1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="Docutils 0.6: http://docutils.sourceforge.net/" />
<title>The decorator module</title>
<meta name="author" content="Michele Simionato" />
<style type="text/css">
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #808080 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0040D0 } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #008000; font-weight: bold } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
</head>
<body>
<div class="document" id="the-decorator-module">
<h1 class="title">The <tt class="docutils literal">decorator</tt> module</h1>
<table class="docinfo" frame="void" rules="none">
<col class="docinfo-name" />
<col class="docinfo-content" />
<tbody valign="top">
<tr><th class="docinfo-name">Author:</th>
<td>Michele Simionato</td></tr>
<tr class="field"><th class="docinfo-name">E-mail:</th><td class="field-body"><a class="reference external" href="mailto:michele.simionato@gmail.com">michele.simionato@gmail.com</a></td>
</tr>
<tr><th class="docinfo-name">Version:</th>
<td>3.2.0 (2010-05-25)</td></tr>
<tr class="field"><th class="docinfo-name">Requires:</th><td class="field-body">Python 2.4+</td>
</tr>
<tr class="field"><th class="docinfo-name">Download page:</th><td class="field-body"><a class="reference external" href="http://pypi.python.org/pypi/decorator/3.2.0">http://pypi.python.org/pypi/decorator/3.2.0</a></td>
</tr>
<tr class="field"><th class="docinfo-name">Installation:</th><td class="field-body"><tt class="docutils literal">easy_install decorator</tt></td>
</tr>
<tr class="field"><th class="docinfo-name">License:</th><td class="field-body">BSD license</td>
</tr>
</tbody>
</table>
<div class="contents topic" id="contents">
<p class="topic-title first">Contents</p>
<ul class="simple">
<li><a class="reference internal" href="#introduction" id="id3">Introduction</a></li>
<li><a class="reference internal" href="#definitions" id="id4">Definitions</a></li>
<li><a class="reference internal" href="#statement-of-the-problem" id="id5">Statement of the problem</a></li>
<li><a class="reference internal" href="#the-solution" id="id6">The solution</a></li>
<li><a class="reference internal" href="#a-trace-decorator" id="id7">A <tt class="docutils literal">trace</tt> decorator</a></li>
<li><a class="reference internal" href="#decorator-is-a-decorator" id="id8"><tt class="docutils literal">decorator</tt> is a decorator</a></li>
<li><a class="reference internal" href="#blocking" id="id9"><tt class="docutils literal">blocking</tt></a></li>
<li><a class="reference internal" href="#async" id="id10"><tt class="docutils literal">async</tt></a></li>
<li><a class="reference internal" href="#the-functionmaker-class" id="id11">The <tt class="docutils literal">FunctionMaker</tt> class</a></li>
<li><a class="reference internal" href="#getting-the-source-code" id="id12">Getting the source code</a></li>
<li><a class="reference internal" href="#dealing-with-third-party-decorators" id="id13">Dealing with third party decorators</a></li>
<li><a class="reference internal" href="#caveats-and-limitations" id="id14">Caveats and limitations</a></li>
<li><a class="reference internal" href="#compatibility-notes" id="id15">Compatibility notes</a></li>
<li><a class="reference internal" href="#licence" id="id16">LICENCE</a></li>
</ul>
</div>
<div class="section" id="introduction">
<h1><a class="toc-backref" href="#id3">Introduction</a></h1>
<p>Python decorators are an interesting example of why syntactic sugar
matters. In principle, their introduction in Python 2.4 changed
nothing, since they do not provide any new functionality which was not
already present in the language. In practice, their introduction has
significantly changed the way we structure our programs in Python. I
believe the change is for the best, and that decorators are a great
idea since:</p>
<ul class="simple">
<li>decorators help reducing boilerplate code;</li>
<li>decorators help separation of concerns;</li>
<li>decorators enhance readability and maintenability;</li>
<li>decorators are explicit.</li>
</ul>
<p>Still, as of now, writing custom decorators correctly requires
some experience and it is not as easy as it could be. For instance,
typical implementations of decorators involve nested functions, and
we all know that flat is better than nested.</p>
<p>The aim of the <tt class="docutils literal">decorator</tt> module it to simplify the usage of
decorators for the average programmer, and to popularize decorators by
showing various non-trivial examples. Of course, as all techniques,
decorators can be abused (I have seen that) and you should not try to
solve every problem with a decorator, just because you can.</p>
<p>You may find the source code for all the examples
discussed here in the <tt class="docutils literal">documentation.py</tt> file, which contains
this documentation in the form of doctests.</p>
</div>
<div class="section" id="definitions">
<h1><a class="toc-backref" href="#id4">Definitions</a></h1>
<p>Technically speaking, any Python object which can be called with one argument
can be used as a decorator. However, this definition is somewhat too large
to be really useful. It is more convenient to split the generic class of
decorators in two subclasses:</p>
<ul class="simple">
<li><em>signature-preserving</em> decorators, i.e. callable objects taking a
function as input and returning a function <em>with the same
signature</em> as output;</li>
<li><em>signature-changing</em> decorators, i.e. decorators that change
the signature of their input function, or decorators returning
non-callable objects.</li>
</ul>
<p>Signature-changing decorators have their use: for instance the
builtin classes <tt class="docutils literal">staticmethod</tt> and <tt class="docutils literal">classmethod</tt> are in this
group, since they take functions and return descriptor objects which
are not functions, nor callables.</p>
<p>However, signature-preserving decorators are more common and easier to
reason about; in particular signature-preserving decorators can be
composed together whereas other decorators in general cannot.</p>
<p>Writing signature-preserving decorators from scratch is not that
obvious, especially if one wants to define proper decorators that
can accept functions with any signature. A simple example will clarify
the issue.</p>
</div>
<div class="section" id="statement-of-the-problem">
<h1><a class="toc-backref" href="#id5">Statement of the problem</a></h1>
<p>A very common use case for decorators is the memoization of functions.
A <tt class="docutils literal">memoize</tt> decorator works by caching
the result of the function call in a dictionary, so that the next time
the function is called with the same input parameters the result is retrieved
from the cache and not recomputed. There are many implementations of
<tt class="docutils literal">memoize</tt> in <a class="reference external" href="http://www.python.org/moin/PythonDecoratorLibrary">http://www.python.org/moin/PythonDecoratorLibrary</a>,
but they do not preserve the signature.
