File: base_model.py

package info (click to toggle)
python-datamodel-code-generator 0.26.4-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 712 kB
  • sloc: python: 9,525; makefile: 14
file content (325 lines) | stat: -rw-r--r-- 12,120 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from abc import ABC
from pathlib import Path
from typing import Any, ClassVar, DefaultDict, Dict, List, Optional, Set, Tuple

from pydantic import Field

from datamodel_code_generator.imports import Import
from datamodel_code_generator.model import (
    ConstraintsBase,
    DataModel,
    DataModelFieldBase,
)
from datamodel_code_generator.model.base import UNDEFINED
from datamodel_code_generator.model.pydantic.imports import (
    IMPORT_ANYURL,
    IMPORT_EXTRA,
    IMPORT_FIELD,
)
from datamodel_code_generator.reference import Reference
from datamodel_code_generator.types import UnionIntFloat, chain_as_tuple
from datamodel_code_generator.util import cached_property


class Constraints(ConstraintsBase):
    gt: Optional[UnionIntFloat] = Field(None, alias='exclusiveMinimum')
    ge: Optional[UnionIntFloat] = Field(None, alias='minimum')
    lt: Optional[UnionIntFloat] = Field(None, alias='exclusiveMaximum')
    le: Optional[UnionIntFloat] = Field(None, alias='maximum')
    multiple_of: Optional[float] = Field(None, alias='multipleOf')
    min_items: Optional[int] = Field(None, alias='minItems')
    max_items: Optional[int] = Field(None, alias='maxItems')
    min_length: Optional[int] = Field(None, alias='minLength')
    max_length: Optional[int] = Field(None, alias='maxLength')
    regex: Optional[str] = Field(None, alias='pattern')


class DataModelField(DataModelFieldBase):
    _EXCLUDE_FIELD_KEYS: ClassVar[Set[str]] = {
        'alias',
        'default',
        'const',
        'gt',
        'ge',
        'lt',
        'le',
        'multiple_of',
        'min_items',
        'max_items',
        'min_length',
        'max_length',
        'regex',
    }
    _COMPARE_EXPRESSIONS: ClassVar[Set[str]] = {'gt', 'ge', 'lt', 'le'}
    constraints: Optional[Constraints] = None
    _PARSE_METHOD: ClassVar[str] = 'parse_obj'

    @property
    def method(self) -> Optional[str]:
        return self.validator

    @property
    def validator(self) -> Optional[str]:
        return None
        # TODO refactor this method for other validation logic
        # from datamodel_code_generator.model.pydantic import VALIDATOR_TEMPLATE
        #
        # return VALIDATOR_TEMPLATE.render(
        #     field_name=self.name, types=','.join([t.type_hint for t in self.data_types])
        # )

    @property
    def field(self) -> Optional[str]:
        """for backwards compatibility"""
        result = str(self)
        if (
            self.use_default_kwarg
            and not result.startswith('Field(...')
            and not result.startswith('Field(default_factory=')
        ):
            # Use `default=` for fields that have a default value so that type
            # checkers using @dataclass_transform can infer the field as
            # optional in __init__.
            result = result.replace('Field(', 'Field(default=')
        if result == '':
            return None

        return result

    def self_reference(self) -> bool:
        return isinstance(
            self.parent, BaseModelBase
        ) and self.parent.reference.path in {
            d.reference.path for d in self.data_type.all_data_types if d.reference
        }

    def _get_strict_field_constraint_value(self, constraint: str, value: Any) -> Any:
        if value is None or constraint not in self._COMPARE_EXPRESSIONS:
            return value

        if any(
            data_type.type == 'float' for data_type in self.data_type.all_data_types
        ):
            return float(value)
        return int(value)

    def _get_default_as_pydantic_model(self) -> Optional[str]:
        for data_type in self.data_type.data_types or (self.data_type,):
            # TODO: Check nested data_types
            if data_type.is_dict or self.data_type.is_union:
                # TODO: Parse Union and dict model for default
                continue
            elif data_type.is_list and len(data_type.data_types) == 1:
                data_type = data_type.data_types[0]
                if (
                    data_type.reference
                    and isinstance(data_type.reference.source, BaseModelBase)
                    and isinstance(self.default, list)
                ):  # pragma: no cover
                    return f'lambda :[{data_type.alias or data_type.reference.source.class_name}.{self._PARSE_METHOD}(v) for v in {repr(self.default)}]'
            elif data_type.reference and isinstance(
                data_type.reference.source, BaseModelBase
            ):  # pragma: no cover
                return f'lambda :{data_type.alias or data_type.reference.source.class_name}.{self._PARSE_METHOD}({repr(self.default)})'
        return None

    def _process_data_in_str(self, data: Dict[str, Any]) -> None:
        if self.const:
            data['const'] = True

    def _process_annotated_field_arguments(
        self, field_arguments: List[str]
    ) -> List[str]:
        return field_arguments

    def __str__(self) -> str:
        data: Dict[str, Any] = {
            k: v for k, v in self.extras.items() if k not in self._EXCLUDE_FIELD_KEYS
        }
        if self.alias:
            data['alias'] = self.alias
        if (
            self.constraints is not None
            and not self.self_reference()
            and not self.data_type.strict
        ):
            data = {
                **data,
                **(
                    {}
                    if any(
                        d.import_ == IMPORT_ANYURL
                        for d in self.data_type.all_data_types
                    )
                    else {
                        k: self._get_strict_field_constraint_value(k, v)
                        for k, v in self.constraints.dict(exclude_unset=True).items()
                    }
                ),
            }

