File: speed.py

package info (click to toggle)
python-datrie 0.8.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,036 kB
  • sloc: ansic: 3,794; python: 756; sh: 13; makefile: 9
file content (330 lines) | stat: -rw-r--r-- 9,330 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals, division
import random
import string
import timeit
import os
import zipfile

import datrie

def words100k():
    zip_name = os.path.join(
        os.path.abspath(os.path.dirname(__file__)),
        'words100k.txt.zip'
    )
    zf = zipfile.ZipFile(zip_name)
    txt = zf.open(zf.namelist()[0]).read().decode('utf8')
    return txt.splitlines()

def random_words(num):
    russian = 'абвгдеёжзиклмнопрстуфхцчъыьэюя'
    alphabet = russian + string.ascii_letters
    return [
        "".join([random.choice(alphabet) for x in range(random.randint(1,15))])
        for y in range(num)
    ]

def truncated_words(words):
    return [word[:3] for word in words]

def prefixes1k(words, prefix_len):
    words = [w for w in words if len(w) >= prefix_len]
    every_nth = int(len(words)/1000)
    _words = [w[:prefix_len] for w in words[::every_nth]]
    return _words[:1000]

WORDS100k = words100k()
MIXED_WORDS100k = truncated_words(WORDS100k)
NON_WORDS100k = random_words(100000)
PREFIXES_3_1k = prefixes1k(WORDS100k, 3)
PREFIXES_5_1k = prefixes1k(WORDS100k, 5)
PREFIXES_8_1k = prefixes1k(WORDS100k, 8)
PREFIXES_15_1k = prefixes1k(WORDS100k, 15)


def _alphabet(words):
    chars = set()
    for word in words:
        for ch in word:
            chars.add(ch)
    return "".join(sorted(list(chars)))

ALPHABET = _alphabet(WORDS100k)

def bench(name, timer, descr='M ops/sec', op_count=0.1, repeats=3, runs=5):
    times = []
    for x in range(runs):
        times.append(timer.timeit(repeats))

    def op_time(time):
        return op_count*repeats / time

    print("%55s:    %0.3f%s" % (
        name,
        op_time(min(times)),
        descr,
    ))

def create_trie():
    words = words100k()
    trie = datrie.Trie(ALPHABET)

    for word in words:
        trie[word] = 1
    return trie

def benchmark():
    print('\n====== Benchmarks (100k unique unicode words) =======\n')

    tests = [
        ('__getitem__ (hits)', "for word in words: data[word]", 'M ops/sec', 0.1, 3),
        ('__contains__ (hits)', "for word in words: word in data", 'M ops/sec', 0.1, 3),
        ('__contains__ (misses)', "for word in NON_WORDS100k: word in data", 'M ops/sec', 0.1, 3),
        ('__len__', 'len(data)', ' ops/sec', 1, 1),
        ('__setitem__ (updates)', 'for word in words: data[word]=1', 'M ops/sec', 0.1, 3),
        ('__setitem__ (inserts, random)', 'for word in NON_WORDS_10k: data[word]=1', 'M ops/sec',0.01, 3),
        ('__setitem__ (inserts, sorted)', 'for word in words: empty_data[word]=1', 'M ops/sec', 0.1, 3),
        ('setdefault (updates)', 'for word in words: data.setdefault(word, 1)', 'M ops/sec', 0.1, 3),
        ('setdefault (inserts)', 'for word in  NON_WORDS_10k: data.setdefault(word, 1)', 'M ops/sec', 0.01, 3),
        ('values()', 'list(data.values())', ' ops/sec', 1, 1),
        ('keys()', 'list(data.keys())', ' ops/sec', 1, 1),
        ('items()', 'list(data.items())', ' ops/sec', 1, 1),
    ]

    common_setup = """
from __main__ import create_trie, WORDS100k, NON_WORDS100k, MIXED_WORDS100k, datrie
from __main__ import PREFIXES_3_1k, PREFIXES_5_1k, PREFIXES_8_1k, PREFIXES_15_1k
from __main__ import ALPHABET
words = WORDS100k
NON_WORDS_10k = NON_WORDS100k[:10000]
NON_WORDS_1k = ['ыва', 'xyz', 'соы', 'Axx', 'avы']*200
"""
    dict_setup = common_setup + 'data = dict((word, 1) for word in words); empty_data=dict()'
    trie_setup = common_setup + 'data = create_trie(); empty_data = datrie.Trie(ALPHABET)'

    for test_name, test, descr, op_count, repeats in tests:
        t_dict = timeit.Timer(test, dict_setup)
        t_trie = timeit.Timer(test, trie_setup)

        bench('dict '+test_name, t_dict, descr, op_count, repeats)
        bench('trie '+test_name, t_trie, descr, op_count, repeats)