A simple implementation could be the following (notice
that in general it is impossible to memoize correctly something
that depends on non-hashable arguments):</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">memoize_uw</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
<span class="n">func</span><span class="o">.</span><span class="n">cache</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">def</span> <span class="nf">memoize</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">if</span> <span class="n">kw</span><span class="p">:</span> <span class="c"># frozenset is used to ensure hashability</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">args</span><span class="p">,</span> <span class="n">frozenset</span><span class="p">(</span><span class="n">kw</span><span class="o">.</span><span class="n">iteritems</span><span class="p">())</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">args</span>
<span class="n">cache</span> <span class="o">=</span> <span class="n">func</span><span class="o">.</span><span class="n">cache</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">cache</span><span class="p">:</span>
<span class="k">return</span> <span class="n">cache</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cache</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">result</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span>
<span class="k">return</span> <span class="n">functools</span><span class="o">.</span><span class="n">update_wrapper</span><span class="p">(</span><span class="n">memoize</span><span class="p">,</span> <span class="n">func</span><span class="p">)</span>
</pre></div>
</div>
<p>Here we used the <a class="reference external" href="http://www.python.org/doc/2.5.2/lib/module-functools.html">functools.update_wrapper</a> utility, which has
been added in Python 2.5 expressly to simplify the definition of decorators
(in older versions of Python you need to copy the function attributes
<tt class="docutils literal">__name__</tt>, <tt class="docutils literal">__doc__</tt>, <tt class="docutils literal">__module__</tt> and <tt class="docutils literal">__dict__</tt>
from the original function to the decorated function by hand).</p>
<p>The implementation above works in the sense that the decorator
can accept functions with generic signatures; unfortunately this
implementation does <em>not</em> define a signature-preserving decorator, since in
general <tt class="docutils literal">memoize_uw</tt> returns a function with a
<em>different signature</em> from the original function.</p>
<p>Consider for instance the following case:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@memoize_uw</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">f1</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="o">...</span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">1</span><span class="p">)</span> <span class="c"># simulate some long computation</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">x</span>
</pre></div>
</div>
<p>Here the original function takes a single argument named <tt class="docutils literal">x</tt>,
but the decorated function takes any number of arguments and
keyword arguments:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="kn">from</span> <span class="nn">inspect</span> <span class="kn">import</span> <span class="n">getargspec</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">getargspec</span><span class="p">(</span><span class="n">f1</span><span class="p">))</span>
<span class="n">ArgSpec</span><span class="p">(</span><span class="n">args</span><span class="o">=</span><span class="p">[],</span> <span class="n">varargs</span><span class="o">=</span><span class="s">'args'</span><span class="p">,</span> <span class="n">keywords</span><span class="o">=</span><span class="s">'kw'</span><span class="p">,</span> <span class="n">defaults</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
</pre></div>
</div>
<p>This means that introspection tools such as pydoc will give
wrong informations about the signature of <tt class="docutils literal">f1</tt>. This is pretty bad:
pydoc will tell you that the function accepts a generic signature
<tt class="docutils literal">*args</tt>, <tt class="docutils literal">**kw</tt>, but when you try to call the function with more than an
argument, you will get an error:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">f1</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span> <span class="mf">1</span><span class="p">)</span>
<span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span>
<span class="o">...</span>
<span class="ne">TypeError</span><span class="p">:</span> <span class="n">f1</span><span class="p">()</span> <span class="n">takes</span> <span class="n">exactly</span> <span class="mf">1</span> <span class="n">positional</span> <span class="n">argument</span> <span class="p">(</span><span class="mf">2</span> <span class="n">given</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="the-solution">
<h1><a class="toc-backref" href="#id6">The solution</a></h1>
<p>The solution is to provide a generic factory of generators, which
hides the complexity of making signature-preserving decorators
from the application programmer. The <tt class="docutils literal">decorator</tt> function in
the <tt class="docutils literal">decorator</tt> module is such a factory:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="kn">from</span> <span class="nn">decorator</span> <span class="kn">import</span> <span class="n">decorator</span>
</pre></div>
</div>
<p><tt class="docutils literal">decorator</tt> takes two arguments, a caller function describing the
functionality of the decorator and a function to be decorated; it
returns the decorated function. The caller function must have
signature <tt class="docutils literal">(f, *args, **kw)</tt> and it must call the original function <tt class="docutils literal">f</tt>
with arguments <tt class="docutils literal">args</tt> and <tt class="docutils literal">kw</tt>, implementing the wanted capability,
i.e. memoization in this case:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">_memoize</span><span class="p">(</span><span class="n">func</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">if</span> <span class="n">kw</span><span class="p">:</span> <span class="c"># frozenset is used to ensure hashability</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">args</span><span class="p">,</span> <span class="n">frozenset</span><span class="p">(</span><span class="n">kw</span><span class="o">.</span><span class="n">iteritems</span><span class="p">())</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">key</span> <span class="o">=</span> <span class="n">args</span>
<span class="n">cache</span> <span class="o">=</span> <span class="n">func</span><span class="o">.</span><span class="n">cache</span> <span class="c"># attributed added by memoize</span>
<span class="k">if</span> <span class="n">key</span> <span class="ow">in</span> <span class="n">cache</span><span class="p">:</span>
<span class="k">return</span> <span class="n">cache</span><span class="p">[</span><span class="n">key</span><span class="p">]</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">cache</span><span class="p">[</span><span class="n">key</span><span class="p">]</span> <span class="o">=</span> <span class="n">result</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="k">return</span> <span class="n">result</span>
</pre></div>
</div>
<p>At this point you can define your decorator as follows:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">memoize</span><span class="p">(</span><span class="n">f</span><span class="p">):</span>
<span class="n">f</span><span class="o">.</span><span class="n">cache</span> <span class="o">=</span> <span class="p">{}</span>
<span class="k">return</span> <span class="n">decorator</span><span class="p">(</span><span class="n">_memoize</span><span class="p">,</span> <span class="n">f</span><span class="p">)</span>
</pre></div>
</div>
<p>The difference with respect to the <tt class="docutils literal">memoize_uw</tt> approach, which is based
on nested functions, is that the decorator module forces you to lift
the inner function at the outer level (<em>flat is better than nested</em>).
