1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import time
import multiprocessing
import numpy as np
import argparse
from scipy.stats import poisson
import py2bit
import sys
from deeptoolsintervals import GTF
from deeptools.utilities import tbitToBamChrName, getGC_content
from deeptools import parserCommon, mapReduce
from deeptools.getFragmentAndReadSize import get_read_and_fragment_length
from deeptools import bamHandler
debug = 0
old_settings = np.seterr(all='ignore')
def parse_arguments(args=None):
parentParser = parserCommon.getParentArgParse(binSize=False, blackList=True)
requiredArgs = getRequiredArgs()
parser = argparse.ArgumentParser(
parents=[requiredArgs, parentParser],
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='Computes the GC-bias using Benjamini\'s method '
'[Benjamini & Speed (2012). Nucleic Acids Research, 40(10). doi: 10.1093/nar/gks001]. '
'The GC-bias is visualized and the resulting table can be used to'
'correct the bias with `correctGCBias`.',
usage='computeGCBias '
'-b file.bam --effectiveGenomeSize 2150570000 -g mm9.2bit -l 200 --GCbiasFrequenciesFile freq.txt\n'
'help: computeGCBias -h / computeGCBias --help',
conflict_handler='resolve',
add_help=False)
return parser
def getRequiredArgs():
parser = argparse.ArgumentParser(add_help=False)
required = parser.add_argument_group('Required arguments')
required.add_argument('--bamfile', '-b',
metavar='bam file',
help='Sorted BAM file. ',
required=True)
required.add_argument('--effectiveGenomeSize',
help='The effective genome size is the portion '
'of the genome that is mappable. Large fractions of '
'the genome are stretches of NNNN that should be '
'discarded. Also, if repetitive regions were not '
'included in the mapping of reads, the effective '
'genome size needs to be adjusted accordingly. '
'A table of values is available here: '
'http://deeptools.readthedocs.io/en/latest/content/feature/effectiveGenomeSize.html .',
default=None,
type=int,
required=True)
required.add_argument('--genome', '-g',
help='Genome in two bit format. Most genomes can be '
'found here: http://hgdownload.cse.ucsc.edu/gbdb/ '
'Search for the .2bit ending. Otherwise, fasta '
'files can be converted to 2bit using the UCSC '
'programm called faToTwoBit available for different '
'plattforms at '
'http://hgdownload.cse.ucsc.edu/admin/exe/',
metavar='2bit FILE',
required=True)
required.add_argument('--GCbiasFrequenciesFile', '-freq', '-o',
help='Path to save the file containing '
'the observed and expected read frequencies per %%GC-'
'content. This file is needed to run the '
'correctGCBias tool. This is a text file.',
type=argparse.FileType('w'),
metavar='FILE',
required=True)
# define the optional arguments
optional = parser.add_argument_group('Optional arguments')
optional.add_argument('--fragmentLength', '-l',
help='Fragment length used for the sequencing. If '
'paired-end reads are used, the fragment length is '
'computed based from the bam file',
type=int)
optional.add_argument("--help", "-h", action="help",
help="show this help message and exit")
optional.add_argument('--sampleSize',
default=5e7,
help='Number of sampling points to be considered. (Default: %(default)s)',
type=int)
optional.add_argument('--extraSampling',
help='BED file containing genomic regions for which '
'extra sampling is required because they are '
'underrepresented in the genome.',
type=argparse.FileType('r'),
metavar='BED file')
plot = parser.add_argument_group('Diagnostic plot options')
plot.add_argument('--biasPlot',
metavar='FILE NAME',
help='If given, a diagnostic image summarizing '
'the GC-bias will be saved.')
plot.add_argument('--plotFileFormat',
metavar='',
help='image format type. If given, this '
'option overrides the '
'image format based on the plotFile ending. '
'The available options are: "png", '
'"eps", "pdf", "plotly" and "svg"',
choices=['png', 'pdf', 'svg', 'eps', 'plotly'])
plot.add_argument('--regionSize',
metavar='INT',
type=int,
default=300,
help='To plot the reads per %%GC over a region'
'the size of the region is required. By default, '
'the bin size is set to 300 bases, which is close to the '
'standard fragment size for Illumina machines. However, '
'if the depth of sequencing is low, a larger bin size '
'will be required, otherwise many bins will not '
'overlap with any read (Default: %(default)s)')
return parser
def getPositionsToSample(chrom, start, end, stepSize):
"""
check if the region submitted to the worker
overlaps with the region to take extra effort to sample.
