File: PKG-INFO

package info (click to toggle)
python-datamodel-code-generator 0.26.4-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 712 kB
  • sloc: python: 9,525; makefile: 14
file content (580 lines) | stat: -rw-r--r-- 24,955 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
Metadata-Version: 2.1
Name: datamodel-code-generator
Version: 0.26.4
Summary: Datamodel Code Generator
Home-page: https://github.com/koxudaxi/datamodel-code-generator
License: MIT
Author: Koudai Aono
Author-email: koxudaxi@gmail.com
Requires-Python: >=3.8,<4.0
Classifier: Development Status :: 4 - Beta
Classifier: License :: OSI Approved :: MIT License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3.13
Classifier: Programming Language :: Python :: Implementation :: CPython
Provides-Extra: debug
Provides-Extra: graphql
Provides-Extra: http
Provides-Extra: validation
Requires-Dist: PySnooper (>=0.4.1,<2.0.0) ; extra == "debug"
Requires-Dist: argcomplete (>=1.10,<4.0)
Requires-Dist: black (>=19.10b0)
Requires-Dist: genson (>=1.2.1,<2.0)
Requires-Dist: graphql-core (>=3.2.3,<4.0.0) ; extra == "graphql"
Requires-Dist: httpx ; extra == "http"
Requires-Dist: inflect (>=4.1.0,<6.0)
Requires-Dist: isort (>=4.3.21,<6.0)
Requires-Dist: jinja2 (>=2.10.1,<4.0)
Requires-Dist: openapi-spec-validator (>=0.2.8,<0.7.0) ; extra == "validation"
Requires-Dist: packaging
Requires-Dist: prance (>=0.18.2) ; extra == "validation"
Requires-Dist: pydantic[email] (>=1.10.0,!=2.0.0,!=2.0.1,<3.0,!=2.4.0) ; python_version >= "3.12" and python_version < "4.0"
Requires-Dist: pydantic[email] (>=1.10.0,<3.0,!=2.4.0) ; python_version >= "3.11" and python_version < "4.0"
Requires-Dist: pydantic[email] (>=1.5.1,<3.0,!=2.4.0) ; python_version < "3.10"
Requires-Dist: pydantic[email] (>=1.9.0,<3.0,!=2.4.0) ; python_version >= "3.10" and python_version < "3.11"
Requires-Dist: pyyaml (>=6.0.1)
Requires-Dist: toml (>=0.10.0,<1.0.0) ; python_version < "3.11"
Project-URL: Repository, https://github.com/koxudaxi/datamodel-code-generator
Description-Content-Type: text/markdown

# datamodel-code-generator

This code generator creates [pydantic v1 and v2](https://docs.pydantic.dev/) model, [dataclasses.dataclass](https://docs.python.org/3/library/dataclasses.html), [typing.TypedDict](https://docs.python.org/3/library/typing.html#typing.TypedDict) 
and [msgspec.Struct](https://github.com/jcrist/msgspec) from an openapi file and others.

[![PyPI version](https://badge.fury.io/py/datamodel-code-generator.svg)](https://pypi.python.org/pypi/datamodel-code-generator)
[![Conda-forge](https://img.shields.io/conda/v/conda-forge/datamodel-code-generator)](https://anaconda.org/conda-forge/datamodel-code-generator)
[![Downloads](https://pepy.tech/badge/datamodel-code-generator/month)](https://pepy.tech/project/datamodel-code-generator)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/datamodel-code-generator)](https://pypi.python.org/pypi/datamodel-code-generator)
[![codecov](https://codecov.io/gh/koxudaxi/datamodel-code-generator/graph/badge.svg?token=plzSSFb9Li)](https://codecov.io/gh/koxudaxi/datamodel-code-generator)
![license](https://img.shields.io/github/license/koxudaxi/datamodel-code-generator.svg)
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
[![Pydantic v1](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v1.json)](https://pydantic.dev)
[![Pydantic v2](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/pydantic/pydantic/main/docs/badge/v2.json)](https://pydantic.dev)

