if ( cs_c == 1 )
    {
        // Optimized code for case where C rows are contiguous (i.e. C is row-major)

        vector double vzero = vec_splats( 0.0 );

        vector double vc00_01 = vzero;
        vector double vc02_03 = vzero;
        vector double vc10_11 = vzero;
        vector double vc12_13 = vzero;
        vector double vc20_21 = vzero;
        vector double vc22_23 = vzero;
        vector double vc30_31 = vzero;
        vector double vc32_33 = vzero;
        vector double vc40_41 = vzero;
        vector double vc42_43 = vzero;
        vector double vc50_51 = vzero;
        vector double vc52_53 = vzero;
        vector double vc60_61 = vzero;
        vector double vc62_63 = vzero;
        vector double vc70_71 = vzero;
        vector double vc72_73 = vzero;

        unsigned long long pa = (unsigned long long)a;
        unsigned long long pb = (unsigned long long)b;

#if 0
        unsigned long long d1 = 1*sizeof(double);
        unsigned long long d2 = 2*sizeof(double);
        unsigned long long d3 = 3*sizeof(double);
        unsigned long long d4 = 4*sizeof(double);
        unsigned long long d6 = 6*sizeof(double);
#else
        // ppc64 linux abi: r14-r31   Nonvolatile registers used for local variables
        register unsigned long long d1 __asm ("r21") = 1*sizeof(double);
        register unsigned long long d2 __asm ("r22") = 2*sizeof(double);
        register unsigned long long d3 __asm ("r23") = 3*sizeof(double);
        register unsigned long long d4 __asm ("r24") = 4*sizeof(double);
        register unsigned long long d5 __asm ("r25") = 5*sizeof(double);
        register unsigned long long d6 __asm ("r26") = 6*sizeof(double);
        register unsigned long long d7 __asm ("r27") = 7*sizeof(double);

        __asm__ volatile (";" : "=r" (d1) : "r" (d1) );
        __asm__ volatile (";" : "=r" (d2) : "r" (d2) );
        __asm__ volatile (";" : "=r" (d3) : "r" (d3) );
        __asm__ volatile (";" : "=r" (d4) : "r" (d4) );
        __asm__ volatile (";" : "=r" (d5) : "r" (d5) );
        __asm__ volatile (";" : "=r" (d6) : "r" (d6) );
        __asm__ volatile (";" : "=r" (d7) : "r" (d7) );
#endif

        int kk;
        for (kk=k; kk > 0; kk--) {
            vector double va00 = vec_splats( *(double *)( pa+0 ) );
            vector double va10 = vec_splats( *(double *)( pa+d1 ) );
            vector double va20 = vec_splats( *(double *)( pa+d2 ) );
            vector double va30 = vec_splats( *(double *)( pa+d3 ) );
            vector double va40 = vec_splats( *(double *)( pa+d4 ) );
            vector double va50 = vec_splats( *(double *)( pa+d5 ) );
            vector double va60 = vec_splats( *(double *)( pa+d6 ) );
            vector double va70 = vec_splats( *(double *)( pa+d7 ) );
            pa += 8*sizeof(double);

            vector double vb00_01 = *(vector double *)( pb+0 );
            vector double vb02_03 = *(vector double *)( pb+d2 );
            pb += 4*sizeof(double);

            vc00_01 = vec_madd(va00, vb00_01, vc00_01);
            vc02_03 = vec_madd(va00, vb02_03, vc02_03);
            vc10_11 = vec_madd(va10, vb00_01, vc10_11);
            vc12_13 = vec_madd(va10, vb02_03, vc12_13);
            vc20_21 = vec_madd(va20, vb00_01, vc20_21);
            vc22_23 = vec_madd(va20, vb02_03, vc22_23);
            vc30_31 = vec_madd(va30, vb00_01, vc30_31);
            vc32_33 = vec_madd(va30, vb02_03, vc32_33);
            vc40_41 = vec_madd(va40, vb00_01, vc40_41);
            vc42_43 = vec_madd(va40, vb02_03, vc42_43);
            vc50_51 = vec_madd(va50, vb00_01, vc50_51);
            vc52_53 = vec_madd(va50, vb02_03, vc52_53);
            vc60_61 = vec_madd(va60, vb00_01, vc60_61);
            vc62_63 = vec_madd(va60, vb02_03, vc62_63);
            vc70_71 = vec_madd(va70, vb00_01, vc70_71);
            vc72_73 = vec_madd(va70, vb02_03, vc72_73);
        }