If that is the case, the regions to sample array is
increased to match each of the positions in the extra
effort region sampled at the same stepSize along the interval.
If a filter out tree is given, then from positions to sample
those regions are cleaned
"""
positions_to_sample = np.arange(start, end, stepSize)
if global_vars['filter_out']:
filter_out_tree = GTF(global_vars['filter_out'])
else:
filter_out_tree = None
if global_vars['extra_sampling_file']:
extra_tree = GTF(global_vars['extra_sampling_file'])
else:
extra_tree = None
if extra_tree:
orig_len = len(positions_to_sample)
try:
extra_match = extra_tree.findOverlaps(chrom, start, end)
except KeyError:
extra_match = []
if len(extra_match) > 0:
for intval in extra_match:
positions_to_sample = np.append(positions_to_sample,
list(range(intval[0], intval[1], stepSize)))
# remove duplicates
positions_to_sample = np.unique(np.sort(positions_to_sample))
if debug:
print("sampling increased to {} from {}".format(
len(positions_to_sample),
orig_len))
# skip regions that are filtered out
if filter_out_tree:
try:
out_match = filter_out_tree.findOverlaps(chrom, start, end)
except KeyError:
out_match = []
if len(out_match) > 0:
for intval in out_match:
positions_to_sample = \
positions_to_sample[(positions_to_sample < intval[0]) | (positions_to_sample >= intval[1])]
return positions_to_sample
def countReadsPerGC_wrapper(args):
return countReadsPerGC_worker(*args)
def countReadsPerGC_worker(chromNameBam,
start, end, stepSize, regionSize,
chrNameBamToBit, verbose=False):
"""given a genome region defined by
(start, end), the GC content is quantified for
regions of size regionSize that are contiguous
"""
chromNameBit = chrNameBamToBit[chromNameBam]
tbit = py2bit.open(global_vars['2bit'])
bam = bamHandler.openBam(global_vars['bam'])
c = 1
sub_reads_per_gc = []
positions_to_sample = getPositionsToSample(chromNameBit,
start, end, stepSize)
for index in range(len(positions_to_sample)):
i = positions_to_sample[index]
# stop if region extends over the chromosome end
if tbit.chroms(chromNameBit) < i + regionSize:
break
try:
gc = getGC_content(tbit, chromNameBit, int(i), int(i + regionSize))
except Exception as detail:
if verbose:
print("{}:{}-{}".format(chromNameBit, i, i + regionSize))
print(detail)
continue
numberReads = bam.count(chromNameBam, i, i + regionSize)
sub_reads_per_gc.append((numberReads, gc))
c += 1
return sub_reads_per_gc
def tabulateGCcontent_wrapper(args):
return tabulateGCcontent_worker(*args)
def tabulateGCcontent_worker(chromNameBam, start, end, stepSize,
fragmentLength,
chrNameBamToBit, verbose=False):
r""" given genome regions, the GC content of the genome is tabulated for
fragments of length 'fragmentLength' each 'stepSize' positions.