        if self.use_field_description:
            data.pop('description', None)  # Description is part of field docstring

        self._process_data_in_str(data)

        discriminator = data.pop('discriminator', None)
        if discriminator:
            if isinstance(discriminator, str):
                data['discriminator'] = discriminator
            elif isinstance(discriminator, dict):  # pragma: no cover
                data['discriminator'] = discriminator['propertyName']

        if self.required:
            default_factory = None
        elif self.default and 'default_factory' not in data:
            default_factory = self._get_default_as_pydantic_model()
        else:
            default_factory = data.pop('default_factory', None)

        field_arguments = sorted(
            f'{k}={repr(v)}' for k, v in data.items() if v is not None
        )

        if not field_arguments and not default_factory:
            if self.nullable and self.required:
                return 'Field(...)'  # Field() is for mypy
            return ''

        if self.use_annotated:
            field_arguments = self._process_annotated_field_arguments(field_arguments)
        elif self.required:
            field_arguments = ['...', *field_arguments]
        elif default_factory:
            field_arguments = [f'default_factory={default_factory}', *field_arguments]
        else:
            field_arguments = [f'{repr(self.default)}', *field_arguments]

        return f'Field({", ".join(field_arguments)})'

    @property
    def annotated(self) -> Optional[str]:
        if not self.use_annotated or not str(self):
            return None
        return f'Annotated[{self.type_hint}, {str(self)}]'

    @property
    def imports(self) -> Tuple[Import, ...]:
        if self.field:
            return chain_as_tuple(super().imports, (IMPORT_FIELD,))
        return super().imports


class BaseModelBase(DataModel, ABC):
    def __init__(
        self,
        *,
        reference: Reference,
        fields: List[DataModelFieldBase],
        decorators: Optional[List[str]] = None,
        base_classes: Optional[List[Reference]] = None,
        custom_base_class: Optional[str] = None,
        custom_template_dir: Optional[Path] = None,
        extra_template_data: Optional[DefaultDict[str, Any]] = None,
        path: Optional[Path] = None,
        description: Optional[str] = None,
        default: Any = UNDEFINED,
        nullable: bool = False,
        keyword_only: bool = False,
    ) -> None:
        methods: List[str] = [field.method for field in fields if field.method]

        super().__init__(
            fields=fields,
            reference=reference,
            decorators=decorators,
            base_classes=base_classes,
            custom_base_class=custom_base_class,
            custom_template_dir=custom_template_dir,
            extra_template_data=extra_template_data,
            methods=methods,
            path=path,
            description=description,
            default=default,
            nullable=nullable,
            keyword_only=keyword_only,
        )

    @cached_property
    def template_file_path(self) -> Path:
        # This property is for Backward compatibility
        # Current version supports '{custom_template_dir}/BaseModel.jinja'
        # But, Future version will support only '{custom_template_dir}/pydantic/BaseModel.jinja'
        if self._custom_template_dir is not None:
            custom_template_file_path = (
                self._custom_template_dir / Path(self.TEMPLATE_FILE_PATH).name
            )
            if custom_template_file_path.exists():
                return custom_template_file_path
        return super().template_file_path


class BaseModel(BaseModelBase):
    TEMPLATE_FILE_PATH: ClassVar[str] = 'pydantic/BaseModel.jinja2'
    BASE_CLASS: ClassVar[str] = 'pydantic.BaseModel'

    def __init__(
        self,
        *,
        reference: Reference,
        fields: List[DataModelFieldBase],
        decorators: Optional[List[str]] = None,
        base_classes: Optional[List[Reference]] = None,
        custom_base_class: Optional[str] = None,
        custom_template_dir: Optional[Path] = None,
        extra_template_data: Optional[DefaultDict[str, Any]] = None,
        path: Optional[Path] = None,
        description: Optional[str] = None,
        default: Any = UNDEFINED,
        nullable: bool = False,
        keyword_only: bool = False,
    ) -> None:
        super().__init__(
            reference=reference,
            fields=fields,
            decorators=decorators,
            base_classes=base_classes,
            custom_base_class=custom_base_class,
            custom_template_dir=custom_template_dir,
            extra_template_data=extra_template_data,
            path=path,
            description=description,
            default=default,
            nullable=nullable,
            keyword_only=keyword_only,
        )
        config_parameters: Dict[str, Any] = {}

        additionalProperties = self.extra_template_data.get('additionalProperties')
        allow_extra_fields = self.extra_template_data.get('allow_extra_fields')
        if additionalProperties is not None or allow_extra_fields:
            config_parameters['extra'] = (
                'Extra.allow'
                if additionalProperties or allow_extra_fields
                else 'Extra.forbid'
            )
            self._additional_imports.append(IMPORT_EXTRA)

        for config_attribute in 'allow_population_by_field_name', 'allow_mutation':
            if config_attribute in self.extra_template_data:
                config_parameters[config_attribute] = self.extra_template_data[
                    config_attribute
                ]
        for data_type in self.all_data_types:
            if data_type.is_custom_type:
                config_parameters['arbitrary_types_allowed'] = True
                break

        if isinstance(self.extra_template_data.get('config'), dict):
            for key, value in self.extra_template_data['config'].items():
                config_parameters[key] = value

        if config_parameters:
            from datamodel_code_generator.model.pydantic import Config

            self.extra_template_data['config'] = Config.parse_obj(config_parameters)