        vector double valpha = vec_splats( *alpha );
        vector double vbeta  = (vector double) { *beta, *beta };

        vector double *pc = (vector double *)c;

        vc00_01 = vec_mul(valpha, vc00_01);
        vc02_03 = vec_mul(valpha, vc02_03);
        pc[0] = vec_madd( pc[0], vbeta, vc00_01);
        pc[1] = vec_madd( pc[1], vbeta, vc02_03);
        pc += rs_c/2;

        vc10_11 = vec_mul(valpha, vc10_11);
        vc12_13 = vec_mul(valpha, vc12_13);
        pc[0] = vec_madd( pc[0], vbeta, vc10_11);
        pc[1] = vec_madd( pc[1], vbeta, vc12_13);
        pc += rs_c/2;

        vc20_21 = vec_mul(valpha, vc20_21);
        vc22_23 = vec_mul(valpha, vc22_23);
        pc[0] = vec_madd( pc[0], vbeta, vc20_21);
        pc[1] = vec_madd( pc[1], vbeta, vc22_23);
        pc += rs_c/2;

        vc30_31 = vec_mul(valpha, vc30_31);
        vc32_33 = vec_mul(valpha, vc32_33);
        pc[0] = vec_madd( pc[0], vbeta, vc30_31);
        pc[1] = vec_madd( pc[1], vbeta, vc32_33);
        pc += rs_c/2;

        vc40_41 = vec_mul(valpha, vc40_41);
        vc42_43 = vec_mul(valpha, vc42_43);
        pc[0] = vec_madd( pc[0], vbeta, vc40_41);
        pc[1] = vec_madd( pc[1], vbeta, vc42_43);
        pc += rs_c/2;

        vc50_51 = vec_mul(valpha, vc50_51);
        vc52_53 = vec_mul(valpha, vc52_53);
        pc[0] = vec_madd( pc[0], vbeta, vc50_51);
        pc[1] = vec_madd( pc[1], vbeta, vc52_53);
        pc += rs_c/2;

        vc60_61 = vec_mul(valpha, vc60_61);
        vc62_63 = vec_mul(valpha, vc62_63);
        pc[0] = vec_madd( pc[0], vbeta, vc60_61);
        pc[1] = vec_madd( pc[1], vbeta, vc62_63);
        pc += rs_c/2;

        vc70_71 = vec_mul(valpha, vc70_71);
        vc72_73 = vec_mul(valpha, vc72_73);
        pc[0] = vec_madd( pc[0], vbeta, vc70_71);
        pc[1] = vec_madd( pc[1], vbeta, vc72_73);
        pc += rs_c/2;
    }
    else
    {
        GEMM_UKR_SETUP_CT( d, 8, 4, false );

        // Optimized code for case where C columns are contiguous (column-major C)
        vector double vzero = vec_splats( 0.0 );

        vector double vc00_10 = vzero;
        vector double vc20_30 = vzero;
        vector double vc40_50 = vzero;
        vector double vc60_70 = vzero;
        vector double vc01_11 = vzero;
        vector double vc21_31 = vzero;
        vector double vc41_51 = vzero;
        vector double vc61_71 = vzero;
        vector double vc02_12 = vzero;
        vector double vc22_32 = vzero;
        vector double vc42_52 = vzero;
        vector double vc62_72 = vzero;
        vector double vc03_13 = vzero;
        vector double vc23_33 = vzero;
        vector double vc43_53 = vzero;
        vector double vc63_73 = vzero;

        unsigned long long pa = (unsigned long long)a;
        unsigned long long pb = (unsigned long long)b;

#if 0
        unsigned long long d1 = 1*sizeof(double);
        unsigned long long d2 = 2*sizeof(double);
        unsigned long long d3 = 3*sizeof(double);
        unsigned long long d4 = 4*sizeof(double);
        unsigned long long d6 = 6*sizeof(double);
#else
        // ppc64 linux abi: r14-r31   Nonvolatile registers used for local variables
        register unsigned long long d1 __asm ("r21") = 1*sizeof(double);
        register unsigned long long d2 __asm ("r22") = 2*sizeof(double);
        register unsigned long long d3 __asm ("r23") = 3*sizeof(double);
        register unsigned long long d4 __asm ("r24") = 4*sizeof(double);
        register unsigned long long d6 __asm ("r26") = 6*sizeof(double);