>>> test = Tester()
>>> args = test.testTabulateGCcontentWorker()
>>> N_gc, F_gc = tabulateGCcontent_worker(*args)
The forward read positions are:
[1, 4, 10, 10, 16, 18]
which correspond to a GC of
[1, 1, 1, 1, 2, 1]
The evaluated position are
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
the corresponding GC is
[2, 1, 1, 2, 2, 1, 2, 3, 2, 1]
>>> print(N_gc)
[0 4 5 1]
>>> print(F_gc)
[0 4 1 0]
>>> test.set_filter_out_file()
>>> chrNameBam2bit = {'2L': 'chr2L'}
Test for the filter out option
>>> N_gc, F_gc = tabulateGCcontent_worker('2L', 0, 20, 2,
... {'median': 3}, chrNameBam2bit)
>>> test.unset_filter_out_file()
The evaluated positions are
[ 0 2 8 10 12 14 16 18]
>>> print(N_gc)
[0 3 4 1]
>>> print(F_gc)
[0 3 1 0]
Test for extra_sampling option
>>> test.set_extra_sampling_file()
>>> chrNameBam2bit = {'2L': 'chr2L'}
>>> res = tabulateGCcontent_worker('2L', 0, 20, 2,
... {'median': 3}, chrNameBam2bit)
The new positions evaluated are
[0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18]
and the GC is
[2, 1, 1, 0, 1, 2, 2, 1, 2, 3, 2, 1]
>>> print(res[0])
[1 5 5 1]
>>> print(res[1])
[0 5 1 0]
"""
if start > end:
raise NameError("start %d bigger that end %d" % (start, end))
chromNameBit = chrNameBamToBit[chromNameBam]
# array to keep track of the GC from regions of length 'fragmentLength'
# from the genome. The index of the array is used to
# indicate the gc content. The values inside the
# array are counts. Thus, if N_gc[10] = 3, that means
# that 3 regions have a gc_content of 10.
subN_gc = np.zeros(fragmentLength['median'] + 1, dtype='int')
subF_gc = np.zeros(fragmentLength['median'] + 1, dtype='int')
tbit = py2bit.open(global_vars['2bit'])
bam = bamHandler.openBam(global_vars['bam'])
peak = 0
startTime = time.time()
if verbose:
print("[{:.3f}] computing positions to "
"sample".format(time.time() - startTime))
positions_to_sample = getPositionsToSample(chromNameBit,
start, end, stepSize)
read_counts = []
# Optimize IO.
# if the sample regions are far apart from each
# other is faster to go to each location and fetch
# the reads found there.
# Otherwise, if the regions to sample are close to
# each other, is faster to load all the reads in
# a large region into memory and consider only
# those falling into the positions to sample.
# The following code gets the reads
# that are at sampling positions that lie close together
if np.mean(np.diff(positions_to_sample)) < 1000:
start_pos = min(positions_to_sample)
end_pos = max(positions_to_sample)
if verbose:
print("[{:.3f}] caching reads".format(time.time() - startTime))
counts = np.bincount([r.pos - start_pos
for r in bam.fetch(chromNameBam, start_pos,
end_pos + 1)
if not r.is_reverse and not r.is_unmapped and r.pos >= start_pos],
minlength=end_pos - start_pos + 2)
read_counts = counts[positions_to_sample - min(positions_to_sample)]
if verbose:
print("[{:.3f}] finish caching reads.".format(
time.time() - startTime))
countTime = time.time()
c = 1
for index in range(len(positions_to_sample)):
i = positions_to_sample[index]
# stop if the end of the chromosome is reached
if i + fragmentLength['median'] > tbit.chroms(chromNameBit):
break
try:
gc = getGC_content(tbit, chromNameBit, int(i), int(i + fragmentLength['median']), fraction=False)
except Exception as detail:
if verbose:
print(detail)
continue
subN_gc[gc] += 1
# count all reads at position 'i'
if len(read_counts) == 0: # case when no cache was done
num_reads = len([x.pos for x in bam.fetch(chromNameBam, i, i + 1)
if x.is_reverse is False and x.pos == i])
else:
num_reads = read_counts[index]
if num_reads >= global_vars['max_reads']:
peak += 1
continue
subF_gc[gc] += num_reads
if verbose:
if index % 50000 == 0:
endTime = time.time()