Moreover, you are forced to pass explicitly the function you want to
decorate to the caller function.</p>
<p>Here is a test of usage:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@memoize</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">heavy_computation</span><span class="p">():</span>
<span class="o">...</span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">2</span><span class="p">)</span>
<span class="o">...</span> <span class="k">return</span> <span class="s">"done"</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">heavy_computation</span><span class="p">())</span> <span class="c"># the first time it will take 2 seconds</span>
<span class="n">done</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">heavy_computation</span><span class="p">())</span> <span class="c"># the second time it will be instantaneous</span>
<span class="n">done</span>
</pre></div>
</div>
<p>The signature of <tt class="docutils literal">heavy_computation</tt> is the one you would expect:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">getargspec</span><span class="p">(</span><span class="n">heavy_computation</span><span class="p">))</span>
<span class="n">ArgSpec</span><span class="p">(</span><span class="n">args</span><span class="o">=</span><span class="p">[],</span> <span class="n">varargs</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">keywords</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">defaults</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="a-trace-decorator">
<h1><a class="toc-backref" href="#id7">A <tt class="docutils literal">trace</tt> decorator</a></h1>
<p>As an additional example, here is how you can define a trivial
<tt class="docutils literal">trace</tt> decorator, which prints a message everytime the traced
function is called:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">_trace</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s">"calling </span><span class="si">%s</span><span class="s"> with args </span><span class="si">%s</span><span class="s">, </span><span class="si">%s</span><span class="s">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">__name__</span><span class="p">,</span> <span class="n">args</span><span class="p">,</span> <span class="n">kw</span><span class="p">))</span>
<span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
</pre></div>
</div>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">trace</span><span class="p">(</span><span class="n">f</span><span class="p">):</span>
<span class="k">return</span> <span class="n">decorator</span><span class="p">(</span><span class="n">_trace</span><span class="p">,</span> <span class="n">f</span><span class="p">)</span>
</pre></div>
</div>
<p>Here is an example of usage:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@trace</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">f1</span><span class="p">(</span><span class="n">x</span><span class="p">):</span>
<span class="o">...</span> <span class="k">pass</span>
</pre></div>
</div>
<p>It is immediate to verify that <tt class="docutils literal">f1</tt> works</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">f1</span><span class="p">(</span><span class="mf">0</span><span class="p">)</span>
<span class="n">calling</span> <span class="n">f1</span> <span class="k">with</span> <span class="n">args</span> <span class="p">(</span><span class="mf">0</span><span class="p">,),</span> <span class="p">{}</span>
</pre></div>
</div>
<p>and it that it has the correct signature:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">getargspec</span><span class="p">(</span><span class="n">f1</span><span class="p">))</span>
<span class="n">ArgSpec</span><span class="p">(</span><span class="n">args</span><span class="o">=</span><span class="p">[</span><span class="s">'x'</span><span class="p">],</span> <span class="n">varargs</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">keywords</span><span class="o">=</span><span class="bp">None</span><span class="p">,</span> <span class="n">defaults</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
</pre></div>
</div>
<p>The same decorator works with functions of any signature:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@trace</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">1</span><span class="p">,</span> <span class="n">z</span><span class="o">=</span><span class="mf">2</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="o">...</span> <span class="k">pass</span>
<span class="o">>>></span> <span class="n">f</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span> <span class="mf">3</span><span class="p">)</span>
<span class="n">calling</span> <span class="n">f</span> <span class="k">with</span> <span class="n">args</span> <span class="p">(</span><span class="mf">0</span><span class="p">,</span> <span class="mf">3</span><span class="p">,</span> <span class="mf">2</span><span class="p">),</span> <span class="p">{}</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">getargspec</span><span class="p">(</span><span class="n">f</span><span class="p">))</span>
<span class="n">ArgSpec</span><span class="p">(</span><span class="n">args</span><span class="o">=</span><span class="p">[</span><span class="s">'x'</span><span class="p">,</span> <span class="s">'y'</span><span class="p">,</span> <span class="s">'z'</span><span class="p">],</span> <span class="n">varargs</span><span class="o">=</span><span class="s">'args'</span><span class="p">,</span> <span class="n">keywords</span><span class="o">=</span><span class="s">'kw'</span><span class="p">,</span> <span class="n">defaults</span><span class="o">=</span><span class="p">(</span><span class="mf">1</span><span class="p">,</span> <span class="mf">2</span><span class="p">))</span>
</pre></div>
</div>
</div>
<div class="section" id="decorator-is-a-decorator">
<h1><a class="toc-backref" href="#id8"><tt class="docutils literal">decorator</tt> is a decorator</a></h1>
<p>It may be annoying to write a caller function (like the <tt class="docutils literal">_trace</tt>
function above) and then a trivial wrapper
(<tt class="docutils literal">def trace(f): return decorator(_trace, f)</tt>) every time. For this reason,
the <tt class="docutils literal">decorator</tt> module provides an easy shortcut to convert
the caller function into a signature-preserving decorator:
you can just call <tt class="docutils literal">decorator</tt> with a single argument.
In our example you can just write <tt class="docutils literal">trace = decorator(_trace)</tt>.
The <tt class="docutils literal">decorator</tt> function can also be used as a signature-changing
decorator, just as <tt class="docutils literal">classmethod</tt> and <tt class="docutils literal">staticmethod</tt>.
However, <tt class="docutils literal">classmethod</tt> and <tt class="docutils literal">staticmethod</tt> return generic
objects which are not callable, while <tt class="docutils literal">decorator</tt> returns
signature-preserving decorators, i.e. functions of a single argument.
For instance, you can write directly</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@decorator</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">trace</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="o">...</span> <span class="k">print</span><span class="p">(</span><span class="s">"calling </span><span class="si">%s</span><span class="s"> with args </span><span class="si">%s</span><span class="s">, </span><span class="si">%s</span><span class="s">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">__name__</span><span class="p">,</span> <span class="n">args</span><span class="p">,</span> <span class="n">kw</span><span class="p">))</span>
<span class="o">...</span> <span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
</pre></div>
</div>
<p>and now <tt class="docutils literal">trace</tt> will be a decorator. Actually <tt class="docutils literal">trace</tt> is a <tt class="docutils literal">partial</tt>
object which can be used as a decorator:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">trace</span>
<span class="o"><</span><span class="n">function</span> <span class="n">trace</span> <span class="n">at</span> <span class="mf">0</span><span class="n">x</span><span class="o">...></span>
</pre></div>
</div>
<p>Here is an example of usage:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@trace</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">func</span><span class="p">():</span> <span class="k">pass</span>
<span class="o">>>></span> <span class="n">func</span><span class="p">()</span>
<span class="n">calling</span> <span class="n">func</span> <span class="k">with</span> <span class="n">args</span> <span class="p">(),</span> <span class="p">{}</span>
</pre></div>
</div>
<p>If you are using an old Python version (Python 2.4) the
<tt class="docutils literal">decorator</tt> module provides a poor man replacement for
<tt class="docutils literal">functools.partial</tt>.</p>
</div>
<div class="section" id="blocking">
<h1><a class="toc-backref" href="#id9"><tt class="docutils literal">blocking</tt></a></h1>
<p>Sometimes one has to deal with blocking resources, such as <tt class="docutils literal">stdin</tt>, and
sometimes it is best to have back a "busy" message than to block everything.