        __asm__ volatile (";" : "=r" (d1) : "r" (d1) );
        __asm__ volatile (";" : "=r" (d2) : "r" (d2) );
        __asm__ volatile (";" : "=r" (d3) : "r" (d3) );
        __asm__ volatile (";" : "=r" (d4) : "r" (d4) );
        __asm__ volatile (";" : "=r" (d6) : "r" (d6) );
#endif

        int kk;
        for (kk=k; kk > 1; kk-=2) {

            vector double va00_10 = *(vector double *)( pa+0 );
            vector double va20_30 = *(vector double *)( pa+d2 );
            vector double va40_50 = *(vector double *)( pa+d4 );
            vector double va60_70 = *(vector double *)( pa+d6 );
            pa += 8*sizeof(double);

            vector double vb00 = vec_splats( *(double *)( pb+0 ) );
            vector double vb01 = vec_splats( *(double *)( pb+d1 ) );
            vector double vb02 = vec_splats( *(double *)( pb+d2 ) );
            vector double vb03 = vec_splats( *(double *)( pb+d3 ) );
            pb += 4*sizeof(double);

            vc00_10 = vec_madd(va00_10, vb00, vc00_10);
            vc20_30 = vec_madd(va20_30, vb00, vc20_30);
            vc40_50 = vec_madd(va40_50, vb00, vc40_50);
            vc60_70 = vec_madd(va60_70, vb00, vc60_70);
            vc01_11 = vec_madd(va00_10, vb01, vc01_11);
            vc21_31 = vec_madd(va20_30, vb01, vc21_31);
            vc41_51 = vec_madd(va40_50, vb01, vc41_51);
            vc61_71 = vec_madd(va60_70, vb01, vc61_71);
            vc02_12 = vec_madd(va00_10, vb02, vc02_12);
            vc22_32 = vec_madd(va20_30, vb02, vc22_32);
            vc42_52 = vec_madd(va40_50, vb02, vc42_52);
            vc62_72 = vec_madd(va60_70, vb02, vc62_72);
            vc03_13 = vec_madd(va00_10, vb03, vc03_13);
            vc23_33 = vec_madd(va20_30, vb03, vc23_33);
            vc43_53 = vec_madd(va40_50, vb03, vc43_53);
            vc63_73 = vec_madd(va60_70, vb03, vc63_73);

            va00_10 = *(vector double *)( pa+0 );
            va20_30 = *(vector double *)( pa+d2 );
            va40_50 = *(vector double *)( pa+d4 );
            va60_70 = *(vector double *)( pa+d6 );
            pa += 8*sizeof(double);

            vb00 = vec_splats( *(double *)( pb+0 ) );
            vb01 = vec_splats( *(double *)( pb+d1 ) );
            vb02 = vec_splats( *(double *)( pb+d2 ) );
            vb03 = vec_splats( *(double *)( pb+d3 ) );
            pb += 4*sizeof(double);

            vc00_10 = vec_madd(va00_10, vb00, vc00_10);
            vc20_30 = vec_madd(va20_30, vb00, vc20_30);
            vc40_50 = vec_madd(va40_50, vb00, vc40_50);
            vc60_70 = vec_madd(va60_70, vb00, vc60_70);
            vc01_11 = vec_madd(va00_10, vb01, vc01_11);
            vc21_31 = vec_madd(va20_30, vb01, vc21_31);
            vc41_51 = vec_madd(va40_50, vb01, vc41_51);
            vc61_71 = vec_madd(va60_70, vb01, vc61_71);
            vc02_12 = vec_madd(va00_10, vb02, vc02_12);
            vc22_32 = vec_madd(va20_30, vb02, vc22_32);
            vc42_52 = vec_madd(va40_50, vb02, vc42_52);
            vc62_72 = vec_madd(va60_70, vb02, vc62_72);
            vc03_13 = vec_madd(va00_10, vb03, vc03_13);
            vc23_33 = vec_madd(va20_30, vb03, vc23_33);
            vc43_53 = vec_madd(va40_50, vb03, vc43_53);
            vc63_73 = vec_madd(va60_70, vb03, vc63_73);
        }

        for (kk=kk; kk > 0; kk--) {

            vector double va00_10 = *(vector double *)( pa+0 );
            vector double va20_30 = *(vector double *)( pa+d2 );
            vector double va40_50 = *(vector double *)( pa+d4 );
            vector double va60_70 = *(vector double *)( pa+d6 );
            pa += 8*sizeof(double);

            vector double vb00 = vec_splats( *(double *)( pb+0 ) );
            vector double vb01 = vec_splats( *(double *)( pb+d1 ) );
            vector double vb02 = vec_splats( *(double *)( pb+d2 ) );
            vector double vb03 = vec_splats( *(double *)( pb+d3 ) );
            pb += 4*sizeof(double);

