1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals, division
import random
import string
import timeit
import os
import zipfile
import datrie
def words100k():
zip_name = os.path.join(
os.path.abspath(os.path.dirname(__file__)),
'words100k.txt.zip'
)
zf = zipfile.ZipFile(zip_name)
txt = zf.open(zf.namelist()[0]).read().decode('utf8')
return txt.splitlines()
def random_words(num):
russian = 'абвгдеёжзиклмнопрстуфхцчъыьэюя'
alphabet = russian + string.ascii_letters
return [
"".join([random.choice(alphabet) for x in range(random.randint(1,15))])
for y in range(num)
]
def truncated_words(words):
return [word[:3] for word in words]
def prefixes1k(words, prefix_len):
words = [w for w in words if len(w) >= prefix_len]
every_nth = int(len(words)/1000)
_words = [w[:prefix_len] for w in words[::every_nth]]
return _words[:1000]
WORDS100k = words100k()
MIXED_WORDS100k = truncated_words(WORDS100k)
NON_WORDS100k = random_words(100000)
PREFIXES_3_1k = prefixes1k(WORDS100k, 3)
PREFIXES_5_1k = prefixes1k(WORDS100k, 5)
PREFIXES_8_1k = prefixes1k(WORDS100k, 8)
PREFIXES_15_1k = prefixes1k(WORDS100k, 15)
def _alphabet(words):
chars = set()
for word in words:
for ch in word:
chars.add(ch)
return "".join(sorted(list(chars)))
ALPHABET = _alphabet(WORDS100k)
def bench(name, timer, descr='M ops/sec', op_count=0.1, repeats=3, runs=5):
times = []
for x in range(runs):
times.append(timer.timeit(repeats))
def op_time(time):
return op_count*repeats / time
print("%55s: %0.3f%s" % (
name,
op_time(min(times)),
descr,
))
def create_trie():
words = words100k()
trie = datrie.Trie(ALPHABET)
for word in words:
trie[word] = 1
return trie
def benchmark():
print('\n====== Benchmarks (100k unique unicode words) =======\n')
tests = [
('__getitem__ (hits)', "for word in words: data[word]", 'M ops/sec', 0.1, 3),
('__contains__ (hits)', "for word in words: word in data", 'M ops/sec', 0.1, 3),
('__contains__ (misses)', "for word in NON_WORDS100k: word in data", 'M ops/sec', 0.1, 3),
('__len__', 'len(data)', ' ops/sec', 1, 1),
('__setitem__ (updates)', 'for word in words: data[word]=1', 'M ops/sec', 0.1, 3),
('__setitem__ (inserts, random)', 'for word in NON_WORDS_10k: data[word]=1', 'M ops/sec',0.01, 3),
('__setitem__ (inserts, sorted)', 'for word in words: empty_data[word]=1', 'M ops/sec', 0.1, 3),
('setdefault (updates)', 'for word in words: data.setdefault(word, 1)', 'M ops/sec', 0.1, 3),
('setdefault (inserts)', 'for word in NON_WORDS_10k: data.setdefault(word, 1)', 'M ops/sec', 0.01, 3),
('values()', 'list(data.values())', ' ops/sec', 1, 1),
('keys()', 'list(data.keys())', ' ops/sec', 1, 1),
('items()', 'list(data.items())', ' ops/sec', 1, 1),
]
common_setup = """
from __main__ import create_trie, WORDS100k, NON_WORDS100k, MIXED_WORDS100k, datrie
from __main__ import PREFIXES_3_1k, PREFIXES_5_1k, PREFIXES_8_1k, PREFIXES_15_1k
from __main__ import ALPHABET
words = WORDS100k
NON_WORDS_10k = NON_WORDS100k[:10000]
NON_WORDS_1k = ['ыва', 'xyz', 'соы', 'Axx', 'avы']*200
"""
dict_setup = common_setup + 'data = dict((word, 1) for word in words); empty_data=dict()'
trie_setup = common_setup + 'data = create_trie(); empty_data = datrie.Trie(ALPHABET)'
for test_name, test, descr, op_count, repeats in tests:
t_dict = timeit.Timer(test, dict_setup)
t_trie = timeit.Timer(test, trie_setup)
bench('dict '+test_name, t_dict, descr, op_count, repeats)
bench('trie '+test_name, t_trie, descr, op_count, repeats)
# trie-specific benchmarks
bench(
'trie.iter_prefix_values (hits)',
timeit.Timer(
"for word in words:\n"
" for it in data.iter_prefix_values(word):\n"
" pass",
trie_setup
),
)