## Help
See [documentation](https://koxudaxi.github.io/datamodel-code-generator) for more details.

## Quick Installation

To install `datamodel-code-generator`:
```bash
$ pip install datamodel-code-generator
```

## Simple Usage
You can generate models from a local file.
```bash
$ datamodel-codegen --input api.yaml --output model.py
```

<details>
<summary>api.yaml</summary>

```yaml
openapi: "3.0.0"
info:
  version: 1.0.0
  title: Swagger Petstore
  license:
    name: MIT
servers:
  - url: http://petstore.swagger.io/v1
paths:
  /pets:
    get:
      summary: List all pets
      operationId: listPets
      tags:
        - pets
      parameters:
        - name: limit
          in: query
          description: How many items to return at one time (max 100)
          required: false
          schema:
            type: integer
            format: int32
      responses:
        '200':
          description: A paged array of pets
          headers:
            x-next:
              description: A link to the next page of responses
              schema:
                type: string
          content:
            application/json:
              schema:
                $ref: "#/components/schemas/Pets"
        default:
          description: unexpected error
          content:
            application/json:
              schema:
                $ref: "#/components/schemas/Error"
                x-amazon-apigateway-integration:
                  uri:
                    Fn::Sub: arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${PythonVersionFunction.Arn}/invocations
                  passthroughBehavior: when_no_templates
                  httpMethod: POST
                  type: aws_proxy
    post:
      summary: Create a pet
      operationId: createPets
      tags:
        - pets
      responses:
        '201':
          description: Null response
        default:
          description: unexpected error
          content:
            application/json:
              schema:
                $ref: "#/components/schemas/Error"
                x-amazon-apigateway-integration:
                  uri:
                    Fn::Sub: arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${PythonVersionFunction.Arn}/invocations
                  passthroughBehavior: when_no_templates
                  httpMethod: POST
                  type: aws_proxy
  /pets/{petId}:
    get:
      summary: Info for a specific pet
      operationId: showPetById
      tags:
        - pets
      parameters:
        - name: petId
          in: path
          required: true
          description: The id of the pet to retrieve
          schema:
            type: string
      responses:
        '200':
          description: Expected response to a valid request
          content:
            application/json:
              schema:
                $ref: "#/components/schemas/Pets"
        default:
          description: unexpected error
          content:
            application/json:
              schema:
                $ref: "#/components/schemas/Error"
    x-amazon-apigateway-integration:
      uri:
        Fn::Sub: arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/${PythonVersionFunction.Arn}/invocations
      passthroughBehavior: when_no_templates
      httpMethod: POST
      type: aws_proxy
components:
  schemas:
    Pet:
      required:
        - id
        - name
      properties:
        id:
          type: integer
          format: int64
        name:
          type: string
        tag:
          type: string
    Pets:
      type: array
      items:
        $ref: "#/components/schemas/Pet"
    Error:
      required:
        - code
        - message
      properties:
        code:
          type: integer
          format: int32
        message:
          type: string
    apis:
      type: array
      items:
        type: object
        properties:
          apiKey:
            type: string
            description: To be used as a dataset parameter value
          apiVersionNumber:
            type: string
            description: To be used as a version parameter value
          apiUrl:
            type: string
            format: uri
            description: "The URL describing the dataset's fields"
          apiDocumentationUrl:
            type: string
            format: uri
            description: A URL to the API console for each API
```