            vc00_10 = vec_madd(va00_10, vb00, vc00_10);
            vc20_30 = vec_madd(va20_30, vb00, vc20_30);
            vc40_50 = vec_madd(va40_50, vb00, vc40_50);
            vc60_70 = vec_madd(va60_70, vb00, vc60_70);
            vc01_11 = vec_madd(va00_10, vb01, vc01_11);
            vc21_31 = vec_madd(va20_30, vb01, vc21_31);
            vc41_51 = vec_madd(va40_50, vb01, vc41_51);
            vc61_71 = vec_madd(va60_70, vb01, vc61_71);
            vc02_12 = vec_madd(va00_10, vb02, vc02_12);
            vc22_32 = vec_madd(va20_30, vb02, vc22_32);
            vc42_52 = vec_madd(va40_50, vb02, vc42_52);
            vc62_72 = vec_madd(va60_70, vb02, vc62_72);
            vc03_13 = vec_madd(va00_10, vb03, vc03_13);
            vc23_33 = vec_madd(va20_30, vb03, vc23_33);
            vc43_53 = vec_madd(va40_50, vb03, vc43_53);
            vc63_73 = vec_madd(va60_70, vb03, vc63_73);
        }

        // The following code is dependent on rs_c == 1

        vector double valpha = vec_splats( *alpha );
        vector double vbeta  = (vector double) { *beta, *beta };

        vector double *pc = (vector double *)c;

        vc00_10 = vec_mul(valpha, vc00_10);
        vc20_30 = vec_mul(valpha, vc20_30);
        vc40_50 = vec_mul(valpha, vc40_50);
        vc60_70 = vec_mul(valpha, vc60_70);

        pc[0] = vec_madd( pc[0], vbeta, vc00_10);
        pc[1] = vec_madd( pc[1], vbeta, vc20_30);
        pc[2] = vec_madd( pc[2], vbeta, vc40_50);
        pc[3] = vec_madd( pc[3], vbeta, vc60_70);
        pc += cs_c/2;

        vc01_11 = vec_mul(valpha, vc01_11);
        vc21_31 = vec_mul(valpha, vc21_31);
        vc41_51 = vec_mul(valpha, vc41_51);
        vc61_71 = vec_mul(valpha, vc61_71);

        pc[0] = vec_madd( pc[0], vbeta, vc01_11);
        pc[1] = vec_madd( pc[1], vbeta, vc21_31);
        pc[2] = vec_madd( pc[2], vbeta, vc41_51);
        pc[3] = vec_madd( pc[3], vbeta, vc61_71);
        pc += cs_c/2;

        vc02_12 = vec_mul(valpha, vc02_12);
        vc22_32 = vec_mul(valpha, vc22_32);
        vc42_52 = vec_mul(valpha, vc42_52);
        vc62_72 = vec_mul(valpha, vc62_72);

        pc[0] = vec_madd( pc[0], vbeta, vc02_12);
        pc[1] = vec_madd( pc[1], vbeta, vc22_32);
        pc[2] = vec_madd( pc[2], vbeta, vc42_52);
        pc[3] = vec_madd( pc[3], vbeta, vc62_72);
        pc += cs_c/2;

        vc03_13 = vec_mul(valpha, vc03_13);
        vc23_33 = vec_mul(valpha, vc23_33);
        vc43_53 = vec_mul(valpha, vc43_53);
        vc63_73 = vec_mul(valpha, vc63_73);

        pc[0] = vec_madd( pc[0], vbeta, vc03_13);
        pc[1] = vec_madd( pc[1], vbeta, vc23_33);
        pc[2] = vec_madd( pc[2], vbeta, vc43_53);
        pc[3] = vec_madd( pc[3], vbeta, vc63_73);