print("%s processing %d (%.1f per sec) @ %s:%s-%s %s" %
(multiprocessing.current_process().name,
index, index / (endTime - countTime),
chromNameBit, start, end, stepSize))
c += 1
if verbose:
endTime = time.time()
print("%s processing %d (%.1f per sec) @ %s:%s-%s %s" %
(multiprocessing.current_process().name,
index, index / (endTime - countTime),
chromNameBit, start, end, stepSize))
print("%s total time %.1f @ %s:%s-%s %s" % (multiprocessing.current_process().name,
(endTime - startTime), chromNameBit, start, end, stepSize))
return subN_gc, subF_gc
def tabulateGCcontent(fragmentLength, chrNameBitToBam, stepSize,
chromSizes, numberOfProcessors=None, verbose=False,
region=None):
r"""
Subdivides the genome or the reads into chunks to be analyzed in parallel
using several processors. This codes handles the creation of
workers that tabulate the GC content for small regions and then
collects and integrates the results
>>> test = Tester()
>>> arg = test.testTabulateGCcontent()
>>> res = tabulateGCcontent(*arg)
>>> res
array([[ 0. , 18. , 1. ],
[ 3. , 63. , 0.45815996],
[ 7. , 159. , 0.42358185],
[ 25. , 192. , 1.25278115],
[ 28. , 215. , 1.25301422],
[ 16. , 214. , 0.71935396],
[ 12. , 95. , 1.21532959],
[ 9. , 24. , 3.60800971],
[ 3. , 11. , 2.62400706],
[ 0. , 0. , 1. ],
[ 0. , 0. , 1. ]])
"""
global global_vars
chrNameBamToBit = dict([(v, k) for k, v in chrNameBitToBam.items()])
chunkSize = int(min(2e6, 4e5 / global_vars['reads_per_bp']))
chromSizes = [(k, v) for k, v in chromSizes if k in list(chrNameBamToBit.keys())]
imap_res = mapReduce.mapReduce((stepSize,
fragmentLength, chrNameBamToBit,
verbose),
tabulateGCcontent_wrapper,
chromSizes,
genomeChunkLength=chunkSize,
numberOfProcessors=numberOfProcessors,
region=region)
for subN_gc, subF_gc in imap_res:
try:
F_gc += subF_gc
N_gc += subN_gc
except NameError:
F_gc = subF_gc
N_gc = subN_gc
if sum(F_gc) == 0:
sys.exit("No fragments included in the sampling! Consider decreasing (or maybe increasing) the --sampleSize parameter")
scaling = float(sum(N_gc)) / float(sum(F_gc))
R_gc = np.array([float(F_gc[x]) / N_gc[x] * scaling
if N_gc[x] and F_gc[x] > 0 else 1
for x in range(len(F_gc))])
data = np.transpose(np.vstack((F_gc, N_gc, R_gc)))
return data
def countReadsPerGC(regionSize, chrNameBitToBam, stepSize,
chromSizes, numberOfProcessors=None, verbose=False,
region=None):
r"""
Computes for a region of size regionSize, the GC of the region
and the number of reads that overlap it.
>>> test = Tester()
>>> arg = test.testCountReadsPerGC()
>>> reads_per_gc = countReadsPerGC(*arg)
>>> reads_per_gc[0:5,:]
array([[132. , 0.44 ],
[132. , 0.44 ],
[133. , 0.44 ],
[134. , 0.43666667],
[134. , 0.44 ]])
"""
global global_vars
chrNameBamToBit = dict([(v, k) for k, v in chrNameBitToBam.items()])
chunkSize = int(min(2e6, 4e5 / global_vars['reads_per_bp']))
imap_res = mapReduce.mapReduce((stepSize,
regionSize, chrNameBamToBit,
verbose),
countReadsPerGC_wrapper,
chromSizes,
genomeChunkLength=chunkSize,
numberOfProcessors=numberOfProcessors,
region=region)
reads_per_gc = []
for sub_reads_per_gc in imap_res:
reads_per_gc += sub_reads_per_gc
reads_per_gc = np.asarray(reads_per_gc)
return reads_per_gc
def smooth(x, window_len=3):
"""
*CURRENTLY* not being used
smooths the values from the frequencies by taking the average
of 'window_len' values. window_len has to be an odd number
"""
# do not smooth small arrays
if len(x) < window_len * 2:
return x
i = 0
y = x[:]
half_width = (window_len - 1) / 2
for i in range(0, len(x)):
if i < half_width or i + half_width + 1 > len(x):
continue
else:
y[i] = np.mean(x[i - half_width:i + half_width + 1])
# clip low values, this avoid problems with zeros
return y
def bin_by(x, y, nbins=10):
"""
Bin x by y.
