1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/*
BLIS
An object-based framework for developing high-performance BLAS-like
libraries.
Copyright (C) 2016 - 2019, Advanced Micro Devices, Inc.
Copyright (C) 2018, The University of Texas at Austin
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name(s) of the copyright holder(s) nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "immintrin.h"
#include "blis.h"
/* Union data structure to access AVX registers
One 256-bit AVX register holds 8 SP elements. */
typedef union
{
__m256 v;
float f[8] __attribute__((aligned(64)));
} v8sf_t;
/* Union data structure to access AVX registers
* One 256-bit AVX register holds 4 DP elements. */
typedef union
{
__m256d v;
double d[4] __attribute__((aligned(64)));
} v4df_t;
// -----------------------------------------------------------------------------
void bli_sdotxv_zen_int
(
conj_t conjx,
conj_t conjy,
dim_t n,
float* restrict alpha,
float* restrict x, inc_t incx,
float* restrict y, inc_t incy,
float* restrict beta,
float* restrict rho,
cntx_t* restrict cntx
)
{
const dim_t n_elem_per_reg = 8;
const dim_t n_iter_unroll = 4;
dim_t i;
dim_t n_viter;
dim_t n_left;
float* restrict x0;
float* restrict y0;
float rho0;
v8sf_t rho0v, rho1v, rho2v, rho3v;
v8sf_t x0v, y0v;
v8sf_t x1v, y1v;
v8sf_t x2v, y2v;
v8sf_t x3v, y3v;
// If beta is zero, initialize rho1 to zero instead of scaling
// rho by beta (in case rho contains NaN or Inf).
if ( PASTEMAC(s,eq0)( *beta ) )
{
PASTEMAC(s,set0s)( *rho );
}
else
{
PASTEMAC(s,scals)( *beta, *rho );
}
// If the vector dimension is zero, output rho and return early.
if ( bli_zero_dim1( n ) || PASTEMAC(s,eq0)( *alpha ) ) return;
// Use the unrolling factor and the number of elements per register
// to compute the number of vectorized and leftover iterations.
n_viter = ( n ) / ( n_elem_per_reg * n_iter_unroll );
n_left = ( n ) % ( n_elem_per_reg * n_iter_unroll );
// If there is anything that would interfere with our use of contiguous
// vector loads/stores, override n_viter and n_left to use scalar code
// for all iterations.
if ( incx != 1 || incy != 1 )
{
n_viter = 0;
n_left = n;
}
// Initialize local pointers.
x0 = x;
y0 = y;
// Initialize the unrolled iterations' rho vectors to zero.
rho0v.v = _mm256_setzero_ps();
rho1v.v = _mm256_setzero_ps();
rho2v.v = _mm256_setzero_ps();
rho3v.v = _mm256_setzero_ps();
for ( i = 0; i < n_viter; ++i )
{
// Load the x and y input vector elements.
x0v.v = _mm256_loadu_ps( x0 + 0*n_elem_per_reg );
y0v.v = _mm256_loadu_ps( y0 + 0*n_elem_per_reg );
x1v.v = _mm256_loadu_ps( x0 + 1*n_elem_per_reg );
y1v.v = _mm256_loadu_ps( y0 + 1*n_elem_per_reg );
x2v.v = _mm256_loadu_ps( x0 + 2*n_elem_per_reg );
y2v.v = _mm256_loadu_ps( y0 + 2*n_elem_per_reg );
x3v.v = _mm256_loadu_ps( x0 + 3*n_elem_per_reg );
y3v.v = _mm256_loadu_ps( y0 + 3*n_elem_per_reg );
// Compute the element-wise product of the x and y vectors,
// storing in the corresponding rho vectors.
rho0v.v = _mm256_fmadd_ps( x0v.v, y0v.v, rho0v.v );
rho1v.v = _mm256_fmadd_ps( x1v.v, y1v.v, rho1v.v );
rho2v.v = _mm256_fmadd_ps( x2v.v, y2v.v, rho2v.v );
rho3v.v = _mm256_fmadd_ps( x3v.v, y3v.v, rho3v.v );
x0 += ( n_elem_per_reg * n_iter_unroll );
y0 += ( n_elem_per_reg * n_iter_unroll );
}
// Accumulate the unrolled rho vectors into a single vector.
rho0v.v += rho1v.v;
rho0v.v += rho2v.v;
rho0v.v += rho3v.v;
// Accumulate the final rho vector into a single scalar result.
rho0 = rho0v.f[0] + rho0v.f[1] + rho0v.f[2] + rho0v.f[3] +
rho0v.f[4] + rho0v.f[5] + rho0v.f[6] + rho0v.f[7];
// Issue vzeroupper instruction to clear upper lanes of ymm registers.
// This avoids a performance penalty caused by false dependencies when
// transitioning from from AVX to SSE instructions (which may occur
// as soon as the n_left cleanup loop below if BLIS is compiled with
// -mfpmath=sse).