This behavior can be implemented with a suitable family of decorators,
where the parameter is the busy message:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">blocking</span><span class="p">(</span><span class="n">not_avail</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">blocking</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">hasattr</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="s">"thread"</span><span class="p">):</span> <span class="c"># no thread running</span>
<span class="k">def</span> <span class="nf">set_result</span><span class="p">():</span> <span class="n">f</span><span class="o">.</span><span class="n">result</span> <span class="o">=</span> <span class="n">f</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">thread</span> <span class="o">=</span> <span class="n">threading</span><span class="o">.</span><span class="n">Thread</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="n">set_result</span><span class="p">)</span>
<span class="n">f</span><span class="o">.</span><span class="n">thread</span><span class="o">.</span><span class="n">start</span><span class="p">()</span>
<span class="k">return</span> <span class="n">not_avail</span>
<span class="k">elif</span> <span class="n">f</span><span class="o">.</span><span class="n">thread</span><span class="o">.</span><span class="n">isAlive</span><span class="p">():</span>
<span class="k">return</span> <span class="n">not_avail</span>
<span class="k">else</span><span class="p">:</span> <span class="c"># the thread is ended, return the stored result</span>
<span class="k">del</span> <span class="n">f</span><span class="o">.</span><span class="n">thread</span>
<span class="k">return</span> <span class="n">f</span><span class="o">.</span><span class="n">result</span>
<span class="k">return</span> <span class="n">decorator</span><span class="p">(</span><span class="n">blocking</span><span class="p">)</span>
</pre></div>
</div>
<p>Functions decorated with <tt class="docutils literal">blocking</tt> will return a busy message if
the resource is unavailable, and the intended result if the resource is
available. For instance:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@blocking</span><span class="p">(</span><span class="s">"Please wait ..."</span><span class="p">)</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">read_data</span><span class="p">():</span>
<span class="o">...</span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">3</span><span class="p">)</span> <span class="c"># simulate a blocking resource</span>
<span class="o">...</span> <span class="k">return</span> <span class="s">"some data"</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">read_data</span><span class="p">())</span> <span class="c"># data is not available yet</span>
<span class="n">Please</span> <span class="n">wait</span> <span class="o">...</span>
<span class="o">>>></span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">1</span><span class="p">)</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">read_data</span><span class="p">())</span> <span class="c"># data is not available yet</span>
<span class="n">Please</span> <span class="n">wait</span> <span class="o">...</span>
<span class="o">>>></span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">1</span><span class="p">)</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">read_data</span><span class="p">())</span> <span class="c"># data is not available yet</span>
<span class="n">Please</span> <span class="n">wait</span> <span class="o">...</span>
<span class="o">>>></span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">1.1</span><span class="p">)</span> <span class="c"># after 3.1 seconds, data is available</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">read_data</span><span class="p">())</span>
<span class="n">some</span> <span class="n">data</span>
</pre></div>
</div>
</div>
<div class="section" id="async">
<h1><a class="toc-backref" href="#id10"><tt class="docutils literal">async</tt></a></h1>
<p>We have just seen an examples of a simple decorator factory,
implemented as a function returning a decorator.
For more complex situations, it is more
convenient to implement decorator factories as classes returning
callable objects that can be used as signature-preserving
decorators. The suggested pattern to do that is to introduce
a helper method <tt class="docutils literal">call(self, func, *args, **kw)</tt> and to call
it in the <tt class="docutils literal">__call__(self, func)</tt> method.</p>
<p>As an example, here I show a decorator
which is able to convert a blocking function into an asynchronous
function. The function, when called,
is executed in a separate thread. Moreover, it is possible to set
three callbacks <tt class="docutils literal">on_success</tt>, <tt class="docutils literal">on_failure</tt> and <tt class="docutils literal">on_closing</tt>,
to specify how to manage the function call.
The implementation is the following:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">on_success</span><span class="p">(</span><span class="n">result</span><span class="p">):</span> <span class="c"># default implementation</span>
<span class="s">"Called on the result of the function"</span>
<span class="k">return</span> <span class="n">result</span>
</pre></div>
</div>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">on_failure</span><span class="p">(</span><span class="n">exc_info</span><span class="p">):</span> <span class="c"># default implementation</span>
<span class="s">"Called if the function fails"</span>
<span class="k">pass</span>
</pre></div>
</div>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">on_closing</span><span class="p">():</span> <span class="c"># default implementation</span>
<span class="s">"Called at the end, both in case of success and failure"</span>
<span class="k">pass</span>
</pre></div>
</div>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">class</span> <span class="nc">Async</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> A decorator converting blocking functions into asynchronous</span>
<span class="sd"> functions, by using threads or processes. Examples:</span>
<span class="sd"> async_with_threads = Async(threading.Thread)</span>
<span class="sd"> async_with_processes = Async(multiprocessing.Process)</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">threadfactory</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">threadfactory</span> <span class="o">=</span> <span class="n">threadfactory</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="n">on_success</span><span class="o">=</span><span class="n">on_success</span><span class="p">,</span>
<span class="n">on_failure</span><span class="o">=</span><span class="n">on_failure</span><span class="p">,</span> <span class="n">on_closing</span><span class="o">=</span><span class="n">on_closing</span><span class="p">):</span>
<span class="c"># every decorated function has its own independent thread counter</span>
<span class="n">func</span><span class="o">.</span><span class="n">counter</span> <span class="o">=</span> <span class="n">itertools</span><span class="o">.</span><span class="n">count</span><span class="p">(</span><span class="mf">1</span><span class="p">)</span>
<span class="n">func</span><span class="o">.</span><span class="n">on_success</span> <span class="o">=</span> <span class="n">on_success</span>
<span class="n">func</span><span class="o">.</span><span class="n">on_failure</span> <span class="o">=</span> <span class="n">on_failure</span>
<span class="n">func</span><span class="o">.</span><span class="n">on_closing</span> <span class="o">=</span> <span class="n">on_closing</span>
<span class="k">return</span> <span class="n">decorator</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">,</span> <span class="n">func</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">call</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">func_wrapper</span><span class="p">():</span>
<span class="k">try</span><span class="p">:</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="k">except</span><span class="p">:</span>
<span class="n">func</span><span class="o">.</span><span class="n">on_failure</span><span class="p">(</span><span class="n">sys</span><span class="o">.</span><span class="n">exc_info</span><span class="p">())</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">func</span><span class="o">.</span><span class="n">on_success</span><span class="p">(</span><span class="n">result</span><span class="p">)</span>
<span class="k">finally</span><span class="p">:</span>
<span class="n">func</span><span class="o">.</span><span class="n">on_closing</span><span class="p">()</span>
<span class="n">name</span> <span class="o">=</span> <span class="s">'</span><span class="si">%s</span><span class="s">-</span><span class="si">%s</span><span class="s">'</span> <span class="o">%</span> <span class="p">(</span><span class="n">func</span><span class="o">.</span><span class="n">__name__</span><span class="p">,</span> <span class="n">next</span><span class="p">(</span><span class="n">func</span><span class="o">.</span><span class="n">counter</span><span class="p">))</span>