</details>

<details>
<summary>model.py</summary>

```python
# generated by datamodel-codegen:
#   filename:  api.yaml
#   timestamp: 2020-06-02T05:28:24+00:00

from __future__ import annotations

from typing import List, Optional

from pydantic import AnyUrl, BaseModel, Field


class Pet(BaseModel):
    id: int
    name: str
    tag: Optional[str] = None


class Pets(BaseModel):
    __root__: List[Pet]


class Error(BaseModel):
    code: int
    message: str


class Api(BaseModel):
    apiKey: Optional[str] = Field(
        None, description='To be used as a dataset parameter value'
    )
    apiVersionNumber: Optional[str] = Field(
        None, description='To be used as a version parameter value'
    )
    apiUrl: Optional[AnyUrl] = Field(
        None, description="The URL describing the dataset's fields"
    )
    apiDocumentationUrl: Optional[AnyUrl] = Field(
        None, description='A URL to the API console for each API'
    )


class Apis(BaseModel):
    __root__: List[Api]
```
</details>

## Supported input types
-  OpenAPI 3 (YAML/JSON, [OpenAPI Data Type](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#data-types));
-  JSON Schema ([JSON Schema Core](http://json-schema.org/draft/2019-09/json-schema-validation.html)/[JSON Schema Validation](http://json-schema.org/draft/2019-09/json-schema-validation.html));
-  JSON/YAML/CSV Data (it will be converted to JSON Schema);
-  Python dictionary (it will be converted to JSON Schema);
-  GraphQL schema ([GraphQL Schemas and Types](https://graphql.org/learn/schema/));

## Supported output types
- [pydantic](https://docs.pydantic.dev/1.10/).BaseModel;
- [pydantic_v2](https://docs.pydantic.dev/2.0/).BaseModel;
- [dataclasses.dataclass](https://docs.python.org/3/library/dataclasses.html);
- [typing.TypedDict](https://docs.python.org/3/library/typing.html#typing.TypedDict);
- [msgspec.Struct](https://github.com/jcrist/msgspec);
- Custom type from your [jinja2](https://jinja.palletsprojects.com/en/3.1.x/) template;

## Sponsors
<table>
  <tr>
    <td valign="top" align="center">
    <a href="https://github.com/JetBrainsOfficial">
      <img src="https://avatars.githubusercontent.com/u/60931315?s=100&v=4" alt="JetBrains Logo" style="width: 100px;">
      <p>JetBrains</p>
    </a>
    </td>
  <td valign="top" align="center">
    <a href="https://github.com/astral-sh">
      <img src="https://avatars.githubusercontent.com/u/115962839?s=200&v=4" alt="Astral Logo" style="width: 100px;">
      <p>Astral</p>
    </a>
  </td>
  <td valign="top" align="center">
    <a href="https://github.com/DataDog">
      <img src="https://avatars.githubusercontent.com/u/365230?s=200&v=4" alt="Datadog, Inc. Logo" style="width: 100px;">
      <p>Datadog, Inc.</p>
    </a>
  </td>
  </tr>
</table>

## Projects that use datamodel-code-generator
 
These OSS projects use datamodel-code-generator to generate many models. 
See the following linked projects for real world examples and inspiration.