Returns the binned "x" values and the left edges of the bins
"""
bins = np.linspace(0, 1, nbins + 1)
# To avoid extra bin for the max value
bins[-1] += 1
indices = np.digitize(y, bins)
output = []
for i in range(1, len(bins)):
output.append(x[indices == i])
# Just return the left edges of the bins
bins = bins[:-1]
return output, bins
def plotlyGCbias(file_name, frequencies, reads_per_gc, region_size):
import plotly.offline as py
import plotly.graph_objs as go
import matplotlib.cbook as cbook
fig = go.Figure()
fig['layout']['xaxis1'] = dict(domain=[0.0, 1.0], anchor="y1", title="GC fraction")
fig['layout']['yaxis1'] = dict(domain=[0.55, 1.0], anchor="x1", title="Number of reads")
fig['layout']['xaxis2'] = dict(domain=[0.0, 1.0], anchor="y2", title="GC fraction", range=[0.2, 0.7])
fig['layout']['yaxis2'] = dict(domain=[0.0, 0.45], anchor="x2", title="log2(observed/expected)")
text = "reads per {} base region".format(region_size)
annos = [{'yanchor': 'bottom', 'xref': 'paper', 'xanchor': 'center', 'yref': 'paper', 'text': text, 'y': 1.0, 'x': 0.5, 'font': {'size': 16}, 'showarrow': False}]
text = "normalized observed/expected read counts"
annos.append({'yanchor': 'bottom', 'xref': 'paper', 'xanchor': 'center', 'yref': 'paper', 'text': text, 'y': 0.5, 'x': 0.5, 'font': {'size': 16}, 'showarrow': False})
# prepare data for boxplot
reads, GC = reads_per_gc.T
reads_per_gc, bin_labels = bin_by(reads, GC, nbins=100)
to_keep = [idx for idx, x in enumerate(bin_labels) if 0.2 <= x <= 0.7]
reads_per_gc = [reads_per_gc[x] for x in to_keep]
bin_labels = [bin_labels[x] for x in to_keep]
# produce the same boxplot as matplotlib as vastly reduce the output file size
bins = []
for b in reads_per_gc:
s = cbook.boxplot_stats(b)[0]
bins.append([s['whislo'], s['q1'], s['q1'], s['med'], s['med'], s['med'], s['q3'], s['q3'], s['whishi']])
data = []
# top plot
for x, y in zip(bin_labels, bins):
trace = go.Box(x=x, y=y, xaxis='x1', yaxis='y1', boxpoints='outliers', showlegend=False, name="{}".format(x), line=dict(color='rgb(107,174,214)'))
data.append(trace)
# bottom plot
x = np.linspace(0, 1, frequencies.shape[0])
trace = go.Scatter(x=x, y=np.log2(frequencies[:, 2]), xaxis='x2', yaxis='y2', showlegend=False, line=dict(color='rgb(107,174,214)'))
data.append(trace)
fig.add_traces(data)
fig['layout']['annotations'] = annos
py.plot(fig, filename=file_name, auto_open=False)
def plotGCbias(file_name, frequencies, reads_per_gc, region_size, image_format=None):
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['svg.fonttype'] = 'none'
import matplotlib.pyplot as plt
# prepare data for boxplot
reads, GC = reads_per_gc.T
reads_per_gc, bin_labels = bin_by(reads, GC, nbins=100)
to_keep = [idx for idx, x in enumerate(bin_labels) if 0.2 <= x <= 0.7]
reads_per_gc = [reads_per_gc[x] for x in to_keep]
bin_labels = [bin_labels[x] for x in to_keep]