bench(
'trie.prefix_values (hits)',
timeit.Timer(
"for word in words: data.prefix_values(word)",
trie_setup
)
)
bench(
'trie.prefix_values loop (hits)',
timeit.Timer(
"for word in words:\n"
" for it in data.prefix_values(word):pass",
trie_setup
)
)
bench(
'trie.iter_prefix_items (hits)',
timeit.Timer(
"for word in words:\n"
" for it in data.iter_prefix_items(word):\n"
" pass",
trie_setup
),
)
bench(
'trie.prefix_items (hits)',
timeit.Timer(
"for word in words: data.prefix_items(word)",
trie_setup
)
)
bench(
'trie.prefix_items loop (hits)',
timeit.Timer(
"for word in words:\n"
" for it in data.prefix_items(word):pass",
trie_setup
)
)
bench(
'trie.iter_prefixes (hits)',
timeit.Timer(
"for word in words:\n"
" for it in data.iter_prefixes(word): pass",
trie_setup
)
)
bench(
'trie.iter_prefixes (misses)',
timeit.Timer(
"for word in NON_WORDS100k:\n"
" for it in data.iter_prefixes(word): pass",
trie_setup
)
)
bench(
'trie.iter_prefixes (mixed)',
timeit.Timer(
"for word in MIXED_WORDS100k:\n"
" for it in data.iter_prefixes(word): pass",
trie_setup
)
)
bench(
'trie.has_keys_with_prefix (hits)',
timeit.Timer(
"for word in words: data.has_keys_with_prefix(word)",
trie_setup
)
)
bench(
'trie.has_keys_with_prefix (misses)',
timeit.Timer(
"for word in NON_WORDS100k: data.has_keys_with_prefix(word)",
trie_setup
)
)
for meth in ('longest_prefix', 'longest_prefix_item', 'longest_prefix_value'):
bench(
'trie.%s (hits)' % meth,
timeit.Timer(
"for word in words: data.%s(word)" % meth,
trie_setup
)
)
bench(
'trie.%s (misses)' % meth,
timeit.Timer(
"for word in NON_WORDS100k: data.%s(word, default=None)" % meth,
trie_setup
)
)
bench(
'trie.%s (mixed)' % meth,
timeit.Timer(
"for word in MIXED_WORDS100k: data.%s(word, default=None)" % meth,
trie_setup
)
)
prefix_data = [
('xxx', 'avg_len(res)==415', 'PREFIXES_3_1k'),
('xxxxx', 'avg_len(res)==17', 'PREFIXES_5_1k'),
('xxxxxxxx', 'avg_len(res)==3', 'PREFIXES_8_1k'),
('xxxxx..xx', 'avg_len(res)==1.4', 'PREFIXES_15_1k'),
('xxx', 'NON_EXISTING', 'NON_WORDS_1k'),
]
for xxx, avg, data in prefix_data:
for meth in ('items', 'keys', 'values'):
bench(
'trie.%s(prefix="%s"), %s' % (meth, xxx, avg),
timeit.Timer(
"for word in %s: data.%s(word)" % (data, meth),
trie_setup
),
'K ops/sec',
op_count=1,
)
def profiling():
print('\n====== Profiling =======\n')
def profile_yep():
import yep
trie = create_trie()
#WORDS = words100k()
yep.start(b'output.prof')
for x in range(100):
trie.keys()
# for x in range(1000):
# for word in WORDS:
# trie[word]
yep.stop()
def profile_cprofile():
import pstats
import cProfile
trie = create_trie()
WORDS = words100k()
def check_trie(trie, words):
value = 0
for word in words:
value += trie[word]
if value != len(words):
raise Exception()
# def check_prefixes(trie, words):
# for word in words:
# trie.keys(word)
# cProfile.runctx("check_prefixes(trie, NON_WORDS_1k)", globals(), locals(), "Profile.prof")
cProfile.runctx("check_trie(trie, WORDS)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats(20)
#profile_cprofile()
profile_yep()
#def memory():
# gc.collect()
# _memory = lambda: _get_memory(os.getpid())
# initial_memory = _memory()
# trie = create_trie()
# gc.collect()
# trie_memory = _memory()
#
# del trie
# gc.collect()
# alphabet, words = words100k()
# words_dict = dict((word, 1) for word in words)
# del alphabet
# del words
# gc.collect()
#
# dict_memory = _memory()
# print('initial: %s, trie: +%s, dict: +%s' % (
# initial_memory,
# trie_memory-initial_memory,
# dict_memory-initial_memory,
# ))
if __name__ == '__main__':
benchmark()
#profiling()
#memory()
print('\n~~~~~~~~~~~~~~\n')
|