- [airbytehq/airbyte](https://github.com/airbytehq/airbyte)
  - *[Generate Python, Java/Kotlin, and Typescript protocol models](https://github.com/airbytehq/airbyte-protocol/tree/main/protocol-models/bin)*
- [apache/iceberg](https://github.com/apache/iceberg)
  - *[Generate Python code](https://github.com/apache/iceberg/blob/d2e1094ee0cc6239d43f63ba5114272f59d605d2/open-api/README.md?plain=1#L39)* 
    *[`make generate`](https://github.com/apache/iceberg/blob/d2e1094ee0cc6239d43f63ba5114272f59d605d2/open-api/Makefile#L24-L34)*
- [argoproj-labs/hera](https://github.com/argoproj-labs/hera)
  - *[`Makefile`](https://github.com/argoproj-labs/hera/blob/c8cbf0c7a676de57469ca3d6aeacde7a5e84f8b7/Makefile#L53-L62)*
- [awslabs/aws-lambda-powertools-python](https://github.com/awslabs/aws-lambda-powertools-python)
  - *Recommended for [advanced-use-cases](https://awslabs.github.io/aws-lambda-powertools-python/2.6.0/utilities/parser/#advanced-use-cases) in the official documentation*
- [DataDog/integrations-core](https://github.com/DataDog/integrations-core)
  - *[Config models](https://github.com/DataDog/integrations-core/blob/master/docs/developer/meta/config-models.md)*
- [hashintel/hash](https://github.com/hashintel/hash)
  - *[`codegen.sh`](https://github.com/hashintel/hash/blob/9762b1a1937e14f6b387677e4c7fe4a5f3d4a1e1/libs/%40local/hash-graph-client/python/scripts/codegen.sh#L21-L39)*
- [IBM/compliance-trestle](https://github.com/IBM/compliance-trestle)
  - *[Building the models from the OSCAL schemas.](https://github.com/IBM/compliance-trestle/blob/develop/docs/contributing/website.md#building-the-models-from-the-oscal-schemas)*
- [Netflix/consoleme](https://github.com/Netflix/consoleme)
  - *[How do I generate models from the Swagger specification?](https://github.com/Netflix/consoleme/blob/master/docs/gitbook/faq.md#how-do-i-generate-models-from-the-swagger-specification)*
- [Nike-Inc/brickflow](https://github.com/Nike-Inc/brickflow)
  - *[Code generate tools](https://github.com/Nike-Inc/brickflow/blob/e3245bf638588867b831820a6675ada76b2010bf/tools/README.md?plain=1#L8)[`./tools/gen-bundle.sh`](https://github.com/Nike-Inc/brickflow/blob/e3245bf638588867b831820a6675ada76b2010bf/tools/gen-bundle.sh#L15-L22)*
- [open-metadata/OpenMetadata](https://github.com/open-metadata/OpenMetadata)
  - *[Makefile](https://github.com/open-metadata/OpenMetadata/blob/main/Makefile)*
- [PostHog/posthog](https://github.com/PostHog/posthog)
  - *[Generate models via `npm run`](https://github.com/PostHog/posthog/blob/e1a55b9cb38d01225224bebf8f0c1e28faa22399/package.json#L41)* 
- [SeldonIO/MLServer](https://github.com/SeldonIO/MLServer)
  - *[generate-types.sh](https://github.com/SeldonIO/MLServer/blob/master/hack/generate-types.sh)*

## Installation

To install `datamodel-code-generator`:
```bash
$ pip install datamodel-code-generator
```

### `http` extra option
If you want to resolve `$ref` for remote files then you should specify `http` extra option.
```bash
$ pip install 'datamodel-code-generator[http]'
```

### `graphql` extra option

If you want to generate data model from a GraphQL schema then you should specify `graphql` extra option.
```bash
$ pip install 'datamodel-code-generator[graphql]'
```

### Docker Image
The docker image is in [Docker Hub](https://hub.docker.com/r/koxudaxi/datamodel-code-generator)
```bash
$ docker pull koxudaxi/datamodel-code-generator
```

## Advanced Uses
You can generate models from a URL.
```bash
$ datamodel-codegen --url https://<INPUT FILE URL> --output model.py
```
This method needs the [http extra option](#http-extra-option)


## All Command Options

The `datamodel-codegen` command:

<!-- start command help -->
```bash
usage: 
  datamodel-codegen [options]

Generate Python data models from schema definitions or structured data

Options:
  --additional-imports ADDITIONAL_IMPORTS
                        Custom imports for output (delimited list input). For example
                        "datetime.date,datetime.datetime"
  --custom-formatters CUSTOM_FORMATTERS
                        List of modules with custom formatter (delimited list input).
  --http-headers HTTP_HEADER [HTTP_HEADER ...]
                        Set headers in HTTP requests to the remote host. (example:
                        "Authorization: Basic dXNlcjpwYXNz")
  --http-ignore-tls     Disable verification of the remote host''s TLS certificate
  --http-query-parameters HTTP_QUERY_PARAMETERS [HTTP_QUERY_PARAMETERS ...]
                        Set query parameters in HTTP requests to the remote host. (example:
                        "ref=branch")
  --input INPUT         Input file/directory (default: stdin)
  --input-file-type {auto,openapi,jsonschema,json,yaml,dict,csv,graphql}
                        Input file type (default: auto)
  --output OUTPUT       Output file (default: stdout)
  --output-model-type {pydantic.BaseModel,pydantic_v2.BaseModel,dataclasses.dataclass,typing.TypedDict,msgspec.Struct}
                        Output model type (default: pydantic.BaseModel)
  --url URL             Input file URL. `--input` is ignored when `--url` is used

Typing customization:
  --base-class BASE_CLASS
                        Base Class (default: pydantic.BaseModel)
  --enum-field-as-literal {all,one}
                        Parse enum field as literal. all: all enum field type are Literal.
                        one: field type is Literal when an enum has only one possible value
  --field-constraints   Use field constraints and not con* annotations
  --set-default-enum-member
                        Set enum members as default values for enum field
  --strict-types {str,bytes,int,float,bool} [{str,bytes,int,float,bool} ...]
                        Use strict types
  --use-annotated       Use typing.Annotated for Field(). Also, `--field-constraints` option
                        will be enabled.
  --use-generic-container-types
                        Use generic container types for type hinting (typing.Sequence,
                        typing.Mapping). If `--use-standard-collections` option is set, then
                        import from collections.abc instead of typing
  --use-non-positive-negative-number-constrained-types
                        Use the Non{Positive,Negative}{FloatInt} types instead of the
                        corresponding con* constrained types.
  --use-one-literal-as-default
                        Use one literal as default value for one literal field
  --use-standard-collections
                        Use standard collections for type hinting (list, dict)
  --use-subclass-enum   Define Enum class as subclass with field type when enum has type
                        (int, float, bytes, str)
  --use-union-operator  Use | operator for Union type (PEP 604).
  --use-unique-items-as-set
                        define field type as `set` when the field attribute has
                        `uniqueItems`

Field customization:
  --capitalise-enum-members, --capitalize-enum-members
                        Capitalize field names on enum
  --empty-enum-field-name EMPTY_ENUM_FIELD_NAME
                        Set field name when enum value is empty (default: `_`)
  --field-extra-keys FIELD_EXTRA_KEYS [FIELD_EXTRA_KEYS ...]
                        Add extra keys to field parameters
  --field-extra-keys-without-x-prefix FIELD_EXTRA_KEYS_WITHOUT_X_PREFIX [FIELD_EXTRA_KEYS_WITHOUT_X_PREFIX ...]
                        Add extra keys with `x-` prefix to field parameters. The extra keys
                        are stripped of the `x-` prefix.
  --field-include-all-keys
                        Add all keys to field parameters
  --force-optional      Force optional for required fields
  --no-alias            Do not add a field alias. E.g., if --snake-case-field is used along
                        with a base class, which has an alias_generator
  --original-field-name-delimiter ORIGINAL_FIELD_NAME_DELIMITER
                        Set delimiter to convert to snake case. This option only can be used
                        with --snake-case-field (default: `_` )
  --remove-special-field-name-prefix
                        Remove field name prefix if it has a special meaning e.g.
                        underscores
  --snake-case-field    Change camel-case field name to snake-case
  --special-field-name-prefix SPECIAL_FIELD_NAME_PREFIX
                        Set field name prefix when first character can''t be used as Python
                        field name (default: `field`)
  --strip-default-none  Strip default None on fields
  --union-mode {smart,left_to_right}
                        Union mode for only pydantic v2 field
  --use-default         Use default value even if a field is required
