File: dataclass.py

package info (click to toggle)
python-datamodel-code-generator 0.26.4-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 712 kB
  • sloc: python: 9,525; makefile: 14
file content (181 lines) | stat: -rw-r--r-- 5,871 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from pathlib import Path
from typing import (
    Any,
    ClassVar,
    DefaultDict,
    Dict,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
)

from datamodel_code_generator import DatetimeClassType, PythonVersion
from datamodel_code_generator.imports import (
    IMPORT_DATE,
    IMPORT_DATETIME,
    IMPORT_TIME,
    IMPORT_TIMEDELTA,
    Import,
)
from datamodel_code_generator.model import DataModel, DataModelFieldBase
from datamodel_code_generator.model.base import UNDEFINED
from datamodel_code_generator.model.imports import IMPORT_DATACLASS, IMPORT_FIELD
from datamodel_code_generator.model.pydantic.base_model import Constraints
from datamodel_code_generator.model.types import DataTypeManager as _DataTypeManager
from datamodel_code_generator.model.types import type_map_factory
from datamodel_code_generator.reference import Reference
from datamodel_code_generator.types import DataType, StrictTypes, Types, chain_as_tuple


def _has_field_assignment(field: DataModelFieldBase) -> bool:
    return bool(field.field) or not (
        field.required
        or (field.represented_default == 'None' and field.strip_default_none)
    )


class DataClass(DataModel):
    TEMPLATE_FILE_PATH: ClassVar[str] = 'dataclass.jinja2'
    DEFAULT_IMPORTS: ClassVar[Tuple[Import, ...]] = (IMPORT_DATACLASS,)

    def __init__(
        self,
        *,
        reference: Reference,
        fields: List[DataModelFieldBase],
        decorators: Optional[List[str]] = None,
        base_classes: Optional[List[Reference]] = None,
        custom_base_class: Optional[str] = None,
        custom_template_dir: Optional[Path] = None,
        extra_template_data: Optional[DefaultDict[str, Dict[str, Any]]] = None,
        methods: Optional[List[str]] = None,
        path: Optional[Path] = None,
        description: Optional[str] = None,
        default: Any = UNDEFINED,
        nullable: bool = False,
        keyword_only: bool = False,
    ) -> None:
        super().__init__(
            reference=reference,
            fields=sorted(fields, key=_has_field_assignment, reverse=False),
            decorators=decorators,
            base_classes=base_classes,
            custom_base_class=custom_base_class,
            custom_template_dir=custom_template_dir,
            extra_template_data=extra_template_data,
            methods=methods,
            path=path,
            description=description,
            default=default,
            nullable=nullable,
            keyword_only=keyword_only,
        )


class DataModelField(DataModelFieldBase):
    _FIELD_KEYS: ClassVar[Set[str]] = {
        'default_factory',
        'init',
        'repr',
        'hash',
        'compare',
        'metadata',
        'kw_only',
    }
    constraints: Optional[Constraints] = None

    @property
    def imports(self) -> Tuple[Import, ...]:
        field = self.field
        if field and field.startswith('field('):
            return chain_as_tuple(super().imports, (IMPORT_FIELD,))
        return super().imports

    def self_reference(self) -> bool:  # pragma: no cover
        return isinstance(self.parent, DataClass) and self.parent.reference.path in {
            d.reference.path for d in self.data_type.all_data_types if d.reference
        }

    @property
    def field(self) -> Optional[str]:
        """for backwards compatibility"""
        result = str(self)
        if result == '':
            return None

        return result

    def __str__(self) -> str:
        data: Dict[str, Any] = {
            k: v for k, v in self.extras.items() if k in self._FIELD_KEYS
        }

        if self.default != UNDEFINED and self.default is not None:
            data['default'] = self.default

        if self.required:
            data = {
                k: v
                for k, v in data.items()
                if k
                not in (
                    'default',
                    'default_factory',
                )
            }

        if not data:
            return ''

        if len(data) == 1 and 'default' in data:
            default = data['default']

            if isinstance(default, (list, dict)):
                return f'field(default_factory=lambda :{repr(default)})'
            return repr(default)
        kwargs = [
            f'{k}={v if k == "default_factory" else repr(v)}' for k, v in data.items()
        ]
        return f'field({", ".join(kwargs)})'


class DataTypeManager(_DataTypeManager):
    def __init__(
        self,
        python_version: PythonVersion = PythonVersion.PY_38,
        use_standard_collections: bool = False,
        use_generic_container_types: bool = False,
        strict_types: Optional[Sequence[StrictTypes]] = None,
        use_non_positive_negative_number_constrained_types: bool = False,
        use_union_operator: bool = False,
        use_pendulum: bool = False,
        target_datetime_class: DatetimeClassType = DatetimeClassType.Datetime,
    ):
        super().__init__(
            python_version,
            use_standard_collections,
            use_generic_container_types,
            strict_types,
            use_non_positive_negative_number_constrained_types,
            use_union_operator,
            use_pendulum,
            target_datetime_class,
        )

        datetime_map = (
            {
                Types.time: self.data_type.from_import(IMPORT_TIME),
                Types.date: self.data_type.from_import(IMPORT_DATE),
                Types.date_time: self.data_type.from_import(IMPORT_DATETIME),
                Types.timedelta: self.data_type.from_import(IMPORT_TIMEDELTA),
            }
            if target_datetime_class is DatetimeClassType.Datetime
            else {}
        )

        self.type_map: Dict[Types, DataType] = {
            **type_map_factory(self.data_type),
            **datetime_map,
        }