1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
|
"""Calculate the Chirp Z-transform (CZT).
CZT reference:
Lawrence R. Rabiner, Ronald W. Schafer, and Charles M. Rader, "The chirp
z-transform algorithm and its application," Bell Syst. Tech. J. 48,
1249-1292 (1969).
CZT computation reference:
Sukhoy, V., Stoytchev, A. "Generalizing the inverse FFT off the unit
circle," Sci Rep 9, 14443 (2019).
"""
import numpy as np
from scipy.linalg import toeplitz, matmul_toeplitz
# CZT ------------------------------------------------------------------------
def czt(x, M=None, W=None, A=1.0, simple=False, t_method="ce", f_method="numpy"):
"""Calculate the Chirp Z-transform (CZT).
Solves in O(n log n) time.
See algorithm 1 in Sukhoy & Stoytchev 2019.
Args:
x (np.ndarray): input array
M (int): length of output array
W (complex): complex ratio between points
A (complex): complex starting point
simple (bool): use simple algorithm? (very slow)
t_method (str): Toeplitz matrix multiplication method. 'ce' for
circulant embedding, 'pd' for Pustylnikov's decomposition, 'mm'
for simple matrix multiplication, 'scipy' for matmul_toeplitz
from scipy.linalg.
f_method (str): FFT method. 'numpy' for FFT from NumPy,
'recursive' for recursive method.
Returns:
np.ndarray: Chirp Z-transform
"""
# Unpack arguments
N = len(x)
if M is None:
M = N
if W is None:
W = np.exp(-2j * np.pi / M)
A = np.complex128(A)
W = np.complex128(W)
# Simple algorithm (very slow)
if simple:
k = np.arange(M)
X = np.zeros(M, dtype=complex)
z = A * W ** -k
for n in range(N):
X += x[n] * z ** -n
return X
# Algorithm 1 from Sukhoy & Stoytchev 2019
k = np.arange(max(M, N))
Wk22 = W ** (-(k ** 2) / 2)
r = Wk22[:N]
c = Wk22[:M]
X = A ** -k[:N] * x / r
try:
toeplitz_mult = _available_t_methods[t_method] # now this raises an key error
except KeyError:
raise ValueError(f"t_method {t_method} not recognized. Must be one of {list(_available_t_methods.keys())}")
X = toeplitz_mult(r, c, X, f_method)
return X / c
def iczt(X, N=None, W=None, A=1.0, simple=True, t_method="scipy", f_method="numpy"):
"""Calculate inverse Chirp Z-transform (ICZT).
Uses an efficient algorithm. Solves in O(n log n) time.
See algorithm 2 in Sukhoy & Stoytchev 2019.
Args:
X (np.ndarray): input array
N (int): length of output array
W (complex): complex ratio between points
A (complex): complex starting point
simple (bool): calculate ICZT using simple method (using CZT and
conjugate)
t_method (str): Toeplitz matrix multiplication method. 'ce' for
circulant embedding, 'pd' for Pustylnikov's decomposition, 'mm'
for simple matrix multiplication, 'scipy' for matmul_toeplitz
from scipy.linalg. Ignored if you are not using the simple ICZT
method.
f_method (str): FFT method. 'numpy' for FFT from NumPy,
'recursive' for recursive method.
Returns:
np.ndarray: Inverse Chirp Z-transform
"""
# Unpack arguments
M = len(X)
if N is None:
N = M
if W is None:
W = np.exp(-2j * np.pi / M)
A = np.complex128(A)
W = np.complex128(W)
# Simple algorithm
if simple:
return np.conj(czt(np.conj(X), M=N, W=W, A=A, t_method=t_method, f_method=f_method)) / M
# Algorithm 2 from Sukhoy & Stoytchev 2019
if M != N:
raise ValueError("M must be equal to N")
n = N
k = np.arange(n)
Wk22 = W ** (-(k ** 2) / 2)
x = Wk22 * X
p = np.r_[1, (W ** k[1:] - 1).cumprod()]
u = (-1) ** k * W ** (k * (k - n + 0.5) + (n / 2 - 0.5) * n) / p
# equivalent to:
# u = (-1) ** k * W ** ((2 * k ** 2 - (2 * n - 1) * k + n * (n - 1)) / 2) / p
u /= p[::-1]
z = np.zeros(n, dtype=complex)
uhat = np.r_[0, u[-1:0:-1]]
util = np.r_[u[0], np.zeros(n - 1)]
try:
toeplitz_mult = _available_t_methods[t_method] # now this raises an key error
except KeyError:
raise ValueError(f"t_method {t_method} not recognized. Must be one of {list(_available_t_methods.keys())}")
# Note: there is difference in accuracy here depending on the method. Have to check.
x1 = toeplitz_mult(uhat, z, x, f_method)
x1 = toeplitz_mult(z, uhat, x1, f_method)
x2 = toeplitz_mult(u, util, x, f_method)
x2 = toeplitz_mult(util, u, x2, f_method)
x = (x2 - x1) / u[0]
x = A ** k * Wk22 * x
return x
# OTHER TRANSFORMS -----------------------------------------------------------
def dft(t, x, f=None):
"""Transform signal from time- to frequency-domain using a Discrete
Fourier Transform (DFT).