    # trie-specific benchmarks

    bench(
        'trie.iter_prefix_values (hits)',
        timeit.Timer(
            "for word in words:\n"
            "   for it in data.iter_prefix_values(word):\n"
            "       pass",
            trie_setup
        ),
    )

    bench(
        'trie.prefix_values (hits)',
        timeit.Timer(
            "for word in words: data.prefix_values(word)",
            trie_setup
        )
    )

    bench(
        'trie.prefix_values loop (hits)',
        timeit.Timer(
            "for word in words:\n"
            "    for it in data.prefix_values(word):pass",
            trie_setup
        )
    )

    bench(
        'trie.iter_prefix_items (hits)',
        timeit.Timer(
            "for word in words:\n"
            "   for it in data.iter_prefix_items(word):\n"
            "       pass",
            trie_setup
        ),
    )

    bench(
        'trie.prefix_items (hits)',
        timeit.Timer(
            "for word in words: data.prefix_items(word)",
            trie_setup
        )
    )

    bench(
        'trie.prefix_items loop (hits)',
        timeit.Timer(
            "for word in words:\n"
            "    for it in data.prefix_items(word):pass",
            trie_setup
        )
    )

    bench(
        'trie.iter_prefixes (hits)',
        timeit.Timer(
            "for word in words:\n"
            "   for it in data.iter_prefixes(word): pass",
            trie_setup
        )
    )

    bench(
        'trie.iter_prefixes (misses)',
        timeit.Timer(
            "for word in NON_WORDS100k:\n"
            "   for it in data.iter_prefixes(word): pass",
            trie_setup
        )
    )

    bench(
        'trie.iter_prefixes (mixed)',
        timeit.Timer(
            "for word in MIXED_WORDS100k:\n"
            "   for it in data.iter_prefixes(word): pass",
            trie_setup
        )
    )

    bench(
        'trie.has_keys_with_prefix (hits)',
        timeit.Timer(
            "for word in words: data.has_keys_with_prefix(word)",
            trie_setup
        )
    )

    bench(
        'trie.has_keys_with_prefix (misses)',
        timeit.Timer(
            "for word in NON_WORDS100k: data.has_keys_with_prefix(word)",
            trie_setup
        )
    )

    for meth in ('longest_prefix', 'longest_prefix_item', 'longest_prefix_value'):
        bench(
            'trie.%s (hits)' % meth,
            timeit.Timer(
                "for word in words: data.%s(word)" % meth,
                trie_setup
            )
        )

        bench(
            'trie.%s (misses)' % meth,
            timeit.Timer(
                "for word in NON_WORDS100k: data.%s(word, default=None)" % meth,
                trie_setup
            )
        )

        bench(
            'trie.%s (mixed)' % meth,
            timeit.Timer(
                "for word in MIXED_WORDS100k: data.%s(word, default=None)" % meth,
                trie_setup
            )
        )


    prefix_data = [
        ('xxx', 'avg_len(res)==415', 'PREFIXES_3_1k'),
        ('xxxxx', 'avg_len(res)==17', 'PREFIXES_5_1k'),
        ('xxxxxxxx', 'avg_len(res)==3', 'PREFIXES_8_1k'),
        ('xxxxx..xx', 'avg_len(res)==1.4', 'PREFIXES_15_1k'),
        ('xxx', 'NON_EXISTING', 'NON_WORDS_1k'),
    ]
    for xxx, avg, data in prefix_data:
        for meth in ('items', 'keys', 'values'):
            bench(
                'trie.%s(prefix="%s"), %s' % (meth, xxx, avg),
                timeit.Timer(
                    "for word in %s: data.%s(word)" % (data, meth),
                    trie_setup
                ),
                'K ops/sec',
                op_count=1,
            )

def profiling():
    print('\n====== Profiling =======\n')


    def profile_yep():
        import yep

        trie = create_trie()
        #WORDS = words100k()

        yep.start(b'output.prof')
        for x in range(100):
            trie.keys()
#        for x in range(1000):
#            for word in WORDS:
#                trie[word]
        yep.stop()

    def profile_cprofile():
        import pstats
        import cProfile

        trie = create_trie()
        WORDS = words100k()

        def check_trie(trie, words):
            value = 0
            for word in words:
                value += trie[word]
            if value != len(words):
                raise Exception()

#        def check_prefixes(trie, words):
#            for word in words:
#                trie.keys(word)
#        cProfile.runctx("check_prefixes(trie, NON_WORDS_1k)", globals(), locals(), "Profile.prof")

        cProfile.runctx("check_trie(trie, WORDS)", globals(), locals(), "Profile.prof")

        s = pstats.Stats("Profile.prof")
        s.strip_dirs().sort_stats("time").print_stats(20)

    #profile_cprofile()
    profile_yep()

#def memory():
#    gc.collect()
#    _memory = lambda: _get_memory(os.getpid())
#    initial_memory = _memory()
#    trie = create_trie()
#    gc.collect()
#    trie_memory = _memory()
#
#    del trie
#    gc.collect()
#    alphabet, words = words100k()
#    words_dict = dict((word, 1) for word in words)
#    del alphabet
#    del words
#    gc.collect()
#
#    dict_memory = _memory()
#    print('initial: %s, trie: +%s, dict: +%s' % (
#        initial_memory,
#        trie_memory-initial_memory,
#        dict_memory-initial_memory,
#    ))

if __name__ == '__main__':
    benchmark()
    #profiling()
    #memory()
    print('\n~~~~~~~~~~~~~~\n')