<span class="n">thread</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">threadfactory</span><span class="p">(</span><span class="bp">None</span><span class="p">,</span> <span class="n">func_wrapper</span><span class="p">,</span> <span class="n">name</span><span class="p">)</span>
<span class="n">thread</span><span class="o">.</span><span class="n">start</span><span class="p">()</span>
<span class="k">return</span> <span class="n">thread</span>
</pre></div>
</div>
<p>The decorated function returns
the current execution thread, which can be stored and checked later, for
instance to verify that the thread <tt class="docutils literal">.isAlive()</tt>.</p>
<p>Here is an example of usage. Suppose one wants to write some data to
an external resource which can be accessed by a single user at once
(for instance a printer). Then the access to the writing function must
be locked. Here is a minimalistic example:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">async</span> <span class="o">=</span> <span class="n">Async</span><span class="p">(</span><span class="n">threading</span><span class="o">.</span><span class="n">Thread</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">datalist</span> <span class="o">=</span> <span class="p">[]</span> <span class="c"># for simplicity the written data are stored into a list.</span>
<span class="o">>>></span> <span class="nd">@async</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">write</span><span class="p">(</span><span class="n">data</span><span class="p">):</span>
<span class="o">...</span> <span class="c"># append data to the datalist by locking</span>
<span class="o">...</span> <span class="k">with</span> <span class="n">threading</span><span class="o">.</span><span class="n">Lock</span><span class="p">():</span>
<span class="o">...</span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">1</span><span class="p">)</span> <span class="c"># emulate some long running operation</span>
<span class="o">...</span> <span class="n">datalist</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">data</span><span class="p">)</span>
<span class="o">...</span> <span class="c"># other operations not requiring a lock here</span>
</pre></div>
</div>
<p>Each call to <tt class="docutils literal">write</tt> will create a new writer thread, but there will
be no synchronization problems since <tt class="docutils literal">write</tt> is locked.</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">write</span><span class="p">(</span><span class="s">"data1"</span><span class="p">)</span>
<span class="o"><</span><span class="n">Thread</span><span class="p">(</span><span class="n">write</span><span class="o">-</span><span class="mf">1</span><span class="p">,</span> <span class="n">started</span><span class="o">...</span><span class="p">)</span><span class="o">></span>
<span class="o">>>></span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="o">.</span><span class="mf">1</span><span class="p">)</span> <span class="c"># wait a bit, so we are sure data2 is written after data1</span>
<span class="o">>>></span> <span class="n">write</span><span class="p">(</span><span class="s">"data2"</span><span class="p">)</span>
<span class="o"><</span><span class="n">Thread</span><span class="p">(</span><span class="n">write</span><span class="o">-</span><span class="mf">2</span><span class="p">,</span> <span class="n">started</span><span class="o">...</span><span class="p">)</span><span class="o">></span>
<span class="o">>>></span> <span class="n">time</span><span class="o">.</span><span class="n">sleep</span><span class="p">(</span><span class="mf">2</span><span class="p">)</span> <span class="c"># wait for the writers to complete</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">datalist</span><span class="p">)</span>
<span class="p">[</span><span class="s">'data1'</span><span class="p">,</span> <span class="s">'data2'</span><span class="p">]</span>
</pre></div>
</div>
</div>
<div class="section" id="the-functionmaker-class">
<h1><a class="toc-backref" href="#id11">The <tt class="docutils literal">FunctionMaker</tt> class</a></h1>
<p>You may wonder about how the functionality of the <tt class="docutils literal">decorator</tt> module
is implemented. The basic building block is
a <tt class="docutils literal">FunctionMaker</tt> class which is able to generate on the fly
functions with a given name and signature from a function template
passed as a string. Generally speaking, you should not need to
resort to <tt class="docutils literal">FunctionMaker</tt> when writing ordinary decorators, but
it is handy in some circumstances. You will see an example shortly, in
the implementation of a cool decorator utility (<tt class="docutils literal">decorator_apply</tt>).</p>
<p><tt class="docutils literal">FunctionMaker</tt> provides a <tt class="docutils literal">.create</tt> classmethod which
takes as input the name, signature, and body of the function
we want to generate as well as the execution environment
were the function is generated by <tt class="docutils literal">exec</tt>. Here is an example:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span> <span class="c"># a function with a generic signature</span>
<span class="o">...</span> <span class="k">print</span><span class="p">(</span><span class="n">args</span><span class="p">,</span> <span class="n">kw</span><span class="p">)</span>
<span class="o">>>></span> <span class="n">f1</span> <span class="o">=</span> <span class="n">FunctionMaker</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="s">'f1(a, b)'</span><span class="p">,</span> <span class="s">'f(a, b)'</span><span class="p">,</span> <span class="nb">dict</span><span class="p">(</span><span class="n">f</span><span class="o">=</span><span class="n">f</span><span class="p">))</span>
<span class="o">>>></span> <span class="n">f1</span><span class="p">(</span><span class="mf">1</span><span class="p">,</span><span class="mf">2</span><span class="p">)</span>
<span class="p">(</span><span class="mf">1</span><span class="p">,</span> <span class="mf">2</span><span class="p">)</span> <span class="p">{}</span>
</pre></div>
</div>
<p>It is important to notice that the function body is interpolated
before being executed, so be careful with the <tt class="docutils literal">%</tt> sign!</p>
<p><tt class="docutils literal">FunctionMaker.create</tt> also accepts keyword arguments and such
arguments are attached to the resulting function. This is useful
if you want to set some function attributes, for instance the
docstring <tt class="docutils literal">__doc__</tt>.</p>
<p>For debugging/introspection purposes it may be useful to see
the source code of the generated function; to do that, just
pass the flag <tt class="docutils literal">addsource=True</tt> and a <tt class="docutils literal">__source__</tt> attribute will
be added to the generated function:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">f1</span> <span class="o">=</span> <span class="n">FunctionMaker</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
<span class="o">...</span> <span class="s">'f1(a, b)'</span><span class="p">,</span> <span class="s">'f(a, b)'</span><span class="p">,</span> <span class="nb">dict</span><span class="p">(</span><span class="n">f</span><span class="o">=</span><span class="n">f</span><span class="p">),</span> <span class="n">addsource</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">f1</span><span class="o">.</span><span class="n">__source__</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">f1</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">):</span>
<span class="n">f</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
<span class="o"><</span><span class="n">BLANKLINE</span><span class="o">></span>
</pre></div>
</div>
<p><tt class="docutils literal">FunctionMaker.create</tt> can take as first argument a string,
as in the examples before, or a function. This is the most common
usage, since typically you want to decorate a pre-existing
function. A framework author may want to use directly <tt class="docutils literal">FunctionMaker.create</tt>
instead of <tt class="docutils literal">decorator</tt>, since it gives you direct access to the body
of the generated function. For instance, suppose you want to instrument
the <tt class="docutils literal">__init__</tt> methods of a set of classes, by preserving their
signature (such use case is not made up; this is done in SQAlchemy
and in other frameworks). When the first argument of <tt class="docutils literal">FunctionMaker.create</tt>
is a function, a <tt class="docutils literal">FunctionMaker</tt> object is instantiated internally,
with attributes <tt class="docutils literal">args</tt>, <tt class="docutils literal">varargs</tt>,
<tt class="docutils literal">keywords</tt> and <tt class="docutils literal">defaults</tt> which are the
the return values of the standard library function <tt class="docutils literal">inspect.getargspec</tt>.