Used for testing CZT algorithm.
Args:
t (np.ndarray): time
x (np.ndarray): time-domain signal
f (np.ndarray): frequency for output signal
Returns:
np.ndarray: frequency-domain signal
"""
if f is None:
# Default to FFT frequency sweep
nt = len(t)
tspan = t[-1] - t[0]
dt = tspan / (nt - 1) # more accurate than t[1] - t[0]
f = np.fft.fftshift(np.fft.fftfreq(nt, dt))
X = np.empty(len(f), dtype=complex)
for k in range(len(f)):
X[k] = np.sum(x * np.exp(-2j * np.pi * f[k] * t))
return f, X
def idft(f, X, t=None):
"""Transform signal from time- to frequency-domain using an Inverse
Discrete Fourier Transform (IDFT).
Used for testing the ICZT algorithm.
Args:
f (np.ndarray): frequency
X (np.ndarray): frequency-domain signal
t (np.ndarray): time for output signal
Returns:
np.ndarray: time-domain signal
"""
if t is None:
# Default to FFT time sweep
nf = len(f)
fspan = f[-1] - f[0]
df = fspan / (nf - 1) # more accurate than f[1] - f[0]
t = np.fft.fftshift(np.fft.fftfreq(nf, df))
x = np.empty(len(t), dtype=complex)
for n in range(len(t)):
x[n] = np.sum(X * np.exp(2j * np.pi * f * t[n]))
x /= len(t)
return t, x
# FREQ <--> TIME-DOMAIN CONVERSION -------------------------------------------
def time2freq(t, x, f=None):
"""Transform a time-domain signal to the frequency-domain.
Args:
t (np.ndarray): time
x (np.ndarray): time-domain signal
f (np.ndarray): frequency for output signal, optional, defaults to
standard FFT frequency sweep
Returns:
frequency-domain signal
"""
# Input time array
nt = len(t)
tspan = t[-1] - t[0]
dt = tspan / (nt - 1) # more accurate than t[1] - t[0]
# Output frequency array
if f is None:
# Default to FFT frequency sweep
f = np.fft.fftshift(np.fft.fftfreq(nt, dt))
else:
f = np.copy(f)
nf = len(f)
fspan = f[-1] - f[0]
df = fspan / (nf - 1) # more accurate than f[1] - f[0]
# Starting point
A = np.exp(2j * np.pi * f[0] * dt)
# Step
W = np.exp(-2j * np.pi * df * dt)
# Phase correction
phase = np.exp(-2j * np.pi * t[0] * f)
# Frequency-domain transform
freq_data = czt(x, nf, W, A) * phase
return f, freq_data
def freq2time(f, X, t=None):
"""Transform a frequency-domain signal to the time-domain.
Args:
f (np.ndarray): frequency
X (np.ndarray): frequency-domain signal
t (np.ndarray): time for output signal, optional, defaults to standard
FFT time sweep
Returns:
time-domain signal
"""
# Input frequency array
nf = len(f)
fspan = f[-1] - f[0]
df = fspan / (nf - 1) # more accurate than f[1] - f[0]
# Output time array
if t is None:
# Default to FFT time sweep
t = np.fft.fftshift(np.fft.fftfreq(nf, df))
else:
t = np.copy(t)
nt = len(t)
tspan = t[-1] - t[0]
dt = tspan / (nt - 1) # more accurate than t[1] - t[0]
# Starting point
A = np.exp(-2j * np.pi * t[0] * df)
# Step
W = np.exp(2j * np.pi * df * dt)
# Phase correction
phase = np.exp(2j * np.pi * f[0] * t)
# Time-domain transform
time_data = czt(X, nt, W=W, A=A) * phase / nf
return t, time_data
# HELPER FUNCTIONS -----------------------------------------------------------
def _toeplitz_mult_ce(r, c, x, f_method="numpy"):
"""Multiply Toeplitz matrix by vector using circulant embedding.
See algorithm S1 in Sukhoy & Stoytchev 2019:
Compute the product y = Tx of a Toeplitz matrix T and a vector x, where
T is specified by its first row r = (r[0], r[1], r[2],...,r[N-1]) and
its first column c = (c[0], c[1], c[2],...,c[M-1]), where r[0] = c[0].
Args:
r (np.ndarray): first row of Toeplitz matrix
c (np.ndarray): first column of Toeplitz matrix
x (np.ndarray): vector to multiply the Toeplitz matrix
f_method (str): FFT method. 'numpy' for FFT from NumPy, 'recursive'
for recursive method.
Returns:
np.ndarray: product of Toeplitz matrix and vector x
"""
N = len(r)
M = len(c)
assert r[0] == c[0]
assert len(x) == N
n = int(2 ** np.ceil(np.log2(M + N - 1)))
assert n >= M
assert n >= N
chat = np.r_[c, np.zeros(n - (M + N - 1)), r[-(N - 1):][::-1]]
xhat = _zero_pad(x, n)
yhat = _circulant_multiply(chat, xhat, f_method)
y = yhat[:M]
return y
def _toeplitz_mult_pd(r, c, x, f_method="numpy"):
"""Multiply Toeplitz matrix by vector using Pustylnikov's decomposition.