        GEMM_UKR_FLUSH_CT( d );
    }
}

/*
 * Perform
 *   c = beta * c + alpha * a * b
 * where
 *   alpha & beta are scalars
 *   c is mr x nr in blis-format, (col-stride & row-stride)
 *   a is mr x k in packed col-maj format (leading dim is mr)
 *   b is k x nr in packed row-maj format (leading dim is nr)
 */
void bli_cgemm_power7_int_8x4
     (
       dim_t               m,
       dim_t               n,
       dim_t               k,
       scomplex*  restrict alpha,
       scomplex*  restrict a,
       scomplex*  restrict b,
       scomplex*  restrict beta,
       scomplex*  restrict c, inc_t rs_c, inc_t cs_c,
       auxinfo_t* restrict data,
       cntx_t*    restrict cntx
     )
{
#if 1 || defined(UTEST)
    const long MR = BLIS_DEFAULT_MR_C, NR = BLIS_DEFAULT_NR_C;
    const long LDA = MR, LDB = NR;
    int i, j, kk;
    scomplex c00;

    for (i=0; i < m; i++) {
        for (j=0; j < n; j++) {
            scomplex tmpc, tmpa, tmpb, tmp;
            //c00 = c[BLIS_INDEX(i,j,rs_c,cs_c)] * *beta;
            tmpc = c[BLIS_INDEX(i,j,rs_c,cs_c)];
            c00.real = tmpc.real * (*beta).real - tmpc.imag * (*beta).imag;
            c00.imag = tmpc.real * (*beta).imag + tmpc.imag * (*beta).real;
            for (kk=0; kk < k; kk++) {
                //c00 += *alpha * (a[COLMAJ_INDEX(i,kk,LDA)] * b[ROWMAJ_INDEX(kk,j,LDB)]);
                tmpa = a[COLMAJ_INDEX(i,kk,LDA)];
                tmpb = b[ROWMAJ_INDEX(kk,j,LDB)];
                tmp.real = tmpa.real * tmpb.real - tmpa.imag * tmpb.imag;
                tmp.imag = tmpa.real * tmpb.imag + tmpa.imag * tmpb.real;
                c00.real += (*alpha).real * tmp.real - (*alpha).imag * tmp.imag;
                c00.imag += (*alpha).real * tmp.imag + (*alpha).imag * tmp.real;
            }
            c[BLIS_INDEX(i,j,rs_c,cs_c)] = c00;
        }
    }
#else
    //BLIS_CGEMM_UKERNEL_REF(k, alpha, a, b, beta, c, rs_c, cs_c, data);
#endif
}

/*
 * Perform
 *   c = beta * c + alpha * a * b
 * where
 *   alpha & beta are scalars
 *   c is mr x nr in blis-format, (col-stride & row-stride)
 *   a is mr x k in packed col-maj format (leading dim is mr)
 *   b is k x nr in packed row-maj format (leading dim is nr)
 */
void bli_zgemm_power7_int_8x4
     (
       dim_t               m,
       dim_t               n,
       dim_t               k,
       scomplex*  restrict alpha,
       scomplex*  restrict a,
       scomplex*  restrict b,
       scomplex*  restrict beta,
       scomplex*  restrict c, inc_t rs_c, inc_t cs_c,
       auxinfo_t* restrict data,
       cntx_t*    restrict cntx
     )
{
#if 1 || defined(UTEST)
    const long MR = BLIS_DEFAULT_MR_Z, NR = BLIS_DEFAULT_NR_Z;
    const long LDA = MR, LDB = NR;
    int i, j, kk;
    dcomplex c00;

    for (i=0; i < m; i++) {
        for (j=0; j < n; j++) {
            dcomplex tmpc, tmpa, tmpb, tmp;
            //c00 = c[BLIS_INDEX(i,j,rs_c,cs_c)] * *beta;
            tmpc = c[BLIS_INDEX(i,j,rs_c,cs_c)];
            c00.real = tmpc.real * (*beta).real - tmpc.imag * (*beta).imag;
            c00.imag = tmpc.real * (*beta).imag + tmpc.imag * (*beta).real;
            for (kk=0; kk < k; kk++) {
                //c00 += *alpha * (a[COLMAJ_INDEX(i,kk,LDA)] * b[ROWMAJ_INDEX(kk,j,LDB)]);
                tmpa = a[COLMAJ_INDEX(i,kk,LDA)];
                tmpb = b[ROWMAJ_INDEX(kk,j,LDB)];
                tmp.real = tmpa.real * tmpb.real - tmpa.imag * tmpb.imag;
                tmp.imag = tmpa.real * tmpb.imag + tmpa.imag * tmpb.real;
                c00.real += (*alpha).real * tmp.real - (*alpha).imag * tmp.imag;
                c00.imag += (*alpha).real * tmp.imag + (*alpha).imag * tmp.real;
            }
            c[BLIS_INDEX(i,j,rs_c,cs_c)] = c00;
        }
    }
#else
    //BLIS_ZGEMM_UKERNEL_REF(k, alpha, a, b, beta, c, rs_c, cs_c, data);
#endif
}