title = "reads per regions of {} bp".format(region_size)
fig = plt.figure(figsize=(6, 8))
ax1 = fig.add_subplot(211, title=title)
ax2 = fig.add_subplot(212,
title='normalized observed/expected read counts')
# make boxplot
bp = ax1.boxplot(reads_per_gc, notch=0, patch_artist=True)
plt.setp(bp['boxes'], color='black', facecolor='LightGreen')
plt.setp(bp['medians'], color='black')
plt.setp(bp['whiskers'], color='black', linestyle='dashed')
plt.setp(bp['fliers'], marker='None')
# get the whisker that spands the most
y_max = np.nanmax([x.get_data()[1][1] for x in bp['whiskers']])
ax1.set_ylim(0 - (y_max * 0.05), y_max * 1.05)
ax1.set_ylabel('Number of reads')
ax1.set_xlabel('GC fraction')
xticks = [idx for idx, x in enumerate(bin_labels) if int(x * 100) % 10 == 0]
ax1.set_xticks(xticks)
ax1.set_xticklabels(["{:.1f}".format(bin_labels[x]) for x in xticks])
x = np.linspace(0, 1, frequencies.shape[0])
y = np.log2(frequencies[:, 2])
ax2.plot(x, y, color='#8c96f0')
ax2.set_xlabel('GC fraction')
ax2.set_ylabel('log2ratio observed/expected')
ax2.set_xlim(0.2, 0.7)
y_max = max(y[np.where(x >= 0.2)[0][0]:np.where(x <= 0.7)[0][-1] + 1])
y_min = min(y[np.where(x >= 0.2)[0][0]:np.where(x <= 0.7)[0][-1] + 1])
if y_max > 0:
y_max *= 1.1
else:
y_max *= 0.9
if y_min < 0:
y_min *= 1.1
else:
y_min *= 0.9
ax2.set_ylim(y_min, y_max)
plt.tight_layout()
plt.savefig(file_name, bbox_inches='tight', dpi=100, format=image_format)
plt.close()
def main(args=None):
args = parse_arguments().parse_args(args)
if args.extraSampling:
extra_sampling_file = args.extraSampling.name
args.extraSampling.close()
else:
extra_sampling_file = None
global global_vars
global_vars = {}
global_vars['2bit'] = args.genome
global_vars['bam'] = args.bamfile
global_vars['filter_out'] = args.blackListFileName
global_vars['extra_sampling_file'] = extra_sampling_file
tbit = py2bit.open(global_vars['2bit'])
bam, mapped, unmapped, stats = bamHandler.openBam(global_vars['bam'], returnStats=True, nThreads=args.numberOfProcessors)
if args.fragmentLength:
fragment_len_dict = \
{'median': args.fragmentLength}
else:
fragment_len_dict, __ = \
get_read_and_fragment_length(args.bamfile, None,
numberOfProcessors=args.numberOfProcessors,
verbose=args.verbose)
if not fragment_len_dict:
print("\nPlease provide the fragment length used for the "
"sample preparation.\n")
exit(1)
fragment_len_dict = {'median': int(fragment_len_dict['median'])}
chrNameBitToBam = tbitToBamChrName(list(tbit.chroms().keys()), bam.references)
global_vars['genome_size'] = sum(tbit.chroms().values())
global_vars['total_reads'] = mapped
global_vars['reads_per_bp'] = \
float(global_vars['total_reads']) / args.effectiveGenomeSize
confidence_p_value = float(1) / args.sampleSize
# chromSizes: list of tuples
chromSizes = [(bam.references[i], bam.lengths[i])
for i in range(len(bam.references))]
chromSizes = [x for x in chromSizes if x[0] in tbit.chroms()]