_mm256_zeroupper();
// If there are leftover iterations, perform them with scalar code.
for ( i = 0; i < n_left; ++i )
{
const float x0c = *x0;
const float y0c = *y0;
rho0 += x0c * y0c;
x0 += incx;
y0 += incy;
}
// Accumulate the final result into the output variable.
PASTEMAC(s,axpys)( *alpha, rho0, *rho );
}
// -----------------------------------------------------------------------------
void bli_ddotxv_zen_int
(
conj_t conjx,
conj_t conjy,
dim_t n,
double* restrict alpha,
double* restrict x, inc_t incx,
double* restrict y, inc_t incy,
double* restrict beta,
double* restrict rho,
cntx_t* restrict cntx
)
{
const dim_t n_elem_per_reg = 4;
const dim_t n_iter_unroll = 4;
dim_t i;
dim_t n_viter;
dim_t n_left;
double* restrict x0;
double* restrict y0;
double rho0;
v4df_t rho0v, rho1v, rho2v, rho3v;
v4df_t x0v, y0v;
v4df_t x1v, y1v;
v4df_t x2v, y2v;
v4df_t x3v, y3v;
// If beta is zero, initialize rho1 to zero instead of scaling
// rho by beta (in case rho contains NaN or Inf).
if ( PASTEMAC(d,eq0)( *beta ) )
{
PASTEMAC(d,set0s)( *rho );
}
else
{
PASTEMAC(d,scals)( *beta, *rho );
}
// If the vector dimension is zero, output rho and return early.
if ( bli_zero_dim1( n ) || PASTEMAC(d,eq0)( *alpha ) ) return;
// Use the unrolling factor and the number of elements per register
// to compute the number of vectorized and leftover iterations.
n_viter = ( n ) / ( n_elem_per_reg * n_iter_unroll );
n_left = ( n ) % ( n_elem_per_reg * n_iter_unroll );
// If there is anything that would interfere with our use of contiguous
// vector loads/stores, override n_viter and n_left to use scalar code
// for all iterations.
if ( incx != 1 || incy != 1 )
{
n_viter = 0;
n_left = n;
}
// Initialize local pointers.
x0 = x;
y0 = y;
// Initialize the unrolled iterations' rho vectors to zero.
rho0v.v = _mm256_setzero_pd();
rho1v.v = _mm256_setzero_pd();
rho2v.v = _mm256_setzero_pd();
rho3v.v = _mm256_setzero_pd();
for ( i = 0; i < n_viter; ++i )
{
// Load the x and y input vector elements.
x0v.v = _mm256_loadu_pd( x0 + 0*n_elem_per_reg );
y0v.v = _mm256_loadu_pd( y0 + 0*n_elem_per_reg );
x1v.v = _mm256_loadu_pd( x0 + 1*n_elem_per_reg );
y1v.v = _mm256_loadu_pd( y0 + 1*n_elem_per_reg );
x2v.v = _mm256_loadu_pd( x0 + 2*n_elem_per_reg );
y2v.v = _mm256_loadu_pd( y0 + 2*n_elem_per_reg );
x3v.v = _mm256_loadu_pd( x0 + 3*n_elem_per_reg );
y3v.v = _mm256_loadu_pd( y0 + 3*n_elem_per_reg );
// Compute the element-wise product of the x and y vectors,
// storing in the corresponding rho vectors.
rho0v.v = _mm256_fmadd_pd( x0v.v, y0v.v, rho0v.v );
rho1v.v = _mm256_fmadd_pd( x1v.v, y1v.v, rho1v.v );
rho2v.v = _mm256_fmadd_pd( x2v.v, y2v.v, rho2v.v );
rho3v.v = _mm256_fmadd_pd( x3v.v, y3v.v, rho3v.v );
x0 += ( n_elem_per_reg * n_iter_unroll );
y0 += ( n_elem_per_reg * n_iter_unroll );
}
// Accumulate the unrolled rho vectors into a single vector.
rho0v.v += rho1v.v;
rho0v.v += rho2v.v;
rho0v.v += rho3v.v;
// Accumulate the final rho vector into a single scalar result.
rho0 = rho0v.d[0] + rho0v.d[1] + rho0v.d[2] + rho0v.d[3];
// Issue vzeroupper instruction to clear upper lanes of ymm registers.
// This avoids a performance penalty caused by false dependencies when
// transitioning from from AVX to SSE instructions (which may occur
// as soon as the n_left cleanup loop below if BLIS is compiled with
// -mfpmath=sse).
_mm256_zeroupper();
// If there are leftover iterations, perform them with scalar code.
for ( i = 0; i < n_left; ++i )
{
const double x0c = *x0;
const double y0c = *y0;
rho0 += x0c * y0c;
x0 += incx;
y0 += incy;
}
// Accumulate the final result into the output variable.
PASTEMAC(d,axpys)( *alpha, rho0, *rho );
}
|