See algorithm S3 in Sukhoy & Stoytchev 2019:
Compute the product y = Tx of a Toeplitz matrix T and a vector x, where
T is specified by its first row r = (r[0], r[1], r[2],...,r[N-1]) and
its first column c = (c[0], c[1], c[2],...,c[M-1]), where r[0] = c[0].
Args:
r (np.ndarray): first row of Toeplitz matrix
c (np.ndarray): first column of Toeplitz matrix
x (np.ndarray): vector to multiply the Toeplitz matrix
f_method (str): FFT method. 'numpy' for FFT from NumPy, 'recursive'
for recursive method.
Returns:
np.ndarray: product of Toeplitz matrix and vector x
"""
N = len(r)
M = len(c)
assert r[0] == c[0]
assert len(x) == N
n = int(2 ** np.ceil(np.log2(M + N - 1)))
if N != n:
r = _zero_pad(r, n)
x = _zero_pad(x, n)
if M != n:
c = _zero_pad(c, n)
c1 = np.r_[c[0], c[1:]+r[-1:0:-1]]
c2 = np.r_[c[0], c[1:]-r[-1:0:-1]]
y1 = _circulant_multiply(c1 / 2, x, f_method)
y2 = _skew_circulant_multiply(c2 / 2, x, f_method)
y = y1[:M] + y2[:M]
return y
def _zero_pad(x, n):
"""Zero pad an array x to length n by appending zeros.
Args:
x (np.ndarray): array x
n (int): length of output array
Returns:
np.ndarray: array x with padding
"""
m = len(x)
assert m <= n
xhat = np.zeros(n, dtype=complex)
xhat[:m] = x
return xhat
def _circulant_multiply(c, x, f_method="numpy"):
"""Multiply a circulant matrix by a vector.
Runs in O(n log n) time.
See algorithm S4 in Sukhoy & Stoytchev 2019:
Compute the product y = Gx of a circulant matrix G and a vector x,
where G is generated by its first column c=(c[0], c[1],...,c[n-1]).
Args:
c (np.ndarray): first column of circulant matrix G
x (np.ndarray): vector x
f_method (str): FFT method. 'numpy' for FFT from NumPy,
'recursive' for recursive method.
Returns:
np.ndarray: product Gx
"""
n = len(c)
assert len(x) == n
if f_method == "numpy":
C = np.fft.fft(c)
X = np.fft.fft(x)
Y = C * X
return np.fft.ifft(Y)
elif f_method.lower() == "recursive":
C = _fft(c)
X = _fft(x)
Y = C * X
return _ifft(Y)
else:
raise ValueError("f_method not recognized.")
def _skew_circulant_multiply(c, x, f_method="numpy"):
"""Multiply a skew-circulant matrix by a vector.
Runs in O(n log n) time.
See algorithm S7 in Sukhoy & Stoytchev 2019.
Args:
c (np.ndarray): first column of skew-circulant matrix G
x (np.ndarray): vector x
f_method (str): FFT method. 'numpy' for FFT from NumPy, 'recursive'
for recursive method.
Returns:
np.ndarray: product Gx
"""
n = len(c)
assert len(x) == n
k = np.arange(n, dtype=float)
prefac = np.exp(-1j * k * np.pi / n)
chat = c * prefac
xhat = x * prefac
y = _circulant_multiply(chat, xhat, f_method)
y *= prefac.conjugate()
return y
def _fft(x):
"""Recursive FFT algorithm. Runs in O(n log n) time.
Args:
x (np.ndarray): input
Returns:
np.ndarray: FFT of x
"""
n = len(x)
if n == 1:
return x
xe = x[0::2]
xo = x[1::2]
y1 = _fft(xe)
y2 = _fft(xo)
k = np.arange(n // 2)
w = np.exp(-2j * np.pi * k / n)
y = np.empty(n, dtype=complex)
y[: n // 2] = y1 + w * y2
y[n // 2:] = y1 - w * y2
return y
def _ifft(y):
"""Recursive IFFT algorithm. Runs in O(n log n) time.
Args:
y (np.ndarray): input
Returns:
np.ndarray: IFFT of y
"""
n = len(y)
if n == 1:
return y
ye = y[0::2]
yo = y[1::2]
x1 = _ifft(ye)
x2 = _ifft(yo)
k = np.arange(n // 2)
w = np.exp(2j * np.pi * k / n)
x = np.empty(n, dtype=complex)
x[: n // 2] = (x1 + w * x2) / 2
x[n // 2:] = (x1 - w * x2) / 2
return x
_available_t_methods = {
"ce": _toeplitz_mult_ce,
"pd": _toeplitz_mult_pd,
"mm": lambda r, c, x, _: np.matmul(toeplitz(c, r), x),
"scipy": lambda r, c, x, _: matmul_toeplitz((c, r), x),
}
|