1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
# -*- coding: utf-8 -*-
# This file is a part of DDT (https://github.com/datadriventests/ddt)
# Copyright 2012-2015 Carles Barrobés and DDT contributors
# For the exact contribution history, see the git revision log.
# DDT is licensed under the MIT License, included in
# https://github.com/datadriventests/ddt/blob/master/LICENSE.md
import codecs
import inspect
import json
import os
import re
from enum import Enum, unique
from functools import wraps
try:
import yaml
except ImportError: # pragma: no cover
_have_yaml = False
else:
_have_yaml = True
from collections.abc import Sequence
__version__ = '1.7.2'
# These attributes will not conflict with any real python attribute
# They are added to the decorated test method and processed later
# by the `ddt` class decorator.
DATA_ATTR = '%values' # store the data the test must run with
FILE_ATTR = '%file_path' # store the path to JSON file
YAML_LOADER_ATTR = '%yaml_loader' # store custom yaml loader for serialization
UNPACK_ATTR = '%unpack' # remember that we have to unpack values
INDEX_LEN = '%index_len' # store the index length of the data
# These are helper classes for @named_data that allow ddt tests to have meaningful names.
class _NamedDataList(list):
def __init__(self, name, *args):
super(_NamedDataList, self).__init__(args)
self.name = name
def __str__(self):
return str(self.name)
class _NamedDataDict(dict):
def __init__(self, **kwargs):
if "name" not in kwargs.keys():
raise KeyError("@named_data expects a dictionary with a 'name' key.")
self.name = kwargs.pop('name')
super(_NamedDataDict, self).__init__(kwargs)
def __str__(self):
return str(self.name)
trivial_types = (type(None), bool, int, float, _NamedDataList, _NamedDataDict)
try:
trivial_types += (basestring, )
except NameError:
trivial_types += (str, )
@unique
class TestNameFormat(Enum):
"""
An enum to configure how ``mk_test_name()`` to compose a test name. Given
the following example:
.. code-block:: python
@data("a", "b")
def testSomething(self, value):
...
if using just ``@ddt`` or together with ``DEFAULT``:
* ``testSomething_1_a``
* ``testSomething_2_b``
if using ``INDEX_ONLY``:
* ``testSomething_1``
* ``testSomething_2``
"""
DEFAULT = 0
INDEX_ONLY = 1
def is_trivial(value):
if isinstance(value, trivial_types):
return True
elif isinstance(value, (list, tuple)):
return all(map(is_trivial, value))
return False
def unpack(func):
"""
Method decorator to add unpack feature.
"""
setattr(func, UNPACK_ATTR, True)
return func
def data(*values):
"""
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
"""
return idata(values)
def idata(iterable, index_len=None):
"""
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
:param iterable: iterable of the values to provide to the test function.
:param index_len: an optional integer specifying the width to zero-pad the
test identifier indices to. If not provided, this will add the fewest
zeros necessary to make all identifiers the same length.
"""
if index_len is None:
# Avoid consuming a one-time-use generator.
iterable = tuple(iterable)
index_len = len(str(len(iterable)))
def wrapper(func):
setattr(func, DATA_ATTR, iterable)
setattr(func, INDEX_LEN, index_len)
return func
return wrapper
def file_data(value, yaml_loader=None):
"""
Method decorator to add to your test methods.
Should be added to methods of instances of ``unittest.TestCase``.
``value`` should be a path relative to the directory of the file
containing the decorated ``unittest.TestCase``. The file
should contain JSON encoded data, that can either be a list or a
dict.
In case of a list, each value in the list will correspond to one
test case, and the value will be concatenated to the test method
name.
In case of a dict, keys will be used as suffixes to the name of the
test case, and values will be fed as test data.
``yaml_loader`` can be used to customize yaml deserialization.
The default is ``None``, which results in using the ``yaml.safe_load``
method.
"""
def wrapper(func):
setattr(func, FILE_ATTR, value)
if yaml_loader:
setattr(func, YAML_LOADER_ATTR, yaml_loader)
return func
return wrapper
def mk_test_name(name, value, index=0, index_len=5, name_fmt=TestNameFormat.DEFAULT):
"""
Generate a new name for a test case.