For each argument in the <tt class="docutils literal">args</tt> (which is a list of strings containing
the names of the mandatory arguments) an attribute <tt class="docutils literal">arg0</tt>, <tt class="docutils literal">arg1</tt>,
..., <tt class="docutils literal">argN</tt> is also generated. Finally, there is a <tt class="docutils literal">signature</tt>
attribute, a string with the signature of the original function.</p>
<p>Notice that while I do not have plans
to change or remove the functionality provided in the
<tt class="docutils literal">FunctionMaker</tt> class, I do not guarantee that it will stay
unchanged forever. For instance, right now I am using the traditional
string interpolation syntax for function templates, but Python 2.6
and Python 3.0 provide a newer interpolation syntax and I may use
the new syntax in the future.
On the other hand, the functionality provided by
<tt class="docutils literal">decorator</tt> has been there from version 0.1 and it is guaranteed to
stay there forever.</p>
</div>
<div class="section" id="getting-the-source-code">
<h1><a class="toc-backref" href="#id12">Getting the source code</a></h1>
<p>Internally <tt class="docutils literal">FunctionMaker.create</tt> uses <tt class="docutils literal">exec</tt> to generate the
decorated function. Therefore
<tt class="docutils literal">inspect.getsource</tt> will not work for decorated functions. That
means that the usual '??' trick in IPython will give you the (right on
the spot) message <tt class="docutils literal">Dynamically generated function. No source code
available</tt>. In the past I have considered this acceptable, since
<tt class="docutils literal">inspect.getsource</tt> does not really work even with regular
decorators. In that case <tt class="docutils literal">inspect.getsource</tt> gives you the wrapper
source code which is probably not what you want:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">identity_dec</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">wrapper</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">return</span> <span class="n">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="k">return</span> <span class="n">wrapper</span>
</pre></div>
</div>
<div class="codeblock python">
<div class="highlight"><pre><span class="nd">@identity_dec</span>
<span class="k">def</span> <span class="nf">example</span><span class="p">():</span> <span class="k">pass</span>
<span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">inspect</span><span class="o">.</span><span class="n">getsource</span><span class="p">(</span><span class="n">example</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">wrapper</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">):</span>
<span class="k">return</span> <span class="n">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="o"><</span><span class="n">BLANKLINE</span><span class="o">></span>
</pre></div>
</div>
<p>(see bug report <a class="reference external" href="http://bugs.python.org/issue1764286">1764286</a> for an explanation of what is happening).
Unfortunately the bug is still there, even in Python 2.6 and 3.0.
There is however a workaround. The decorator module adds an
attribute <tt class="docutils literal">.undecorated</tt> to the decorated function, containing
a reference to the original function. The easy way to get
the source code is to call <tt class="docutils literal">inspect.getsource</tt> on the
undecorated function:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">inspect</span><span class="o">.</span><span class="n">getsource</span><span class="p">(</span><span class="n">factorial</span><span class="o">.</span><span class="n">undecorated</span><span class="p">))</span>
<span class="nd">@tail_recursive</span>
<span class="k">def</span> <span class="nf">factorial</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">acc</span><span class="o">=</span><span class="mf">1</span><span class="p">):</span>
<span class="s">"The good old factorial"</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mf">0</span><span class="p">:</span> <span class="k">return</span> <span class="n">acc</span>
<span class="k">return</span> <span class="n">factorial</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mf">1</span><span class="p">,</span> <span class="n">n</span><span class="o">*</span><span class="n">acc</span><span class="p">)</span>
<span class="o"><</span><span class="n">BLANKLINE</span><span class="o">></span>
</pre></div>
</div>
</div>
<div class="section" id="dealing-with-third-party-decorators">
<h1><a class="toc-backref" href="#id13">Dealing with third party decorators</a></h1>
<p>Sometimes you find on the net some cool decorator that you would
like to include in your code. However, more often than not the cool
decorator is not signature-preserving. Therefore you may want an easy way to
upgrade third party decorators to signature-preserving decorators without
having to rewrite them in terms of <tt class="docutils literal">decorator</tt>. You can use a
<tt class="docutils literal">FunctionMaker</tt> to implement that functionality as follows:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">decorator_apply</span><span class="p">(</span><span class="n">dec</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> Decorate a function by preserving the signature even if dec</span>
<span class="sd"> is not a signature-preserving decorator.</span>
<span class="sd"> """</span>
<span class="k">return</span> <span class="n">FunctionMaker</span><span class="o">.</span><span class="n">create</span><span class="p">(</span>
<span class="n">func</span><span class="p">,</span> <span class="s">'return decorated(</span><span class="si">%(signature)s</span><span class="s">)'</span><span class="p">,</span>
<span class="nb">dict</span><span class="p">(</span><span class="n">decorated</span><span class="o">=</span><span class="n">dec</span><span class="p">(</span><span class="n">func</span><span class="p">)),</span> <span class="n">undecorated</span><span class="o">=</span><span class="n">func</span><span class="p">)</span>
</pre></div>
</div>
<p><tt class="docutils literal">decorator_apply</tt> sets the attribute <tt class="docutils literal">.undecorated</tt> of the generated
function to the original function, so that you can get the right
source code.</p>
<p>Notice that I am not providing this functionality in the <tt class="docutils literal">decorator</tt>
module directly since I think it is best to rewrite the decorator rather
than adding an additional level of indirection. However, practicality
beats purity, so you can add <tt class="docutils literal">decorator_apply</tt> to your toolbox and
use it if you need to.</p>
<p>In order to give an example of usage of <tt class="docutils literal">decorator_apply</tt>, I will show a
pretty slick decorator that converts a tail-recursive function in an iterative
function. I have shamelessly stolen the basic idea from Kay Schluehr's recipe
in the Python Cookbook,
<a class="reference external" href="http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691">http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691</a>.</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">class</span> <span class="nc">TailRecursive</span><span class="p">(</span><span class="nb">object</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> tail_recursive decorator based on Kay Schluehr's recipe</span>
<span class="sd"> http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/496691</span>
<span class="sd"> with improvements by me and George Sakkis.</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="nf">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">func</span> <span class="o">=</span> <span class="n">func</span>
<span class="bp">self</span><span class="o">.</span><span class="n">firstcall</span> <span class="o">=</span> <span class="bp">True</span>
<span class="bp">self</span><span class="o">.</span><span class="n">CONTINUE</span> <span class="o">=</span> <span class="nb">object</span><span class="p">()</span> <span class="c"># sentinel</span>
<span class="k">def</span> <span class="nf">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwd</span><span class="p">):</span>