  --use-default-kwarg   Use `default=` instead of a positional argument for Fields that have
                        default values.
  --use-field-description
                        Use schema description to populate field docstring

Model customization:
  --allow-extra-fields  Allow to pass extra fields, if this flag is not passed, extra fields
                        are forbidden.
  --allow-population-by-field-name
                        Allow population by field name
  --class-name CLASS_NAME
                        Set class name of root model
  --collapse-root-models
                        Models generated with a root-type field will be merged into the
                        models using that root-type model
  --disable-appending-item-suffix
                        Disable appending `Item` suffix to model name in an array
  --disable-timestamp   Disable timestamp on file headers
  --enable-faux-immutability
                        Enable faux immutability
  --enable-version-header
                        Enable package version on file headers
  --keep-model-order    Keep generated models'' order
  --keyword-only        Defined models as keyword only (for example
                        dataclass(kw_only=True)).
  --output-datetime-class {datetime,AwareDatetime,NaiveDatetime}
                        Choose Datetime class between AwareDatetime, NaiveDatetime or
                        datetime. Each output model has its default mapping (for example
                        pydantic: datetime, dataclass: str, ...)
  --reuse-model         Reuse models on the field when a module has the model with the same
                        content
  --target-python-version {3.6,3.7,3.8,3.9,3.10,3.11,3.12}
                        target python version (default: 3.8)
  --treat-dot-as-module
                        treat dotted module names as modules
  --use-exact-imports   import exact types instead of modules, for example: "from .foo
                        import Bar" instead of "from . import foo" with "foo.Bar"
  --use-pendulum        use pendulum instead of datetime
  --use-schema-description
                        Use schema description to populate class docstring
  --use-title-as-name   use titles as class names of models

Template customization:
  --aliases ALIASES     Alias mapping file
  --custom-file-header CUSTOM_FILE_HEADER
                        Custom file header
  --custom-file-header-path CUSTOM_FILE_HEADER_PATH
                        Custom file header file path
  --custom-formatters-kwargs CUSTOM_FORMATTERS_KWARGS
                        A file with kwargs for custom formatters.
  --custom-template-dir CUSTOM_TEMPLATE_DIR
                        Custom template directory
  --encoding ENCODING   The encoding of input and output (default: utf-8)
  --extra-template-data EXTRA_TEMPLATE_DATA
                        Extra template data
  --use-double-quotes   Model generated with double quotes. Single quotes or your black
                        config skip_string_normalization value will be used without this
                        option.
  --wrap-string-literal
                        Wrap string literal by using black `experimental-string-processing`
                        option (require black 20.8b0 or later)

OpenAPI-only options:
  --openapi-scopes {schemas,paths,tags,parameters} [{schemas,paths,tags,parameters} ...]
                        Scopes of OpenAPI model generation (default: schemas)
  --strict-nullable     Treat default field as a non-nullable field (Only OpenAPI)
  --use-operation-id-as-name
                        use operation id of OpenAPI as class names of models
  --validation          Deprecated: Enable validation (Only OpenAPI). this option is
                        deprecated. it will be removed in future releases

General options:
  --debug               show debug message (require "debug". `$ pip install ''datamodel-code-
                        generator[debug]''`)
  --disable-warnings    disable warnings
  --no-color            disable colorized output
  --version             show version
  -h, --help            show this help message and exit
```
<!-- end command help -->

## Related projects
### fastapi-code-generator
This code generator creates [FastAPI](https://github.com/tiangolo/fastapi) app from an openapi file.

[https://github.com/koxudaxi/fastapi-code-generator](https://github.com/koxudaxi/fastapi-code-generator)

### pydantic-pycharm-plugin
[A JetBrains PyCharm plugin](https://plugins.jetbrains.com/plugin/12861-pydantic) for [`pydantic`](https://github.com/samuelcolvin/pydantic).

[https://github.com/koxudaxi/pydantic-pycharm-plugin](https://github.com/koxudaxi/pydantic-pycharm-plugin)

## PyPi

[https://pypi.org/project/datamodel-code-generator](https://pypi.org/project/datamodel-code-generator)

## Contributing

See `docs/development-contributing.md` for how to get started!

## License

datamodel-code-generator is released under the MIT License. http://www.opensource.org/licenses/mit-license