# use poisson distribution to identify peaks that should be discarted.
# I multiply by 4, because the real distribution of reads
# vary depending on the gc content
# and the global number of reads per bp may a be too low.
# empirically, a value of at least 4 times as big as the
# reads_per_bp was found.
# Similarly for the min value, I divide by 4.
global_vars['max_reads'] = poisson(4 * global_vars['reads_per_bp'] * fragment_len_dict['median']).isf(confidence_p_value)
# this may be of not use, unless the depth of sequencing is really high
# as this value is close to 0
global_vars['min_reads'] = poisson(0.25 * global_vars['reads_per_bp'] * fragment_len_dict['median']).ppf(confidence_p_value)
for key in global_vars:
print("{}: {}".format(key, global_vars[key]))
print("computing frequencies")
# the GC of the genome is sampled each stepSize bp.
stepSize = max(int(global_vars['genome_size'] / args.sampleSize), 1)
print("stepSize: {}".format(stepSize))
data = tabulateGCcontent(fragment_len_dict,
chrNameBitToBam, stepSize,
chromSizes,
numberOfProcessors=args.numberOfProcessors,
verbose=args.verbose,
region=args.region)
np.savetxt(args.GCbiasFrequenciesFile.name, data)
if args.biasPlot:
reads_per_gc = countReadsPerGC(args.regionSize,
chrNameBitToBam, stepSize * 10,
chromSizes,
numberOfProcessors=args.numberOfProcessors,
verbose=args.verbose,
region=args.region)
if args.plotFileFormat == "plotly":
plotlyGCbias(args.biasPlot, data, reads_per_gc, args.regionSize)
else:
plotGCbias(args.biasPlot, data, reads_per_gc, args.regionSize, image_format=args.plotFileFormat)
class Tester():
def __init__(self):
import os
self.root = os.path.dirname(os.path.abspath(__file__)) + "/test/test_corrGC/"
self.tbitFile = self.root + "sequence.2bit"
self.bamFile = self.root + "test.bam"
self.mappability = self.root + "mappability.bw"
self.chrNameBam = '2L'
self.chrNameBit = 'chr2L'
bam, mapped, unmapped, stats = bamHandler.openBam(self.bamFile, returnStats=True)
tbit = py2bit.open(self.tbitFile)
global debug
debug = 0
global global_vars
global_vars = {'2bit': self.tbitFile,
'bam': self.bamFile,
'filter_out': None,
'mappability': self.mappability,
'extra_sampling_file': None,
'max_reads': 5,
'min_reads': 0,
'min_reads': 0,
'reads_per_bp': 0.3,
'total_reads': mapped,
'genome_size': sum(tbit.chroms().values())
}
def testTabulateGCcontentWorker(self):
stepSize = 2
fragmentLength = {'min': 1, 'median': 3, 'max': 5}
start = 0
end = 20
chrNameBam2bit = {'2L': 'chr2L'}
return (self.chrNameBam,
start, end, stepSize, fragmentLength, chrNameBam2bit)
def set_filter_out_file(self):
global global_vars
global_vars['filter_out'] = self.root + "filter_out.bed"
def unset_filter_out_file(self):
global global_vars
global_vars['filter_out'] = None
def set_extra_sampling_file(self):
global global_vars
global_vars['extra_sampling_file'] = self.root + "extra_sampling.bed"
def testTabulateGCcontent(self):
fragmentLength = {'median': 10}
chrNameBitToBam = {'chr2L': '2L'}
stepSize = 1
bam = bamHandler.openBam(global_vars['bam'])
chromSizes = [(bam.references[i], bam.lengths[i])
for i in range(len(bam.references))]
return (fragmentLength,
chrNameBitToBam, stepSize, chromSizes, 1)
def testCountReadsPerGC(self):
regionSize = 300
chrNameBitToBam = {'chr2L': '2L'}
stepSize = 1
bam = bamHandler.openBam(global_vars['bam'])
chromSizes = [(bam.references[i], bam.lengths[i])
for i in range(len(bam.references))]
return (regionSize,
chrNameBitToBam, stepSize, chromSizes, 1)
if __name__ == "__main__":
main()
|