<span class="n">CONTINUE</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">CONTINUE</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">firstcall</span><span class="p">:</span>
<span class="n">func</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">func</span>
<span class="bp">self</span><span class="o">.</span><span class="n">firstcall</span> <span class="o">=</span> <span class="bp">False</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">while</span> <span class="bp">True</span><span class="p">:</span>
<span class="n">result</span> <span class="o">=</span> <span class="n">func</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kwd</span><span class="p">)</span>
<span class="k">if</span> <span class="n">result</span> <span class="ow">is</span> <span class="n">CONTINUE</span><span class="p">:</span> <span class="c"># update arguments</span>
<span class="n">args</span><span class="p">,</span> <span class="n">kwd</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">argskwd</span>
<span class="k">else</span><span class="p">:</span> <span class="c"># last call</span>
<span class="k">return</span> <span class="n">result</span>
<span class="k">finally</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">firstcall</span> <span class="o">=</span> <span class="bp">True</span>
<span class="k">else</span><span class="p">:</span> <span class="c"># return the arguments of the tail call</span>
<span class="bp">self</span><span class="o">.</span><span class="n">argskwd</span> <span class="o">=</span> <span class="n">args</span><span class="p">,</span> <span class="n">kwd</span>
<span class="k">return</span> <span class="n">CONTINUE</span>
</pre></div>
</div>
<p>Here the decorator is implemented as a class returning callable
objects.</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">tail_recursive</span><span class="p">(</span><span class="n">func</span><span class="p">):</span>
<span class="k">return</span> <span class="n">decorator_apply</span><span class="p">(</span><span class="n">TailRecursive</span><span class="p">,</span> <span class="n">func</span><span class="p">)</span>
</pre></div>
</div>
<p>Here is how you apply the upgraded decorator to the good old factorial:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="nd">@tail_recursive</span>
<span class="k">def</span> <span class="nf">factorial</span><span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">acc</span><span class="o">=</span><span class="mf">1</span><span class="p">):</span>
<span class="s">"The good old factorial"</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mf">0</span><span class="p">:</span> <span class="k">return</span> <span class="n">acc</span>
<span class="k">return</span> <span class="n">factorial</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mf">1</span><span class="p">,</span> <span class="n">n</span><span class="o">*</span><span class="n">acc</span><span class="p">)</span>
</pre></div>
</div>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="k">print</span><span class="p">(</span><span class="n">factorial</span><span class="p">(</span><span class="mf">4</span><span class="p">))</span>
<span class="mf">24</span>
</pre></div>
</div>
<p>This decorator is pretty impressive, and should give you some food for
your mind ;) Notice that there is no recursion limit now, and you can
easily compute <tt class="docutils literal">factorial(1001)</tt> or larger without filling the stack
frame. Notice also that the decorator will not work on functions which
are not tail recursive, such as the following</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">fact</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c"># this is not tail-recursive</span>
<span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mf">0</span><span class="p">:</span> <span class="k">return</span> <span class="mf">1</span>
<span class="k">return</span> <span class="n">n</span> <span class="o">*</span> <span class="n">fact</span><span class="p">(</span><span class="n">n</span><span class="o">-</span><span class="mf">1</span><span class="p">)</span>
</pre></div>
</div>
<p>(reminder: a function is tail recursive if it either returns a value without
making a recursive call, or returns directly the result of a recursive
call).</p>
</div>
<div class="section" id="caveats-and-limitations">
<h1><a class="toc-backref" href="#id14">Caveats and limitations</a></h1>
<p>The first thing you should be aware of, it the fact that decorators
have a performance penalty.
The worse case is shown by the following example:</p>
<pre class="literal-block">
$ cat performance.sh
python3 -m timeit -s "
from decorator import decorator
@decorator
def do_nothing(func, *args, **kw):
return func(*args, **kw)
@do_nothing
def f():
pass
" "f()"
python3 -m timeit -s "
def f():
pass
" "f()"
</pre>
<p>On my MacBook, using the <tt class="docutils literal">do_nothing</tt> decorator instead of the
plain function is more than three times slower:</p>
<pre class="literal-block">
$ bash performance.sh
1000000 loops, best of 3: 0.669 usec per loop
1000000 loops, best of 3: 0.181 usec per loop
</pre>
<p>It should be noted that a real life function would probably do
something more useful than <tt class="docutils literal">f</tt> here, and therefore in real life the
performance penalty could be completely negligible. As always, the
only way to know if there is
a penalty in your specific use case is to measure it.</p>
<p>You should be aware that decorators will make your tracebacks
longer and more difficult to understand. Consider this example:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@trace</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">f</span><span class="p">():</span>
<span class="o">...</span> <span class="mf">1</span><span class="o">/</span><span class="mf">0</span>
</pre></div>
</div>
<p>Calling <tt class="docutils literal">f()</tt> will give you a <tt class="docutils literal">ZeroDivisionError</tt>, but since the
function is decorated the traceback will be longer:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="n">f</span><span class="p">()</span>
<span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span>
<span class="o">...</span>
<span class="n">File</span> <span class="s">"<string>"</span><span class="p">,</span> <span class="n">line</span> <span class="mf">2</span><span class="p">,</span> <span class="ow">in</span> <span class="n">f</span>
<span class="n">File</span> <span class="s">"<doctest __main__[22]>"</span><span class="p">,</span> <span class="n">line</span> <span class="mf">4</span><span class="p">,</span> <span class="ow">in</span> <span class="n">trace</span>
<span class="k">return</span> <span class="n">f</span><span class="p">(</span><span class="o">*</span><span class="n">args</span><span class="p">,</span> <span class="o">**</span><span class="n">kw</span><span class="p">)</span>
<span class="n">File</span> <span class="s">"<doctest __main__[51]>"</span><span class="p">,</span> <span class="n">line</span> <span class="mf">3</span><span class="p">,</span> <span class="ow">in</span> <span class="n">f</span>
<span class="mf">1</span><span class="o">/</span><span class="mf">0</span>
<span class="ne">ZeroDivisionError</span><span class="p">:</span> <span class="nb">int</span> <span class="n">division</span> <span class="ow">or</span> <span class="n">modulo</span> <span class="n">by</span> <span class="n">zero</span>
</pre></div>
</div>
<p>You see here the inner call to the decorator <tt class="docutils literal">trace</tt>, which calls
<tt class="docutils literal"><span class="pre">f(*args,</span> **kw)</tt>, and a reference to <tt class="docutils literal">File <span class="pre">"<string>",</span> line 2, in f</tt>.
This latter reference is due to the fact that internally the decorator
module uses <tt class="docutils literal">exec</tt> to generate the decorated function. Notice that
<tt class="docutils literal">exec</tt> is <em>not</em> responsibile for the performance penalty, since is the
called <em>only once</em> at function decoration time, and not every time
the decorated function is called.</p>
<p>At present, there is no clean way to avoid <tt class="docutils literal">exec</tt>. A clean solution
would require to change the CPython implementation of functions and
add an hook to make it possible to change their signature directly.