It will take the original test name and append an ordinal index and a
string representation of the value, and convert the result into a valid
python identifier by replacing extraneous characters with ``_``.
We avoid doing str(value) if dealing with non-trivial values.
The problem is possible different names with different runs, e.g.
different order of dictionary keys (see PYTHONHASHSEED) or dealing
with mock objects.
Trivial scalar values are passed as is.
A "trivial" value is a plain scalar, or a tuple or list consisting
only of trivial values.
The test name format is controlled by enum ``TestNameFormat`` as well. See
the enum documentation for further details.
"""
# Add zeros before index to keep order
index = "{0:0{1}}".format(index + 1, index_len)
if name_fmt is TestNameFormat.INDEX_ONLY or not is_trivial(value):
return "{0}_{1}".format(name, index)
try:
value = str(value)
except UnicodeEncodeError:
# fallback for python2
value = value.encode('ascii', 'backslashreplace')
test_name = "{0}_{1}_{2}".format(name, index, value)
return re.sub(r'\W|^(?=\d)', '_', test_name)
def feed_data(func, new_name, test_data_docstring, *args, **kwargs):
"""
This internal method decorator feeds the test data item to the test.
"""
if inspect.iscoroutinefunction(func):
@wraps(func)
async def wrapper(self):
return await func(self, *args, **kwargs)
else:
@wraps(func)
def wrapper(self):
return func(self, *args, **kwargs)
wrapper.__name__ = new_name
wrapper.__wrapped__ = func
# set docstring if exists
if test_data_docstring is not None:
wrapper.__doc__ = test_data_docstring
else:
# Try to call format on the docstring
if func.__doc__:
try:
wrapper.__doc__ = func.__doc__.format(*args, **kwargs)
except (IndexError, KeyError):
# Maybe the user has added some of the formating strings
# unintentionally in the docstring. Do not raise an exception
# as it could be that user is not aware of the
# formating feature.
pass
return wrapper
def add_test(cls, test_name, test_docstring, func, *args, **kwargs):
"""
Add a test case to this class.
The test will be based on an existing function but will give it a new
name.
"""
setattr(cls, test_name, feed_data(func, test_name, test_docstring,
*args, **kwargs))
def process_file_data(cls, name, func, file_attr):
"""
Process the parameter in the `file_data` decorator.
"""
cls_path = os.path.abspath(inspect.getsourcefile(cls))
data_file_path = os.path.join(os.path.dirname(cls_path), file_attr)
def create_error_func(message): # pylint: disable-msg=W0613
def func(*args):
raise ValueError(message % file_attr)
return func
# If file does not exist, provide an error function instead
if not os.path.exists(data_file_path):
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(cls, test_name, test_docstring,
create_error_func("%s does not exist"), None)
return
_is_yaml_file = data_file_path.endswith((".yml", ".yaml"))
# Don't have YAML but want to use YAML file.
if _is_yaml_file and not _have_yaml:
test_name = mk_test_name(name, "error")
test_docstring = """Error!"""
add_test(
cls,
test_name,
test_docstring,
create_error_func("%s is a YAML file, please install PyYAML"),
None
)
return
with codecs.open(data_file_path, 'r', 'utf-8') as f:
# Load the data from YAML or JSON
if _is_yaml_file:
if hasattr(func, YAML_LOADER_ATTR):
yaml_loader = getattr(func, YAML_LOADER_ATTR)
data = yaml.load(f, Loader=yaml_loader)
else:
data = yaml.safe_load(f)
else:
data = json.load(f)
_add_tests_from_data(cls, name, func, data)
def _add_tests_from_data(cls, name, func, data):
"""
Add tests from data loaded from the data file into the class
"""
index_len = len(str(len(data)))
for i, elem in enumerate(data):
if isinstance(data, dict):
key, value = elem, data[elem]
test_name = mk_test_name(name, key, i, index_len)
elif isinstance(data, list):
value = elem
test_name = mk_test_name(name, value, i, index_len)
if isinstance(value, dict):
add_test(cls, test_name, test_name, func, **value)
else:
add_test(cls, test_name, test_name, func, value)
def _is_primitive(obj):
"""Finds out if the obj is a "primitive". It is somewhat hacky but it works.
"""
return not hasattr(obj, '__dict__')
def _get_test_data_docstring(func, value):
"""Returns a docstring based on the following resolution strategy:
1. Passed value is not a "primitive" and has a docstring, then use it.
2. In all other cases return None, i.e the test name is used.
"""
if not _is_primitive(value) and value.__doc__:
return value.__doc__
else:
return None
def ddt(arg=None, **kwargs):
"""
Class decorator for subclasses of ``unittest.TestCase``.
Apply this decorator to the test case class, and then
decorate test methods with ``@data``.
For each method decorated with ``@data``, this will effectively create as
many methods as data items are passed as parameters to ``@data``.
The names of the test methods follow the pattern
``original_test_name_{ordinal}_{data}``. ``ordinal`` is the position of the
data argument, starting with 1.
For data we use a string representation of the data value converted into a
valid python identifier. If ``data.__name__`` exists, we use that instead.
For each method decorated with ``@file_data('test_data.json')``, the
decorator will try to load the test_data.json file located relative
to the python file containing the method that is decorated. It will,
for each ``test_name`` key create as many methods in the list of values
from the ``data`` key.
Decorating with the keyword argument ``testNameFormat`` can control the
format of the generated test names. For example:
- ``@ddt(testNameFormat=TestNameFormat.DEFAULT)`` will be index and values.
- ``@ddt(testNameFormat=TestNameFormat.INDEX_ONLY)`` will be index only.
- ``@ddt`` is the same as DEFAULT.
"""
fmt_test_name = kwargs.get("testNameFormat", TestNameFormat.DEFAULT)
def wrapper(cls):
for name, func in list(cls.__dict__.items()):
if hasattr(func, DATA_ATTR):
index_len = getattr(func, INDEX_LEN)
for i, v in enumerate(getattr(func, DATA_ATTR)):
test_name = mk_test_name(
name,
getattr(v, "__name__", v),
i,
index_len,
fmt_test_name
)
test_data_docstring = _get_test_data_docstring(func, v)
if hasattr(func, UNPACK_ATTR):
if isinstance(v, tuple) or isinstance(v, list):
add_test(
cls,
test_name,
test_data_docstring,
func,
*v
)
else:
# unpack dictionary
add_test(
cls,
test_name,
test_data_docstring,
func,
**v
)
else:
add_test(cls, test_name, test_data_docstring, func, v)
delattr(cls, name)
elif hasattr(func, FILE_ATTR):
file_attr = getattr(func, FILE_ATTR)
process_file_data(cls, name, func, file_attr)
delattr(cls, name)
return cls
# ``arg`` is the unittest's test class when decorating with ``@ddt`` while
# it is ``None`` when decorating a test class with ``@ddt(k=v)``.
return wrapper(arg) if inspect.isclass(arg) else wrapper
def named_data(*named_values):
"""
This decorator is to allow for meaningful names to be given to tests that would otherwise use @ddt.data and
@ddt.unpack.
Example of original ddt usage:
@ddt.ddt
class TestExample(TemplateTest):
@ddt.data(
[0, 1],
[10, 11]
)
@ddt.unpack
def test_values(self, value1, value2):
...
Example of new usage:
@ddt.ddt
class TestExample(TemplateTest):
@named_data(
['LabelA', 0, 1],
['LabelB', 10, 11],
)
def test_values(self, value1, value2):
...
Note that @unpack is not used.
:param Sequence[Any] | dict[Any,Any] named_values: Each named_value should be a Sequence (e.g. list or tuple) with
the name as the first element, or a dictionary with 'name' as one of the keys. The name will be coerced to a
string and all other values will be passed unchanged to the test.
"""
values = []
for named_value in named_values:
if not isinstance(named_value, (Sequence, dict)):
raise TypeError(
"@named_data expects a Sequence (list, tuple) or dictionary, and not '{}'.".format(type(named_value))
)
value = _NamedDataDict(**named_value) if isinstance(named_value, dict) \
else _NamedDataList(named_value[0], *named_value[1:])
# Remove the __doc__ attribute so @ddt.data doesn't add the NamedData class docstrings to the test name.
value.__doc__ = None
values.append(value)
def wrapper(func):
data(*values)(unpack(func))
return func
return wrapper
|