That could happen in future versions of Python (see PEP <a class="reference external" href="http://www.python.org/dev/peps/pep-0362">362</a>) and
then the decorator module would become obsolete. However, at present,
even in Python 3.1 it is impossible to change the function signature
directly, therefore the <tt class="docutils literal">decorator</tt> module is still useful.
Actually, this is one of the main reasons why I keep maintaining
the module and releasing new versions.</p>
<p>In the present implementation, decorators generated by <tt class="docutils literal">decorator</tt>
can only be used on user-defined Python functions or methods, not on generic
callable objects, nor on built-in functions, due to limitations of the
<tt class="docutils literal">inspect</tt> module in the standard library.</p>
<p>There is a restriction on the names of the arguments: for instance,
if try to call an argument <tt class="docutils literal">_call_</tt> or <tt class="docutils literal">_func_</tt>
you will get a <tt class="docutils literal">NameError</tt>:</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="nd">@trace</span>
<span class="o">...</span> <span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">_func_</span><span class="p">):</span> <span class="k">print</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="o">...</span>
<span class="n">Traceback</span> <span class="p">(</span><span class="n">most</span> <span class="n">recent</span> <span class="n">call</span> <span class="n">last</span><span class="p">):</span>
<span class="o">...</span>
<span class="ne">NameError</span><span class="p">:</span> <span class="n">_func_</span> <span class="ow">is</span> <span class="n">overridden</span> <span class="ow">in</span>
<span class="k">def</span> <span class="nf">f</span><span class="p">(</span><span class="n">_func_</span><span class="p">):</span>
<span class="k">return</span> <span class="n">_call_</span><span class="p">(</span><span class="n">_func_</span><span class="p">,</span> <span class="n">_func_</span><span class="p">)</span>
</pre></div>
</div>
<p>Finally, the implementation is such that the decorated function contains
a <em>copy</em> of the original function dictionary
(<tt class="docutils literal">vars(decorated_f) is not vars(f)</tt>):</p>
<div class="codeblock python">
<div class="highlight"><pre><span class="o">>>></span> <span class="k">def</span> <span class="nf">f</span><span class="p">():</span> <span class="k">pass</span> <span class="c"># the original function</span>
<span class="o">>>></span> <span class="n">f</span><span class="o">.</span><span class="n">attr1</span> <span class="o">=</span> <span class="s">"something"</span> <span class="c"># setting an attribute</span>
<span class="o">>>></span> <span class="n">f</span><span class="o">.</span><span class="n">attr2</span> <span class="o">=</span> <span class="s">"something else"</span> <span class="c"># setting another attribute</span>
<span class="o">>>></span> <span class="n">traced_f</span> <span class="o">=</span> <span class="n">trace</span><span class="p">(</span><span class="n">f</span><span class="p">)</span> <span class="c"># the decorated function</span>
<span class="o">>>></span> <span class="n">traced_f</span><span class="o">.</span><span class="n">attr1</span>
<span class="s">'something'</span>
<span class="o">>>></span> <span class="n">traced_f</span><span class="o">.</span><span class="n">attr2</span> <span class="o">=</span> <span class="s">"something different"</span> <span class="c"># setting attr</span>
<span class="o">>>></span> <span class="n">f</span><span class="o">.</span><span class="n">attr2</span> <span class="c"># the original attribute did not change</span>
<span class="s">'something else'</span>
</pre></div>
</div>
</div>
<div class="section" id="compatibility-notes">
<h1><a class="toc-backref" href="#id15">Compatibility notes</a></h1>
<p>Version 3.2 is the first version of the <tt class="docutils literal">decorator</tt> module to officially
support Python 3. Actually, the module has supported Python 3 from
the beginning, via the <tt class="docutils literal">2to3</tt> conversion tool, but this step has
been now integrated in the build process, thanks to the <a class="reference external" href="http://packages.python.org/distribute/">distribute</a>
project, the Python 3-compatible replacement of easy_install.
The hard work (for me) has been converting the documentation and the
doctests. This has been possible only now that <a class="reference external" href="http://docutils.sourceforge.net/">docutils</a> and <a class="reference external" href="http://pygments.org/">pygments</a>
have been ported to Python 3.</p>
<p>The <tt class="docutils literal">decorator</tt> module <em>per se</em> does not contain any change, apart
from the removal of the functions <tt class="docutils literal">get_info</tt> and <tt class="docutils literal">new_wrapper</tt>,
which have been deprecated for years. <tt class="docutils literal">get_info</tt> has been removed
since it was little used and since it had to be changed anyway to work
with Python 3.0; <tt class="docutils literal">new_wrapper</tt> has been removed since it was
useless: its major use case (converting signature changing decorators
to signature preserving decorators) has been subsumed by
<tt class="docutils literal">decorator_apply</tt> and the other use case can be managed with the
<tt class="docutils literal">FunctionMaker</tt>.</p>
<p>There are a few changes in the documentation: I removed the
<tt class="docutils literal">decorator_factory</tt> example, which was confusing some of my users,
and I removed the part about exotic signatures in the Python 3
documentation, since Python 3 does not support them.
Notice that there is no support for Python 3 <a class="reference external" href="http://www.python.org/dev/peps/pep-3107/">function annotations</a>
since it seems premature at the moment, when most people are
still using Python 2.X.</p>
<p>Finally <tt class="docutils literal">decorator</tt> cannot be used as a class decorator and the
<a class="reference external" href="http://www.phyast.pitt.edu/~micheles/python/documentation.html#class-decorators-and-decorator-factories">functionality introduced in version 2.3</a> has been removed. That
means that in order to define decorator factories with classes you
need to define the <tt class="docutils literal">__call__</tt> method explicitly (no magic anymore).
All these changes should not cause any trouble, since they were
all rarely used features. Should you have any trouble, you can always
downgrade to the 2.3 version.</p>
<p>The examples shown here have been tested with Python 2.6. Python 2.4
is also supported - of course the examples requiring the <tt class="docutils literal">with</tt>
statement will not work there. Python 2.5 works fine, but if you
run the examples in the interactive interpreter
you will notice a few differences since
<tt class="docutils literal">getargspec</tt> returns an <tt class="docutils literal">ArgSpec</tt> namedtuple instead of a regular
tuple. That means that running the file
<tt class="docutils literal">documentation.py</tt> under Python 2.5 will print a few errors, but
they are not serious.</p>
</div>
<div class="section" id="licence">
<h1><a class="toc-backref" href="#id16">LICENCE</a></h1>
<p>Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:</p>
<pre class="literal-block">
Copyright (c) 2005, Michele Simionato
All rights reserved.
Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
Redistributions in bytecode form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
</pre>
<p>If you use this software and you are happy with it, consider sending me a
note, just to gratify my ego. On the other hand, if you use this software and
you are unhappy with it, send me a patch!</p>
</div>
</div>
</body>
</html>
|